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Problem 1. 1.3.22

Solution:
Since p = β(s) + r(s)β′(s), for some function r(s).

Differentiate both sides, we have

0 =β′(s) + r′(s)β′(s) + r(s)β′′(s),
0 =T (1 + r′(s)) + r(s)β′′(s),
0 =T (1 + r′(s)) + r(s)T ′(s).

Take the dot product with T on both side of the above equation gives us:

0 =1 + r′(s) + r(s)T ′ · T,
0 =1 + r′(s).

Recall that |T | = 1 =⇒ T · T ′ = 0.

So r′(s) = −1 6= 0, =⇒ r(s) 6≡ 0.

Then take dot product with T ′ on both sides of 0 = T (1 + r′(s)) + r(s)T ′(s), we have:

0 = 0 + r(s)|T ′(s)|2, i.e., r(s)|T ′(s)|2 = 0.

Since we have r(s) 6≡ 0, then T ′(s) = β′′(s) = 0, hence β′(s) ≡ constant.

Therefore β(s) is a line.

Problem 2. 1.3.23

Solution:
Since {T,N,B} an orthogonal basis, we can take α(s) − p = aT + bN + cB such that T · (α − p) = a,
N · (α− p) = b, B · (α− p) = c.
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Since α lies on a sphere pf center p and radius R, we have (α− p) · (α− p) = R2.

Take derivatives of both sides of the above equation, we have

2T · (α− p) = 0 =⇒ a = T · (α− p) = 0. (1)

Take derivatives again of both sides of the above equation 1, we have

T ′ · (α− p) + T · T = 0 =⇒ T ′ · (α− p) + 1 = 0.

And by T ′ 6= 0, κ 6= 0; N and B exist, we have

κN · (α− p) + 1 = 0. (2)

Take derivatives again of both sides of the above equation 2, we have

κ′N · (α− p) + κN ′ · (α− p) + κN · T =0,
=⇒ κ′N · (α− p) + κ(−κT + τB) · (α− p) =0,

=⇒ κ′N · (α− p) + κτB · (α− p) =0. (3)

From 2 we have b = N · (α− p) = − 1
κ
, so plug into 3 then we have

− κ′

κ
+ κτB · (α− p) = 0 =⇒ B · (α− p) = κ′

κ2τ
= c (4)

Therefore, since

α(s)− p =aT + bN + cB,

=− 1
κ
N + κ′

κ2τ
B,

=− 1
κ
N −

(1
κ

)′ 1
τ
B.

And by R2 = (α− p) · (α− p) = a2 + b2 + c2, we conclude that:

R2 = 1
κ2 +

((1
κ

)′ 1
τ

)2

.

Problem 3. 1.3.27

Solution:

Since β′(s) =
(
− 1√

2
sin s, cos s,− 1√

2
sin s

)
,

then |β′(s)| =
√

(cos2 s+ sin2 s) = 1, i.e., β has unit speed.
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Therefore,

T =β′(s),

T ′ =β′′(s) =
(
− 1√

2
cos s,− sin s,− 1√

2
cos s

)
,

=⇒ |T ′| =
√

cos2 s+ sin2 s = 1.

Hence, κ = |T ′| = 1, and N = T ′ · 1
κ

=
(
− 1√

2
cos s,− sin s,− 1√

2
cos s

)
.

So

B = T ×N =

∣∣∣∣∣∣∣∣∣∣∣

i j k

− 1√
2

sin s cos s − 1√
2

sin s

− 1√
2

cos s − sin s − 1√
2

cos s

∣∣∣∣∣∣∣∣∣∣∣
=
(
−cos2 s+ sin2 s√

2
, 0, cos2 s+ sin2 s√

2

)

Thus B =
(
− 1√

2
, 0, 1√

2

)
, =⇒ B′ = (0, 0, 0) = −τN =⇒ τ = 0.

Therefore, we identify the curve as a circle by the fact that κ = 1 and τ = 0. Indeed β lies on the
intersection of the plane x = z and the unit sphere.

Problem 4. 1.3.28

Solution:
We are given a curve α(s), and we know α(0), α′(0), α′′(0) and κ(0). We will construct a circle β(s) with
β(0) = α(0), β′(0) = α′(0), β′′(0) = α′′(0) when κ(s) > 0.

Assume β(s) = p + R cos( s
R

)v1 + R sin( s
R

)v2 where v1, v2 are orthonormal vectors, and we will show how
to choose p, v1, v2.

By β(0) = α(0), β′(0) = α′(0), β′′(0) = α′′(0), so

β(0) =p+Rv1 = α(0), (5)
β′(0) =v2 = α′(0), (6)

β′′(0) = 1
R
v1 = α′′(0). (7)

From 7,
|β′′(0)| = |α′′(0)| = 1

R
=⇒ R = 1

|β′′(0)| = 1
κ(0). (8)

From 8,
v1 = −Rβ′′(0) = β′′(0)

κ(0) = T ′(0)
κ(0) = −N(0), (9)
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Combine with 5, 6, we know that

v2 = β′(0) = T (0) = α′(0),

p = β(0) + 1
κ(0)N(0).

Therefore, we derive a circle β as β(s) = p + R cos( s
R

)v1 + R sin( s
R

)v2, satisfying β(0) = α(0), β′(0) =
α′(0), β′′(0) = α′′(0),

with the following values:

p =α(0) + 1
κ(0)N(0),

v1 =−N(0),
v2 =T (0).

i.e., β lies in the plane spanned by T and N .

To show the uniqueness of such circle β.

Let γ(s) be another circle such that γ(0) = α(0), γ′(0) = α′(0), γ′′(0) = α′′(0).

From this condition, we have that γ and β share the same following quantities at s = 0:

• the point α(0),

• the tangent vector T (0),

• the normal vector N(0),

• the bi-normal B(0) = T (0)×N(0), which B(0) is constant,

• the curvature κ(0), which is constant as well.

then we may have that

1. γ and β lie in the same plane (which is ⊥ B(0)),

2. γ and β have the same radius 1
κ(0),

3. γ and β have the same center as α(0) + 1
κ(0)N(0).

Hence, they are identical. This completes our proof for both existence and uniqueness.

When α′′(0) = 0, κ(0) = 0, the oscillating circle will be replaced by the tangent line:

β(s) = α(0) + sα′(0).

And we have:

β(0) =α(0) + 0 · α′(0) = α(0),
β′(s) =α′(0) =⇒ β′(0) = α′(0),
β′′(s) =0 =⇒ β′′(0) = α′′(0).

4


