PROBLEM SET 5: §2.1

Exercise 6: Let $\phi(u, v)=\left(u, v, u^{2}+v^{2}\right)$ be a Monge patch on the paraboloid. Then the parameter curves for $u_{0}=0$ and for $v_{0}=0$ respectively are the parabolas:

$$
\phi(0, v)=\left(0, v, v^{2}\right) \quad \text { and } \quad \phi(u, 0)=\left(u, 0, u^{2}\right)
$$

Exercise 12: Consider the catenoid obtained by revolving the catenary $y=\cosh x$ about the x-axis. The catenoid can be described implicitly as $\left\{(x, y, z) \mid y^{2}+z^{2}=\cosh ^{2} x\right\}$, or equivalently $\left\{(x, y, z) \mid \sqrt{y^{2}+z^{2}}=\right.$ $\cosh x\}$. (Note that $\cosh x>0$ for all x.) The following is a patch on the catenoid:

$$
\phi(u, v)=(u, \cos v \cosh u, \sin v \cosh x) \quad \text { with } \quad-\infty \leq u \leq \infty \quad \text { and } \quad 0 \leq v \leq 2 \pi
$$

Exercise 19: Consider the standard cone $\left\{(x, y, z) \mid z=\sqrt{x^{2}+y^{2}}\right\}$ and the standard cylinder $\left\{(x, y, z) \mid x^{2}+y^{2}=1\right\}$. These have respective ruled parameterizations:

$$
\phi(u, v)=(0,0,0)+v(\cos u, \sin u, 1) \quad \text { with } \quad 0 \leq u \leq 2 \pi \quad \text { and } \quad 0 \leq v<\infty
$$

and

$$
\psi(u, v)=(\cos u, \sin u, 0)+v(0,0,1) \quad \text { with } \quad 0<u<2 \pi \quad \text { and } \quad-\infty<v<\infty
$$

Exercise 20: Consider the saddle surface given by $z=x y=r^{2} \sin \theta \cos \theta=\frac{1}{2} r^{2} \cos 2 \theta$. We can rule the surface by:

$$
\begin{gathered}
\phi(u, v)=\beta(u)+v \delta(u) \quad \text { with } \quad \beta(u)=(0, u, 0) \quad \text { and } \quad \delta(u)=(1,0, u) \\
\text { with }-\infty<u<\infty \quad \text { and }-\infty<v<\infty
\end{gathered}
$$

Exercise 24: Suppose M is a surface ruled by the parameterization $\phi(u, v)=\beta(u)+v \delta(u)$ with $\left|\beta^{\prime}\right| \equiv 1$ and $|\delta| \equiv 1$. Also assume δ^{\prime} is nonvanishing. We claim that M may be reparameterized by $\psi(u, w)=\gamma(u)+w \delta(u)$, where $\gamma^{\prime} \bullet \delta^{\prime}=0$.

Because β and γ rule the surface, we may write $\gamma(u)=\beta(u)+r(u) \delta(u)$. Noting that $1=\delta \bullet \delta$ implies that $0=(\delta \bullet \delta)^{\prime}=2 \delta \bullet \delta^{\prime}$, (and recalling that $\delta^{\prime} \bullet \delta^{\prime} \neq 0$) we now have:

$$
\begin{aligned}
\gamma^{\prime} & =\beta^{\prime}+r^{\prime} \delta+r \delta^{\prime} \\
0=\gamma^{\prime} \bullet \delta^{\prime} & =\beta^{\prime} \bullet \delta^{\prime}+r^{\prime} \underbrace{\delta \bullet \delta^{\prime}}_{=0}+r \delta^{\prime} \bullet \delta^{\prime} \\
-\beta^{\prime} \bullet \delta^{\prime} & =r \delta^{\prime} \bullet \delta^{\prime} \\
-\frac{\beta^{\prime}(u) \bullet \delta^{\prime}(u)}{\delta^{\prime}(u) \bullet \delta^{\prime}(u)} & =r(u)
\end{aligned}
$$

Date: 18 October 2013.

Now letting $w=v-r(u)$, the fact that $\beta+v \delta$ rules M implies that $\gamma+w \delta$ does as well:

$$
\gamma(u)+w \delta(u)=(\beta(u)+r(u) \delta(u))+w \delta(u)=(\beta(u)+(v-w) \delta(u))+w \delta(u)=\beta(u)+v \delta(u)
$$

Such a curve γ is called a line of striction for M. Finally, we also claim that any point on M where $\psi_{u} \times \psi_{w}=(0,0,0)$ must lie on the line of striction. First we compute:

$$
\begin{align*}
\psi_{u} & =\gamma^{\prime}+w \delta^{\prime} \quad \text { and } \quad \psi_{w}=\delta \\
(0,0,0) & =\psi_{u} \times \psi_{w} \\
& =\left(\gamma^{\prime}+w \delta^{\prime}\right) \times(\delta) \\
& =\gamma^{\prime} \times \delta+w\left(\delta^{\prime} \times \delta\right) \tag{*}
\end{align*}
$$

Now, recalling that $\delta^{\prime} \perp \delta$ and $\gamma^{\prime} \perp \delta$, we observe that we everywhere we have one of $\delta \times \gamma^{\prime}=0$ or $\delta^{\prime} \| \delta \times \gamma^{\prime}$. Hence, taking norm squared on both sides of $(*)$, we have:

$$
0=\left|\gamma^{\prime} \times \delta\right|^{2}+w^{2}\left|\delta^{\prime} \times \delta\right|^{2}+2 w \underbrace{\left(\gamma^{\prime} \times \delta\right) \bullet\left(\delta^{\prime} \times \delta\right)}_{=0}
$$

This can only be the case if $w=0$, i.e. if we are on the line of striction. We conclude as claimed that the only points where $\psi_{u} \times \psi_{w}=0$ are on the line of striction.

