Introduction to Differential Geometry I Homework 8
 MATH:4500

November 14, 2017

Problem 1. 2.4.4

Solution:

I. \Leftarrow

Suppose α is a line of curvature. For each $t \in I, \alpha^{\prime}$ is an eigenvector of $S_{\alpha(t)}$. So there exists $c \in \mathbb{R}$ such that

$$
S_{\alpha(t)}\left(\alpha^{\prime}(t)\right)=c \cdot \alpha^{\prime}(t)
$$

But, $\nabla_{\alpha(t)} U(t)=-S_{\alpha(t)}\left(\alpha^{\prime}(t)\right)=-c \cdot \alpha^{\prime}(t)$ and thus the vectors are parallel along α.
II. \Rightarrow

Reverse the argument.
(b)Further, suppose α is a plane curve. Show α is a line of curvature if the angle between M and P is constant along α.

Let V be the unit normal vector field to P along α. Let U be the unit normal vector field to M along α. Notice that $V^{\prime}=0$ since V is parallel. Since the angle between U and V is constant, $\cdot V$ is constant. Thus we have,

$$
0=(U \cdot V)^{\prime}=U^{\prime} \cdot V+U \cdot V^{\prime}=U^{\prime} \cdot V
$$

Therefore, we have that U^{\prime} is orthogonal to V and U (since $U \cdot U=1$). We also have that α^{\prime} is orthogonal to V and U because $\alpha^{\prime} \in T_{p} M$ for all p along α. Because V and U are linearly independent, we have that U^{\prime} and α^{\prime} are colinear. Thus α^{\prime} is a line of curvature.

Problem 2. 2.4.6

Solution:

Since $\Psi(u, v)=\left(u, v, u^{2}-v^{2}\right)$, then $\Psi_{u}=(1,0,2 u), \Psi_{v}=(0,1,-2 v), \Psi_{u u}=(0,0,2), \Psi_{u v}=(0,0,2)$, $\Psi_{v v}=(0,0,-2)$.

Hence at $(0,0)$, we have $\Psi_{u}=(1,0,0), \Psi_{u}=(1,0,0)$,
Therefore at $(0,0)$, we have $E=1, F=0, G=1$, and $l=2, m=0, n=-2$.
And

$$
\left[S_{p}\right]=\left[I_{p}\right]^{-1}\left[I I_{p}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right]
$$

with $\lambda_{1}=2, \lambda_{2}=-2$.
And the normal vector is $\Psi_{u} \times \Psi_{v}=(0,1,0) \times(0,0,1)=(0,0,1)$,
And $\sigma(t)=\left(0, t,-t^{2}\right)$, so $\sigma^{\prime}(t)=(0,1,-2 t), \sigma^{\prime \prime}(t)=(0,0,-2)$, and we get a negative sign at here.
Therefore,

$$
k(u)=k(0,1,0)=-\kappa_{\sigma}(0)=-\frac{\left|\sigma^{\prime}(0) \times \sigma^{\prime \prime}(0)\right|}{|\sigma(0)|^{3}}=-2 / 1=-2 .
$$

Problem 3. 2.4.7

Solution:

Since $\Psi(u, v)=\left(u, v, u^{2}-v^{2}\right)$, then $\Psi_{u}=(1,0,2 u), \Psi_{v}=(0,1,-2 v), \Psi_{u u}=(0,0,2), \Psi_{u v}=(0,0,2)$, $\Psi_{v v}=(0,0,-2)$.

Hence at $(0,0,0)$, we have $\Psi_{u}=(1,0,0), \Psi_{u}=(1,0,0)$.
Therefore at $(0,0)$, we have $l=2, m=0, n=-2$. Since

$$
\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=0
$$

And this is a line with $\kappa_{\sigma}=0$, and since $\vec{u}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)=\frac{1}{\sqrt{2}}(1,0,0)+\frac{1}{\sqrt{2}}(0,1,0)$.
Thus $\sigma(t)=\left(\frac{1}{\sqrt{2}} t, \frac{1}{\sqrt{2}} t, 0\right)$ as a line.
So $\sigma^{\prime}(t)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \sigma^{\prime \prime}(t)=(0,0,0)$. Hence $k(u)=\kappa_{\sigma}(0)=0$.

Problem 4. 2.4.9

Solution:

Let $M: x^{2}+y^{2}=1, p=(1,0,0)$ and $\vec{u}=(a, b, c)$. Let $F(x, y, z)=x^{2}+y^{2}, M=F^{-1}(1)$, then $\nabla F=(2 x, 2 y, 0)$ and $|\nabla F|=2 \sqrt{x^{2}+y^{2}}$. Also $\nabla F \perp M$.
So $U=\frac{\nabla F}{|\nabla F|}=\frac{1}{2 \sqrt{x^{2}+y^{2}}}(2 x, 2 y, 0)$. So $U(p)=(1,0,0)$.
By $\vec{u} \in T_{p}(M)$, and $u \cdot(1,0,0)=0=(a, b, c) \cdot(1,0,0)=0 \Longrightarrow a=0$. and $(0, b, c)$ is a unit vector, so $b^{2}+c^{2}=1$.

Additionally,

$$
U \times u=\left[\begin{array}{ccc}
i & j & k \\
1 & 0 & 0 \\
0 & b & c
\end{array}\right]=(0,-c, b)
$$

which is a normal of the plane containing \vec{u} and U.
Hence $-c y+b z=0$, so $z=\frac{c}{b} y$.
Therefore, we can parametrize $\sigma(t)=\left(\sqrt{1-t^{2}}, t, c / b(t)\right)$,
with $\sigma^{\prime}(t)=\left(-t / \sqrt{1-t^{2}}, 1, c / b\right), \sigma^{\prime \prime}(t)=\left(-1 /\left(1-t^{2}\right)^{3 / 2}, 0,0\right)$.
Then

$$
V=\left|\sigma^{\prime}(t)\right|=\sqrt{t^{2} /\left(1-t^{2}\right)+1+(c / b)^{2}}
$$

And $T=\frac{\sigma^{\prime}(t)}{V}=\frac{1}{\sqrt{t^{2} /\left(1-t^{2}\right)+1+(c / b)^{2}}}\left(-t / \sqrt{1-t^{2}}, 1, c / b\right)$, thus at $t=0$ by using $b^{2}+c^{2}=1$:

$$
T(0)=\frac{1}{\sqrt{1+(c / b)^{2}}} \cdot(0,1, c / b)=\frac{b}{\sqrt{b^{2}+c^{2}}}(0,1, c / b)=(0, b, c)
$$

And $B=\sigma^{\prime}(t) \times \sigma^{\prime \prime}(t)$, thus

$$
B(0)=\frac{\sigma^{\prime}(0) \times \sigma^{\prime \prime}(0)}{\left|\sigma^{\prime}(0) \times \sigma^{\prime \prime}(0)\right|}=\frac{1}{\sqrt{1+(c / b)^{2}}}(0,-c / b, 1)=(0,-c, b)
$$

Therefore

$$
N(0)=B(0) \times T(0)=(0,-c, b) \times(0, b, c)=(-1,0,0)
$$

And this implies $N(0)=-U(p)$, so

$$
k(u)=-\kappa_{\sigma}(0)=-\frac{\left|\sigma^{\prime}(0) \times \sigma^{\prime \prime}(0)\right|}{\left|\sigma^{\prime}(0)\right|^{3}}=-\frac{1}{1+(c / b)^{2}}=-\frac{1}{1+(c / b)^{2}} \cdot \frac{b^{2}}{b^{2}}=-b^{2}
$$

And since $u=(0, b, c)$ is on the unit circle in the $y z$-plane, $\max k(u)=0$ occurs when $b=0$ and $\min k(u)=-1$ occurs when $b= \pm 1$.

