## PROBLEM SET 10 - §3.2

Exercise 3.2.5: Let $\phi(u, v)$ parameterize a surface in $\mathbb{R}^{3}$, and define a new surface by $\psi(u, v)=c \cdot \phi(u, v)$ for some fixed $c>0$. Then:

$$
\begin{aligned}
\psi_{u} & =c \cdot \phi_{u} \\
\psi_{v} & =c \cdot \phi_{v} \\
\psi_{u u} & =c \cdot \phi_{u u} \\
\psi_{u v} & =c \cdot \phi_{u v} \\
\psi_{v v} & =c \cdot \phi_{v v} \\
U_{\psi} & =\frac{\psi_{u} \times \psi_{v}}{\left|\psi_{u} \times \psi_{v}\right|}=\frac{\left(c \phi_{u}\right) \times\left(c \phi_{v}\right)}{\left|\left(c \phi_{u}\right) \times\left(c \phi_{v}\right)\right|}=\frac{c^{2}\left(\phi_{u} \times \phi_{v}\right)}{c^{2}\left|\phi_{u} \times \phi_{v}\right|}=U_{\phi} \\
E_{\psi} & =\psi_{u} \bullet \psi_{u}=c^{2} \phi_{u} \bullet \phi_{u}=c^{2} \cdot E_{\phi} \\
F_{\psi} & =\psi_{u} \bullet \psi_{v}=c^{2} \phi_{u} \bullet \phi_{v}=c^{2} \cdot G_{\phi} \\
G_{\psi} & =\psi_{v} \bullet \psi_{v}=c^{2} \phi_{v} \bullet \phi_{v}=c^{2} \cdot G_{\phi} \\
\ell_{\psi} & =\psi_{u u} \bullet U_{\psi}=c \dot{\phi}_{u u} \bullet U_{\phi}=c \cdot \ell_{\phi} \\
m_{\psi} & =\psi_{u v} \bullet U_{\psi}=c \dot{\phi}_{u v} \bullet U_{\phi}=c \cdot m_{\phi} \\
n_{\psi} & =\psi_{v v} \bullet U_{\psi}=c \dot{\phi}_{v v} \bullet U_{\phi}=c \cdot n_{\phi} \\
K_{\psi} & =\frac{\ell_{\psi} \cdot n_{\psi}-\left(m_{\psi}\right)^{2}}{E_{\psi} \cdot G_{\psi}-\left(F_{\psi}\right)^{2}}=\frac{c \ell_{\phi} \cdot c n_{\phi}-\left(c m_{\phi}\right)^{2}}{c^{2} E_{\phi} \cdot c^{2} G_{\phi}-\left(c^{2} F_{\psi}\right)^{2}}=\frac{c^{2}\left(\ell_{\phi} \cdot n_{\phi}-\left(m_{\phi}\right)^{2}\right)}{c^{4}\left(E_{\phi} \cdot G_{\phi}-\left(F_{\phi}\right)^{2}\right)}=\frac{1}{c^{2}} \cdot K_{\phi}
\end{aligned}
$$

Exercise 3.2.7: Let $M=\phi(u, v)$ be a surface, which is locally non-umbilic. We claim that all $u$ - and $v$-parameter curves are lines of curvature if and only if $F$ and $m$ are identically zero. That is, we claim that each point we have $F=0=m$ if and only if $\phi_{u}$ and $\phi_{v}$ are the principle directions (and are therefore eigenvectors for the shape operator).

Assume first that $\phi_{u}$ and $\phi_{v}$ are principle directions in our non-umbilic region, so that $S\left(\phi_{u}\right)=k_{1} \cdot \phi_{u}$ and $S\left(\phi_{v}\right)=k_{2} \cdot \phi_{v}$ for some $k_{1} \neq k_{2}$. Since $S\left(\phi_{u}\right) \bullet \phi_{v}=m=S\left(\phi_{v}\right) \bullet \phi_{u}$, we have:

$$
\begin{array}{ll}
m=S\left(\phi_{u}\right) \bullet \phi_{v}=k_{1}\left(\phi_{u} \bullet \phi_{v}\right) & \text { and } \\
m=S\left(\phi_{v}\right) \bullet \phi_{u}=k_{2}\left(\phi_{v} \bullet \phi_{u}\right)
\end{array}
$$

Hence:

$$
0=m-m=\left(k_{1}-k_{2}\right) \phi_{u} \bullet \phi_{v}
$$

Since our assumption that the surface is non-umbilic means that $k_{1} \neq k_{2}$, we deduce that $F=\phi_{u} \bullet \phi_{v}=0$, and hence $m=0$ as well.

Conversely, assume now that $m=F=0$. Writing the shape operator as $S=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, we have:

$$
\begin{aligned}
& 0=m=S\left(\phi_{u}\right) \bullet \phi_{v}=\left(a \phi_{u}+b \phi_{v}\right) \bullet \phi_{v}=a \underbrace{\phi_{u} \bullet \phi_{v}}_{=F=0}+b \phi_{v} \bullet \phi=b \phi_{v} \bullet \phi_{v} \\
& 0=m=S\left(\phi_{v}\right) \bullet \phi_{u}=\left(c \phi_{u}+d \phi_{v}\right) \bullet \phi_{u}=c \phi_{u} \bullet \phi_{u}+d \underbrace{\phi_{v} \bullet \phi_{u}}_{=F=0}=c \phi_{u} \bullet \phi_{u}
\end{aligned}
$$

Since neither $\phi_{u}$ nor $\phi_{v}$ is zero, the first equation implies that $b=0$, and the second implies that $c=0$. Hence we have as claimed:

$$
S\left(\phi_{u}\right)=a \phi_{u} \quad \text { and } \quad S\left(\phi_{v}\right)=d \phi_{v}
$$

Exercise 3.2.13: Consider the elliptic paraboloid $M$ which is graph in $\mathbb{R}^{3}$ of $z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$. Parameterize $M$ by:

$$
\phi(u, v)=\left(u, v, \frac{u^{2}}{a^{2}}+\frac{v^{2}}{b^{2}}\right)
$$

We compute the Gaussian curvature of $M$ as follows:

$$
\begin{aligned}
& \phi_{u}=\left(1,0, \frac{2 u}{a^{2}}\right) \quad \phi_{v}=\left(0,1, \frac{2 v}{b^{2}}\right) \\
& \phi_{u u}=\left(0,0, \frac{2}{a^{2}}\right) \quad \phi_{u v}=(0,0,0) \quad \phi_{v v}=\left(0,0, \frac{2}{b^{2}}\right) \\
& \phi_{u} \times \phi_{v}=\left(-\frac{2 u}{a^{2}},-\frac{2 v}{b^{2}}, 1\right) \quad\left|\phi_{u} \times \phi_{v}\right|=\left(\frac{4 u^{2}}{a^{4}}+\frac{4 v^{2}}{b^{4}}+1\right)^{1 / 2} \\
& U=\frac{1}{\left(\frac{4 u^{2}}{a^{4}}+\frac{4 v^{2}}{b^{4}}+1\right)^{1 / 2}} \cdot\left(-\frac{2 u}{a^{2}},-\frac{2 v}{b^{2}}, 1\right) \\
& E=\phi_{u} \bullet \phi_{u}=1+\frac{4 u^{2}}{a^{4}}=\frac{a^{4}+4 u^{2}}{a^{4}} \\
& F=\phi_{u} \bullet \phi_{v}=\frac{4 u v}{a^{2} b^{2}} \\
& G=\phi_{v} \bullet \phi_{v}=1+\frac{4 v^{2}}{b^{4}}=\frac{b^{4}+4 v^{2}}{b^{4}} \\
& \ell=\phi_{u u} \bullet U=\frac{2}{a^{2}} \cdot \frac{1}{\left(\frac{4 u^{2}}{a^{4}}+\frac{4 v^{2}}{b^{4}}+1\right)^{1 / 2}} \\
& m=\phi_{u v} \bullet U=0 \\
& n=\phi_{v v} \bullet U=\frac{2}{b^{2}} \cdot \frac{1}{\left(\frac{4 u^{2}}{a^{4}}+\frac{4 v^{2}}{b^{4}}+1\right)^{1 / 2}} \\
& K=\left(\ell n-m^{2}\right) \cdot\left(E G-F^{2}\right)^{-1} \\
& =\left(\frac{4}{a^{2} b^{2}} \cdot \frac{1}{\frac{4 u^{2}}{a^{4}}+\frac{4 v^{2}}{b^{4}}+1}-0\right) \cdot\left(\frac{a^{4}+4 u^{2}}{a^{4}} \cdot \frac{b^{4}+4 v^{2}}{b^{4}}-\frac{16 u^{2} v^{2}}{a^{4} b^{4}}\right)^{-1} \\
& =\frac{1}{a^{2} b^{2}} \cdot \frac{1}{\frac{u^{2}}{a^{4}}+\frac{v^{2}}{b^{4}}+\frac{1}{4}} \cdot \frac{a^{4} b^{4}}{\left(a^{4}+4 u^{2}\right)\left(b^{4}+4 v^{2}\right)-16 u^{2} v^{2}} \\
& =\frac{1}{a^{2} b^{2}} \cdot \frac{1}{\frac{u^{2}}{a^{4}}+\frac{v^{2}}{b^{4}}+\frac{1}{4}} \cdot \frac{a^{4} b^{4}}{a^{4} b^{4}+16 u^{2} v^{2}+4 a^{4} v^{2}+4 b^{4} v^{2}-16 u^{2} v^{2}} \\
& =\frac{1}{a^{2} b^{2}} \cdot \frac{1}{\frac{u^{2}}{a^{4}}+\frac{v^{2}}{b^{4}}+\frac{1}{4}} \cdot \frac{a^{4} b^{4}}{a^{4} b^{4}+4 a^{4} v^{2}+4 b^{4} v^{2}} \\
& =\frac{1}{a^{2} b^{2}} \cdot \frac{1}{\frac{u^{2}}{a^{4}}+\frac{v^{2}}{b^{4}}+\frac{1}{4}} \cdot \frac{1}{4\left(\frac{1}{4}+\frac{v^{2}}{b^{4}}+\frac{u^{2}}{a^{4}}\right)} \\
& =\frac{1}{4 a^{2} b^{2}\left(\frac{u^{2}}{a^{4}}+\frac{v^{2}}{b^{4}}+\frac{1}{4}\right)^{2}}
\end{aligned}
$$

Exercise 3.2.18: We assume the result of part (a), which says that a ruled surface $\phi(u, v)=\beta(u)+v \delta(u)$ has Gauss curvature:

$$
K=\frac{-\left(\beta^{\prime} \bullet \delta \times \delta^{\prime}\right)^{2}}{W^{4}}
$$

Here, we have $W:=\left|\beta^{\prime} \times \delta+v \delta^{\prime} \times \delta\right|$.
(b): Let $M$ be the saddle surface given by $z=x y$. Ruling $M$ by $\phi(u, v)=\underbrace{(u, 0,0)}_{=\beta}+v \underbrace{(0,1, u)}_{=\delta}$, we have:

$$
\begin{aligned}
\beta^{\prime} & =(1,0,0) \\
\delta^{\prime} & =(0,0,1) \\
\beta^{\prime} \times \delta & =(0,-u, 1) \\
\delta^{\prime} \times \delta & =(1,0,0) \\
W^{4} & =|(0,-u, 1)+v(1,0,0)|^{4}=\left(u^{2}+v^{2}+1\right)^{2} \\
K & =\frac{-((1,0,0) \bullet(-1,0,0))^{2}}{W^{4}}=\frac{-1}{\left(u^{2}+v^{2}+1\right)^{2}}
\end{aligned}
$$

(c): Now consider an arbitrary cone ruled by $\phi(u, v)=\mathbf{p}+v \delta(u)$, where $\beta=\mathbf{p}$, a constant. Since $\beta^{\prime} \equiv 0$, the curvature $K$ must equal zero everywhere it is defined. Observing that $W=\left|\beta^{\prime} \times \delta+v \delta^{\prime} \times \delta\right|=$ $\left|v \delta^{\prime} \times \delta\right|$, we see that $K$ will be defined (and zero) everywhere except where $v=0$ (at $\mathbf{p}$ ) and where $\delta^{\prime} \times \delta=\mathbf{0}$. The fact that we have a regular surface implies that the latter is impossible, and hence that everywhere other than at $\mathbf{p}$ our surface has curvature $K \equiv 0$.
(d): Consider an arbitrary cylinder ruled by $\phi(u, v)=\beta(u)+v \mathbf{q}$, where $\delta=\mathbf{q}$, a constant. This gives $\delta^{\prime} \equiv 0$, and hence $K=\frac{0}{W^{4}}$. Since we further have here that $W=\left|\beta^{\prime} \times \delta\right| \neq 0$, due to the regularity of $\phi$, we conclude that $K \equiv 0$.
(e): Consider the helicoid ruled by $\phi(u, v)=\underbrace{(0,0, c u)}_{=\beta}+v \underbrace{(R \cos u, R \sin u, 0)}_{=\delta}$. We have:

$$
\begin{aligned}
\beta^{\prime} & =(0,0, c) \\
\delta^{\prime} & =(-R \sin u, R \cos u, 0) \\
\delta^{\prime} \times \delta & =\left(0,0,-R^{2}\right) \\
\beta^{\prime} \times \delta & =(-R c \sin u,-R c \cos u, 0) \\
W^{4} & =\left|(-R c \sin u,-R c \cos u, 0)+v\left(0,0,-R^{2}\right)\right|^{4}=\left|\left(-R c \sin u,-R c \cos u,-v R^{2}\right)\right|^{4}=\left(R^{2} c^{2}+v^{2} R^{4}\right)^{2} \\
K & =\frac{-\left(c R^{2}\right)^{2}}{\left(R^{2} c^{2}+v^{2} R^{4}\right)^{2}}=\frac{-c^{2}}{\left(c^{2}+v^{2} R^{2}\right)^{2}}
\end{aligned}
$$

Note that with $R=1$, this simplifies to:

$$
K=\frac{-c^{2}}{\left(c^{2}+v^{2}\right)^{2}}
$$

