PROBLEM SET 5: §2.1

Exercise 6: Let $\phi(u, v) = (u, v, u^2 + v^2)$ be a Monge patch on the paraboloid. Then the parameter curves for $u_0 = 0$ and for $v_0 = 0$ respectively are the parabolas:

$$\phi(0, v) = (0, v, v^2)$$
 and $\phi(u, 0) = (u, 0, u^2)$

Exercise 12: Consider the catenoid obtained by revolving the catenary $y = \cosh x$ about the x-axis. The catenoid can be described implicitly as $\{(x, y, z) \mid y^2 + z^2 = \cosh^2 x\}$, or equivalently $\{(x, y, z) \mid \sqrt{y^2 + z^2} = \cosh x\}$. (Note that $\cosh x > 0$ for all x.) The following is a patch on the catenoid:

 $\phi(u, v) = (u, \cos v \cosh u, \sin v \cosh x)$ with $-\infty \le u \le \infty$ and $0 \le v \le 2\pi$

Exercise 19: Consider the standard cone $\{(x, y, z) \mid z = \sqrt{x^2 + y^2}\}$ and the standard cylinder $\{(x, y, z) \mid x^2 + y^2 = 1\}$. These have respective ruled parameterizations:

$$\phi(u, v) = (0, 0, 0) + v(\cos u, \sin u, 1)$$
 with $0 \le u \le 2\pi$ and $0 \le v < \infty$

and

$$\psi(u,v) = (\cos u, \sin u, 0) + v(0,0,1) \quad \text{with} \quad 0 < u < 2\pi \quad \text{and} \quad -\infty < v < \infty$$

Exercise 20: Consider the saddle surface given by $z = xy = r^2 \sin \theta \cos \theta = \frac{1}{2}r^2 \cos 2\theta$. We can rule the surface by:

$$\begin{split} \phi(u,v) &= \beta(u) + v \delta(u) \quad \text{with} \quad \beta(u) = (0,u,0) \quad \text{and} \quad \delta(u) = (1,0,u) \\ \text{with} \quad -\infty < u < \infty \quad \text{and} \quad -\infty < v < \infty \end{split}$$

Exercise 24: Suppose M is a surface ruled by the parameterization $\phi(u, v) = \beta(u) + v\delta(u)$ with $|\beta'| \equiv 1$ and $|\delta| \equiv 1$. Also assume δ' is nonvanishing. We claim that M may be reparameterized by $\psi(u, w) = \gamma(u) + w\delta(u)$, where $\gamma' \bullet \delta' = 0$.

Because β and γ rule the surface, we may write $\gamma(u) = \beta(u) + r(u)\delta(u)$. Noting that $1 = \delta \bullet \delta$ implies that $0 = (\delta \bullet \delta)' = 2\delta \bullet \delta'$, (and recalling that $\delta' \bullet \delta' \neq 0$) we now have:

$$\gamma' = \beta' + r'\delta + r\delta'$$
$$0 = \gamma' \bullet \delta' = \beta' \bullet \delta' + r' \underbrace{\delta \bullet \delta'}_{=0} + r\delta' \bullet \delta'$$
$$-\beta' \bullet \delta' = r\delta' \bullet \delta'$$
$$-\frac{\beta'(u) \bullet \delta'(u)}{\delta'(u) \bullet \delta'(u)} = r(u)$$

Date: 18 October 2013.

PROBLEM SET 5: §2.1

Now letting w = v - r(u), the fact that $\beta + v\delta$ rules M implies that $\gamma + w\delta$ does as well:

$$\gamma(u) + w\delta(u) = (\beta(u) + r(u)\delta(u)) + w\delta(u) = (\beta(u) + (v - w)\delta(u)) + w\delta(u) = \beta(u) + v\delta(u)$$

Such a curve γ is called a line of striction for M. Finally, we also claim that any point on M where $\psi_u \times \psi_w = (0, 0, 0)$ must lie on the line of striction. First we compute:

$$\psi_u = \gamma' + w\delta' \quad \text{and} \quad \psi_w = \delta$$

(0, 0, 0) = $\psi_u \times \psi_w$
= $(\gamma' + w\delta') \times (\delta)$
= $\gamma' \times \delta + w(\delta' \times \delta)$ (*)

Now, recalling that $\delta' \perp \delta$ and $\gamma' \perp \delta$, we observe that we everywhere we have one of $\delta \times \gamma' = 0$ or $\delta' \parallel \delta \times \gamma'$. Hence, taking norm squared on both sides of (*), we have:

$$0 = \left|\gamma' \times \delta\right|^2 + w^2 \left|\delta' \times \delta\right|^2 + 2w \underbrace{\left(\gamma' \times \delta\right) \bullet \left(\delta' \times \delta\right)}_{=0}$$

This can only be the case if w = 0, i.e. if we are on the line of striction. We conclude as claimed that the only points where $\psi_u \times \psi_w = 0$ are on the line of striction.