PROBLEM SET 7: §2.3

Exercise 2.3.2: Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ associated with the matrix $A=\left[\begin{array}{ll}4 & -2 \\ 3 & -1\end{array}\right]$. Example 2.3.1 in the textbook shows that one eigenvector for this transformation is $\left[\begin{array}{c}a \\ \frac{3 a}{2}\end{array}\right]$. We claim that the other eigenvector for this transformation is $\left[\begin{array}{l}a \\ a\end{array}\right]$. This follows from the computation:

$$
\left[\begin{array}{ll}
4 & -2 \\
3 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
a \\
a
\end{array}\right]=\left[\begin{array}{c}
4 a-2 a \\
3 a-a
\end{array}\right]=\left[\begin{array}{l}
2 a \\
2 a
\end{array}\right]=2\left[\begin{array}{l}
a \\
a
\end{array}\right]
$$

Exercise 2.3.3: Let $\mathcal{B}=\left\{\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ be a basis for \mathbb{R}^{2}. Because these are the eigenvectors for the transformation T from the previous exercise, and have respective eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=2$, we know that the matrix for T relative to this basis is:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]=: B
$$

Finally, observe that $\lambda_{1} \cdot \lambda_{2}=2=\operatorname{det}(B)$ and $\lambda_{1}+\lambda_{2}=3=\operatorname{tr}(B)$
Exercise 2.3.10: Consider the cylinder parameterized by $\phi(u, v)=(R \cos u, R \sin u, v)$, where $R>0$. First, we compute the Gauss map and its derivative:

$$
\begin{gathered}
\phi_{u}=(-R \sin u, R \cos u, 0) \\
\phi_{v}=(0,0,1) \\
\phi_{u} \times \phi_{v}=(R \cos u, R \sin u, 0) \\
\left|\phi_{u} \times \phi_{v}\right|=R \\
U(u, v)=\frac{\phi_{u} \times \phi_{v}}{\left|\phi_{u} \times \phi_{v}\right|}=(\cos u, \sin u, 0) \\
\frac{\partial U}{\partial u}=(-\sin u, \cos u, 0) \\
\frac{\partial U}{\partial v}=(0,0,0)
\end{gathered}
$$

Finally, we observe that the image of the Gauss map on the sphere is just its equator $\left\{(x, y, z) \in \mathbb{S}^{2} \mid z=0\right\}$, with an area of zero.

Exercise 2.3.11: Consider the catenoid parameterized by $\phi(u, v)=(u, \cosh u \cos v, \cosh u \sin v)$, with $-\infty<$ $u<\infty$ and $0<v<2 \pi$. First, we compute the Gauss map and its derivative.

$$
\begin{gathered}
\phi_{u}=(1, \sinh u \cos v, \sinh u \sin v) \\
\phi_{v}=(0,-\cosh u \sin v, \cosh u \cos v) \\
\phi_{u} \times \phi_{v}=(\sinh u \cosh u,-\cosh u \cos v,-\cosh u \sin v) \\
\left|\phi_{u} \times \phi_{v}\right|=\sqrt{\cosh ^{2} u\left(\sinh ^{2} u+\cos ^{2} v+\sin ^{2} v\right)}=\cosh ^{2} u \\
U(u, v)=(\tanh u,-\operatorname{sech} u \cos v, \operatorname{sech} u \sin v) \\
\frac{\partial U}{\partial u}=\left(\operatorname{sech}^{2} u,-\operatorname{sech} u \tanh u \cos v, \operatorname{sech} u \tanh u \sin v\right)=\operatorname{sech}^{2} u \cdot \phi_{u} \\
\frac{\partial U}{\partial v}=(0, \operatorname{sech} u \sin v, \operatorname{sech} u \cos v)=-\operatorname{sech}^{2} u \cdot \phi_{v}
\end{gathered}
$$

Finally, we argue that the map is a one-to-one map from the catenoid to the sphere. To begin, we consider the first coordinate of $U(u, v)=:(x(u, v), y(u, v), z(u, v))$, namely $x(u, v)=\tanh u=\frac{1-e^{-2 x}}{1+e^{-2 x}}$. Everywhere other than at the poles $(1,0,0),(-1,0,0) \in \mathbb{S}^{2}$ (which are not in the image of U), we have an inverse map:

$$
u=\operatorname{arctanh}(x(u, v))=\frac{1}{2} \ln \left|\frac{1+x(u, v)}{1-x(u, v)}\right|
$$

Now observe that if $U(u, v)=U(\hat{u}, \hat{v})$, then we must have $u=\hat{u}$, hence $(\cos v, \sin v)=(\cos \hat{v}, \sin \hat{v})$, with the fact that $0<v<2 \pi$ implying that $v=\hat{v}$ as well. We conclude as claimed that U maps the catenoid injectively to \mathbb{S}^{2}.

