Introduction to Differential Geometry I Homework 2
 MATH:4500

September 14, 2017

Problem 1. 1.2.5

Solution:

$$
\begin{aligned}
\alpha(t) & =(r \cos t, r \sin t), \\
\Longrightarrow \alpha^{\prime}(t) & =(-r \sin t, r \cos t), \\
\Longrightarrow\left|\alpha^{\prime}(t)\right| & =\sqrt{r^{2}\left(\sin ^{2} t+\cos ^{2} t\right)}=r, \\
\Longrightarrow s(t) & =\int_{0}^{t} r d u=r t, t(s)=\frac{s}{r} .
\end{aligned}
$$

Then, the re-parametrize of the circle with radius r is

$$
\beta(s)=\alpha(t(s))=\alpha\left(\frac{s}{r}\right)=\left(r \cos \frac{s}{r}, r \sin \frac{s}{r}\right), \quad \text { with }\left|\beta^{\prime}(s)\right|=1 .
$$

Problem 2. 1.2.7

Solution:

Show that the curve $\mathcal{I}(t)=\alpha(t)-s(t) \frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$.
Consider a given (and fixed) time t_{0}, the this time t_{0}, the swept point of $\mathcal{I}(t)$ can be described as:

$$
\begin{equation*}
\overrightarrow{\mathcal{I}\left(t_{0}\right)}=\overrightarrow{P_{0}}+d \cdot \vec{V}_{0}, \tag{1}
\end{equation*}
$$

where \vec{P}_{0} is the current starting point on $\alpha(t), d$ is the distance of the free end with $\alpha(t)$ which equals $s(t)$ as mentioned in the context, \vec{V}_{0} is the normalized direction vector at the moment t_{0}, and the direction given by $-\alpha^{\prime}(t)$.

Hence, by the above equation we derive a description to $\mathcal{I}(t)$.

Now, let's check these values in detail. By the above explanation:

$$
\overrightarrow{P_{0}}=\overrightarrow{\alpha\left(t_{0}\right)}, \quad d=s\left(t_{0}\right), \quad \text { and } \quad \overrightarrow{V_{0}}=-\frac{\alpha^{\prime}\left(t_{0}\right)}{\left|\alpha^{\prime}\left(t_{0}\right)\right|}
$$

Thus (1) becomes: $\overrightarrow{\mathcal{I}\left(t_{0}\right)}=\overrightarrow{\alpha\left(t_{0}\right)}+s\left(t_{0}\right) \cdot\left(-\frac{\alpha^{\prime}\left(t_{0}\right)}{\left|\alpha^{\prime}\left(t_{0}\right)\right|}\right)$ for the moment t_{0}.
Therefore, expand the above reasoning for any $t \in \mathbb{R}$, we can have that:

$$
\mathcal{I}(t)=\alpha(t)-s(t) \frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|},
$$

as desired function.
By the given unit circle $\alpha(t)$ as following:

$$
\begin{aligned}
\alpha(t) & =(\cos t, \sin t, 0) \\
\Longrightarrow \alpha^{\prime}(t) & =(-\sin t, \cos t, 0) \\
\Longrightarrow\left|\alpha^{\prime}(t)\right| & =\sqrt{\left(\sin ^{2} t+\cos ^{2} t+0\right)}=1, \\
\Longrightarrow s(t) & =\int_{0}^{t} 1 d u=t \\
\text { and } \mathcal{I}(t) & =\alpha(t)-s(t) \frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}, \\
\Longrightarrow \mathcal{I}(t) & =(\cos t+t \sin t, \sin t-t \cos t, 0)
\end{aligned}
$$

Graph of the involute of the unit circle $\alpha(t)$:

Problem 3. 1.2.8

Solution:

Consider the helix as following: $\alpha(t)=(R \cos \omega t, R \sin \omega t, h t)$, then:

$$
\begin{aligned}
& \alpha(t)=(R \cos \omega t, R \sin \omega t, h t), \\
& \Longrightarrow \alpha^{\prime}(t)=(-\omega R \sin \omega t, \omega R \cos t, h), \\
& \Longrightarrow\left|\alpha^{\prime}(t)\right|=\sqrt{\omega^{2} R^{2}\left(\sin ^{2} \omega t+\cos ^{2} \omega t\right)+h^{2}}=\sqrt{\omega^{2} R^{2}+h^{2}}, \\
& \Longrightarrow s(t)=\int_{0}^{t} \sqrt{\omega^{2} R^{2}+h^{2}} d u=\sqrt{\omega^{2} R^{2}+h^{2}} \cdot t, \\
& \text { and } \mathcal{I}(t)=\alpha(t)-s(t) \frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}, \\
& \Longrightarrow \mathcal{I}(t)=(R \cos \omega t, R \sin \omega t, h t)-\sqrt{\omega^{2} R^{2}+h^{2}} \cdot t \frac{(-\omega R \sin \omega t, \omega R \cos t, h)}{\sqrt{\omega^{2} R^{2}+h^{2}}}, \\
&=(R(\cos \omega t+\omega t \sin \omega t), R(\sin \omega t-\omega t \cos \omega t), 0) .
\end{aligned}
$$

Therefore, the involute of this helix lies on the $x y$-plane and hence it is a plane curve.
In general, every helix is of the form $\alpha(t)=(R \cos \omega t) \cdot \vec{x}+(R \sin \omega t) \cdot \vec{y}+(h t) \cdot \vec{z}$ for an orhonormal basis $\{\vec{x}, \vec{y}, \vec{z}\}$ of \mathbb{R}^{3}. The involute of such a helix lies on the plane perpendicular to \vec{z}, and containing the starting point $\alpha(0)$ of the involute. The calculation is similar to the one done above.

Problem 4. 1.3.11

Solution:

1. By the context, we have:

$$
\begin{aligned}
\beta(s) & =\left(\frac{(1+s)^{3 / 2}}{3}, \frac{(1-s)^{3 / 2}}{3}, \frac{s}{\sqrt{2}}\right), \\
\Longrightarrow \beta^{\prime}(s) & =\left(\frac{\frac{3}{2}(1+s)^{1 / 2}}{3},-\frac{\frac{3}{2}(1-s)^{1 / 2}}{3}, \frac{\sqrt{2}}{2}\right), \\
& =\left(\frac{(1+s)^{1 / 2}}{2},-\frac{(1-s)^{1 / 2}}{2}, \frac{\sqrt{2}}{2}\right), \\
\Longrightarrow\left|\beta^{\prime}(s)\right| & =\sqrt{\frac{1+s}{4}+\frac{1-s}{4}+\frac{1}{2}}=\sqrt{1}=1 .
\end{aligned}
$$

Since $\left|\beta^{\prime}(s)\right|=1$, then β has unit speed.
2. $\operatorname{By} T(s)=\beta^{\prime}(s)=\left(\frac{(1+s)^{1 / 2}}{2},-\frac{(1-s)^{1 / 2}}{2}, \frac{\sqrt{2}}{2}\right)$.

Then

$$
\begin{aligned}
T^{\prime}(s) & =\left(\frac{\frac{1}{2}(1+s)^{-1 / 2}}{2}, \frac{\frac{1}{2}(1-s)^{-1 / 2}}{2}, 0\right), \\
& =\left(\frac{(1+s)^{-1 / 2}}{4}, \frac{(1-s)^{-1 / 2}}{4}, 0\right) .
\end{aligned}
$$

And $\quad \kappa=\left|T^{\prime}(s)\right|=\sqrt{\frac{1}{16(1+s)}+\frac{1}{16(1-s)}+0}$,

$$
=\sqrt{\frac{1}{8\left(1-s^{2}\right)}} .
$$

3. Since $N=\frac{T^{\prime}}{\kappa}=\left(\frac{(1+s)^{-1 / 2}}{4}, \frac{(1-s)^{-1 / 2}}{4}, 0\right) / \sqrt{\frac{1}{8\left(1-s^{2}\right)}}=\left(\frac{\sqrt{2(1-s)}}{2}, \frac{\sqrt{2(1+s)}}{2}, 0\right)$.

And

$$
B=T \times N=\left|\begin{array}{ccc}
i & j & k \\
\frac{(1+s)^{1 / 2}}{2} & -\frac{(1-s)^{1 / 2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2(1-s)}}{2} & \frac{\sqrt{2(1+s)}}{2} & 0
\end{array}\right|=\left(-\frac{\sqrt{(1+s)}}{2}, \frac{\sqrt{(1-s)}}{2}, \frac{\sqrt{2}}{2}\right) .
$$

4. From B above, we get $B^{\prime}=\left(-\frac{1}{4 \sqrt{(1+s)}},-\frac{1}{4 \sqrt{(1-s)}}, 0\right)$.

Thus

$$
\begin{aligned}
\tau=-N \cdot B^{\prime} & =-\left(\frac{\sqrt{2(1-s)}}{2}, \frac{\sqrt{2(1+s)}}{2}, 0\right) \cdot\left(-\frac{1}{4 \sqrt{(1+s)}},-\frac{1}{4 \sqrt{(1-s)}}, 0\right) \\
& =\frac{\sqrt{2}}{8}\left(\frac{\sqrt{1-s}}{\sqrt{1+s}}+\frac{\sqrt{1+s}}{\sqrt{1-s}}\right) \\
& =\sqrt{\frac{1}{8\left(1-s^{2}\right)}}, \\
& =\kappa .
\end{aligned}
$$

