Introduction to Differential Geometry I Homework 8 MATH:4500

November 14, 2017

Problem 1. 2.4.4

Solution:

I. ⇐

Suppose α is a line of curvature. For each $t \in I$, α' is an eigenvector of $S_{\alpha(t)}$. So there exists $c \in \mathbb{R}$ such that

$$S_{\alpha(t)}(\alpha'(t)) = c \cdot \alpha'(t)$$

But, $\nabla_{\alpha(t)}U(t) = -S_{\alpha(t)}(\alpha'(t)) = -c \cdot \alpha'(t)$ and thus the vectors are parallel along α .

II. \Rightarrow

Reverse the argument.

(b)Further, suppose α is a plane curve. Show α is a line of curvature if the angle between M and P is constant along α .

Let V be the unit normal vector field to P along α . Let U be the unit normal vector field to M along α . Notice that V' = 0 since V is parallel. Since the angle between U and V is constant, $\cdot V$ is constant. Thus we have,

$$0 = (U \cdot V)' = U' \cdot V + U \cdot V' = U' \cdot V.$$

Therefore, we have that U' is orthogonal to V and U (since $U \cdot U = 1$). We also have that α' is orthogonal to V and U because $\alpha' \in T_p M$ for all p along α . Because V and U are linearly independent, we have that U' and α' are collinear. Thus α' is a line of curvature.

Problem 2. 2.4.6

Solution:

Since $\Psi(u, v) = (u, v, u^2 - v^2)$, then $\Psi_u = (1, 0, 2u)$, $\Psi_v = (0, 1, -2v)$, $\Psi_{uu} = (0, 0, 2)$, $\Psi_{uv} = (0, 0, 2)$, $\Psi_{vv} = (0, 0, -2)$.

$$[S_p] = [I_p]^{-1}[II_p] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$$

with $\lambda_1 = 2, \lambda_2 = -2.$

And the normal vector is $\Psi_u \times \Psi_v = (0, 1, 0) \times (0, 0, 1) = (0, 0, 1),$

And $\sigma(t) = (0, t, -t^2)$, so $\sigma'(t) = (0, 1, -2t)$, $\sigma''(t) = (0, 0, -2)$, and we get a negative sign at here. Therefore,

$$k(u) = k(0, 1, 0) = -\kappa_{\sigma}(0) = -\frac{|\sigma'(0) \times \sigma''(0)|}{|\sigma(0)|^3} = -2/1 = -2.$$

Problem 3. 2.4.7

Solution:

Since $\Psi(u,v) = (u,v,u^2 - v^2)$, then $\Psi_u = (1,0,2u)$, $\Psi_v = (0,1,-2v)$, $\Psi_{uu} = (0,0,2)$, $\Psi_{uv} = (0,0,2)$, $\Psi_{vv} = (0,0,-2)$.

Hence at (0,0,0), we have $\Psi_u = (1,0,0)$, $\Psi_u = (1,0,0)$.

Therefore at (0,0), we have l = 2, m = 0, n = -2. Since

$$\begin{bmatrix}\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\end{bmatrix} \begin{bmatrix} 2 & 0\\ 0 & -2 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{bmatrix} = 0,$$

And this is a line with $\kappa_{\sigma} = 0$, and since $\vec{u} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) = \frac{1}{\sqrt{2}}(1, 0, 0) + \frac{1}{\sqrt{2}}(0, 1, 0).$

Thus $\sigma(t) = \left(\frac{1}{\sqrt{2}}t, \frac{1}{\sqrt{2}}t, 0\right)$ as a line. So $\sigma'(t) = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \sigma''(t) = (0, 0, 0)$. Hence $k(u) = \kappa_{\sigma}(0) = 0$.

Problem 4. 2.4.9

Solution:

Г			
L			
-	-	-	

Let $M : x^2 + y^2 = 1$, p = (1, 0, 0) and $\overrightarrow{u} = (a, b, c)$. Let $F(x, y, z) = x^2 + y^2$, $M = F^{-1}(1)$, then $\nabla F = (2x, 2y, 0)$ and $|\nabla F| = 2\sqrt{x^2 + y^2}$. Also $\nabla F \perp M$. So $U = \frac{\nabla F}{|\nabla F|} = \frac{1}{2\sqrt{x^2 + y^2}}(2x, 2y, 0)$. So U(p) = (1, 0, 0). By $\overrightarrow{u} \in T_p(M)$, and $u \cdot (1, 0, 0) = 0 = (a, b, c) \cdot (1, 0, 0) = 0 \Longrightarrow a = 0$. and (0, b, c) is a unit vector, so $b^2 + c^2 = 1$.

Additionally,

$$U \times u = \begin{bmatrix} i & j & k \\ 1 & 0 & 0 \\ 0 & b & c \end{bmatrix} = (0, -c, b),$$

which is a normal of the plane containing \overrightarrow{u} and U.

Hence -cy + bz = 0, so $z = \frac{c}{b}y$.

Therefore, we can parametrize $\sigma(t) = (\sqrt{1-t^2}, t, c/b(t)),$ with $\sigma'(t) = (-t/\sqrt{1-t^2}, 1, c/b), \ \sigma''(t) = (-1/(1-t^2)^{3/2}, 0, 0).$ Then $V = |\sigma'(t)| = \sqrt{t^2/(1-t^2) + 1 + t^2},$

$$V = |\sigma'(t)| = \sqrt{t^2/(1-t^2) + 1 + (c/b)^2}.$$

And $T = \frac{\sigma'(t)}{V} = \frac{1}{\sqrt{t^2/(1-t^2) + 1 + (c/b)^2}} (-t/\sqrt{1-t^2}, 1, c/b)$, thus at t = 0 by using $b^2 + c^2 = 1$:

$$T(0) = \frac{1}{\sqrt{1 + (c/b)^2}} \cdot (0, 1, c/b) = \frac{b}{\sqrt{b^2 + c^2}}(0, 1, c/b) = (0, b, c).$$

And $B = \sigma'(t) \times \sigma''(t)$, thus

$$B(0) = \frac{\sigma'(0) \times \sigma''(0)}{|\sigma'(0) \times \sigma''(0)|} = \frac{1}{\sqrt{1 + (c/b)^2}} (0, -c/b, 1) = (0, -c, b).$$

Therefore

$$N(0) = B(0) \times T(0) = (0, -c, b) \times (0, b, c) = (-1, 0, 0).$$

And this implies N(0) = -U(p), so

$$k(u) = -\kappa_{\sigma}(0) = -\frac{|\sigma'(0) \times \sigma''(0)|}{|\sigma'(0)|^3} = -\frac{1}{1 + (c/b)^2} = -\frac{1}{1 + (c/b)^2} \cdot \frac{b^2}{b^2} = -b^2$$

And since u = (0, b, c) is on the unit circle in the yz-plane, $\max k(u) = 0$ occurs when b = 0 and $\min k(u) = -1$ occurs when $b = \pm 1$.