Introduction to Differential Geometry I Homework 3
 MATH:4500

September 25, 2017

Problem 1. 1.3.22

Solution:

Since $\mathbf{p}=\beta(s)+r(s) \beta^{\prime}(s)$, for some function $r(s)$.
Differentiate both sides, we have

$$
\begin{aligned}
& 0=\beta^{\prime}(s)+r^{\prime}(s) \beta^{\prime}(s)+r(s) \beta^{\prime \prime}(s) \\
& 0=T\left(1+r^{\prime}(s)\right)+r(s) \beta^{\prime \prime}(s) \\
& 0=T\left(1+r^{\prime}(s)\right)+r(s) T^{\prime}(s)
\end{aligned}
$$

Take the dot product with T on both side of the above equation gives us:

$$
\begin{aligned}
& 0=1+r^{\prime}(s)+r(s) T^{\prime} \cdot T, \\
& 0=1+r^{\prime}(s) .
\end{aligned}
$$

Recall that $|T|=1 \Longrightarrow T \cdot T^{\prime}=0$.
So $r^{\prime}(s)=-1 \neq 0, \Longrightarrow r(s) \not \equiv 0$.
Then take dot product with T^{\prime} on both sides of $0=T\left(1+r^{\prime}(s)\right)+r(s) T^{\prime}(s)$, we have:

$$
0=0+r(s)\left|T^{\prime}(s)\right|^{2}, \quad \text { i.e., } \quad r(s)\left|T^{\prime}(s)\right|^{2}=0 .
$$

Since we have $r(s) \not \equiv 0$, then $T^{\prime}(s)=\beta^{\prime \prime}(s)=0$, hence $\beta^{\prime}(s) \equiv$ constant.
Therefore $\beta(s)$ is a line.

Problem 2. 1.3.23

Solution:

Since $\{T, N, B\}$ an orthogonal basis, we can take $\alpha(s)-p=a T+b N+c B$ such that $T \cdot(\alpha-p)=a$, $N \cdot(\alpha-p)=b, B \cdot(\alpha-p)=c$.

Since α lies on a sphere pf center p and radius R, we have $(\alpha-p) \cdot(\alpha-p)=R^{2}$.
Take derivatives of both sides of the above equation, we have

$$
\begin{equation*}
2 T \cdot(\alpha-p)=0 \Longrightarrow a=T \cdot(\alpha-p)=0 \tag{1}
\end{equation*}
$$

Take derivatives again of both sides of the above equation 1, we have

$$
T^{\prime} \cdot(\alpha-p)+T \cdot T=0 \Longrightarrow T^{\prime} \cdot(\alpha-p)+1=0
$$

And by $T^{\prime} \neq 0, \kappa \neq 0 ; N$ and B exist, we have

$$
\begin{equation*}
\kappa N \cdot(\alpha-p)+1=0 . \tag{2}
\end{equation*}
$$

Take derivatives again of both sides of the above equation 2, we have

$$
\begin{align*}
\kappa^{\prime} N \cdot(\alpha-p)+\kappa N^{\prime} \cdot(\alpha-p)+\kappa N \cdot T & =0, \\
\Longrightarrow \kappa^{\prime} N \cdot(\alpha-p)+\kappa(-\kappa T+\tau B) \cdot(\alpha-p) & =0, \\
\Longrightarrow \kappa^{\prime} N \cdot(\alpha-p)+\kappa \tau B \cdot(\alpha-p) & =0 . \tag{3}
\end{align*}
$$

From 2 we have $b=N \cdot(\alpha-p)=-\frac{1}{\kappa}$, so plug into 3 then we have

$$
\begin{equation*}
-\frac{\kappa^{\prime}}{\kappa}+\kappa \tau B \cdot(\alpha-p)=0 \Longrightarrow B \cdot(\alpha-p)=\frac{\kappa^{\prime}}{\kappa^{2} \tau}=c \tag{4}
\end{equation*}
$$

Therefore, since

$$
\begin{aligned}
\alpha(s)-p & =a T+b N+c B, \\
& =-\frac{1}{\kappa} N+\frac{\kappa^{\prime}}{\kappa^{2} \tau} B, \\
& =-\frac{1}{\kappa} N-\left(\frac{1}{\kappa}\right)^{\prime} \frac{1}{\tau} B .
\end{aligned}
$$

And by $R^{2}=(\alpha-p) \cdot(\alpha-p)=a^{2}+b^{2}+c^{2}$, we conclude that:

$$
R^{2}=\frac{1}{\kappa^{2}}+\left(\left(\frac{1}{\kappa}\right)^{\prime} \frac{1}{\tau}\right)^{2}
$$

Problem 3. 1.3.27

Solution:

Since $\beta^{\prime}(s)=\left(-\frac{1}{\sqrt{2}} \sin s, \cos s,-\frac{1}{\sqrt{2}} \sin s\right)$,
then $\left|\beta^{\prime}(s)\right|=\sqrt{\left(\cos ^{2} s+\sin ^{2} s\right)}=1$, i.e., β has unit speed.

Therefore,

$$
\begin{aligned}
& T \\
&=\beta^{\prime}(s), \\
& T^{\prime}=\beta^{\prime \prime}(s)=\left(-\frac{1}{\sqrt{2}} \cos s,-\sin s,-\frac{1}{\sqrt{2}} \cos s\right), \\
& \Longrightarrow\left|T^{\prime}\right|=\sqrt{\cos ^{2} s+\sin ^{2} s}=1 .
\end{aligned}
$$

Hence, $\kappa=\left|T^{\prime}\right|=1$, and $N=T^{\prime} \cdot \frac{1}{\kappa}=\left(-\frac{1}{\sqrt{2}} \cos s,-\sin s,-\frac{1}{\sqrt{2}} \cos s\right)$.
So

$$
B=T \times N=\left|\begin{array}{ccc}
i & j & k \\
-\frac{1}{\sqrt{2}} \sin s & \cos s & -\frac{1}{\sqrt{2}} \sin s \\
-\frac{1}{\sqrt{2}} \cos s & -\sin s & -\frac{1}{\sqrt{2}} \cos s
\end{array}\right|=\left(-\frac{\cos ^{2} s+\sin ^{2} s}{\sqrt{2}}, 0, \frac{\cos ^{2} s+\sin ^{2} s}{\sqrt{2}}\right)
$$

Thus $B=\left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), \Longrightarrow B^{\prime}=(0,0,0)=-\tau N \Longrightarrow \tau=0$.
Therefore, we identify the curve as a circle by the fact that $\kappa=1$ and $\tau=0$. Indeed β lies on the intersection of the plane $x=z$ and the unit sphere.

Problem 4. 1.3.28

Solution:

We are given a curve $\alpha(s)$, and we know $\alpha(0), \alpha^{\prime}(0), \alpha^{\prime \prime}(0)$ and $\kappa(0)$. We will construct a circle $\beta(s)$ with $\beta(0)=\alpha(0), \beta^{\prime}(0)=\alpha^{\prime}(0), \beta^{\prime \prime}(0)=\alpha^{\prime \prime}(0)$ when $\kappa(s)>0$.

Assume $\beta(s)=p+R \cos \left(\frac{s}{R}\right) v_{1}+R \sin \left(\frac{s}{R}\right) v_{2}$ where v_{1}, v_{2} are orthonormal vectors, and we will show how to choose p, v_{1}, v_{2}.
$\operatorname{By} \beta(0)=\alpha(0), \beta^{\prime}(0)=\alpha^{\prime}(0), \beta^{\prime \prime}(0)=\alpha^{\prime \prime}(0)$, so

$$
\begin{align*}
\beta(0) & =p+R v_{1}=\alpha(0) \tag{5}\\
\beta^{\prime}(0) & =v_{2}=\alpha^{\prime}(0) \tag{6}\\
\beta^{\prime \prime}(0) & =\frac{1}{R} v_{1}=\alpha^{\prime \prime}(0) \tag{7}
\end{align*}
$$

From 7,

$$
\begin{equation*}
\left|\beta^{\prime \prime}(0)\right|=\left|\alpha^{\prime \prime}(0)\right|=\frac{1}{R} \Longrightarrow R=\frac{1}{\left|\beta^{\prime \prime}(0)\right|}=\frac{1}{\kappa(0) .} \tag{8}
\end{equation*}
$$

From 8 ,

$$
\begin{equation*}
v_{1}=-R \beta^{\prime \prime}(0)=\frac{\beta^{\prime \prime}(0)}{\kappa(0)}=\frac{T^{\prime}(0)}{\kappa(0)}=-N(0) \tag{9}
\end{equation*}
$$

Combine with 5, 6, we know that

$$
\begin{array}{r}
v_{2}=\beta^{\prime}(0)=T(0)=\alpha^{\prime}(0), \\
\quad p=\beta(0)+\frac{1}{\kappa(0)} N(0) .
\end{array}
$$

Therefore, we derive a circle β as $\beta(s)=p+R \cos \left(\frac{s}{R}\right) v_{1}+R \sin \left(\frac{s}{R}\right) v_{2}$, satisfying $\beta(0)=\alpha(0), \beta^{\prime}(0)=$ $\alpha^{\prime}(0), \beta^{\prime \prime}(0)=\alpha^{\prime \prime}(0)$,
with the following values:

$$
\begin{aligned}
p & =\alpha(0)+\frac{1}{\kappa(0)} N(0), \\
v_{1} & =-N(0), \\
v_{2} & =T(0) .
\end{aligned}
$$

i.e., β lies in the plane spanned by T and N.

To show the uniqueness of such circle β.
Let $\gamma(s)$ be another circle such that $\gamma(0)=\alpha(0), \gamma^{\prime}(0)=\alpha^{\prime}(0), \gamma^{\prime \prime}(0)=\alpha^{\prime \prime}(0)$.
From this condition, we have that γ and β share the same following quantities at $s=0$:

- the point $\alpha(0)$,
- the tangent vector $T(0)$,
- the normal vector $N(0)$,
- the bi-normal $B(0)=T(0) \times N(0)$, which $B(0)$ is constant,
- the curvature $\kappa(0)$, which is constant as well.
then we may have that

1. γ and β lie in the same plane (which is $\perp B(0)$),
2. γ and β have the same radius $\frac{1}{\kappa(0)}$,
3. γ and β have the same center as $\alpha(0)+\frac{1}{\kappa(0)} N(0)$.

Hence, they are identical. This completes our proof for both existence and uniqueness.
When $\alpha^{\prime \prime}(0)=0, \kappa(0)=0$, the oscillating circle will be replaced by the tangent line:

$$
\beta(s)=\alpha(0)+s \alpha^{\prime}(0) .
$$

And we have:

$$
\begin{aligned}
\beta(0) & =\alpha(0)+0 \cdot \alpha^{\prime}(0)=\alpha(0), \\
\beta^{\prime}(s) & =\alpha^{\prime}(0) \Longrightarrow \beta^{\prime}(0)=\alpha^{\prime}(0), \\
\beta^{\prime \prime}(s) & =0 \Longrightarrow \beta^{\prime \prime}(0)=\alpha^{\prime \prime}(0)
\end{aligned}
$$

