PROBLEM SET 10 — §3.2

Exercise 3.2.5: Let ¢(u,v) parameterize a surface in R3, and define a new surface by ¥(u,v) = ¢ - ¢(u,v)
for some fixed ¢ > 0. Then:

Yu = C- Py
Yy = by
Yuu = € Pun
Yuy = € Puy
Yoy = C* Py

x| [(edu) X (cou)l 2 ldu X ¢4
By =ty eth, =y 0h, = Ey
Fy=tyoth,=c¢, 00, =" Gy
Gy =ty ethy =Ch,0h, = -Gy
by = Vuy @ Uy = chuy o Us =c- Ly
mwzqu0U¢:c¢uvoU¢:c~m¢
Ny = Yoy @ Uy = chuy 0 Uy = c - 1y

U, = Yy X Py (cpu) X (cow) A (¢u X ¢v) =T,

Ly oy — (my)? cly - cng — (cmy)?

K _— =
VB, Gy — (B @B, Gy — (RF) A (B, -Gy — (F))?
¥ P » ¢ ¢ % c s Go (¢)
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Exercise 3.2.7: Let M = ¢(u,v) be a surface, which is locally non-umbilic. We claim that all u- and
v-parameter curves are lines of curvature if and only if F' and m are identically zero. That is, we claim
that each point we have F' = 0 = m if and only if ¢, and ¢, are the principle directions (and are therefore
eigenvectors for the shape operator).

Assume first that ¢, and ¢, are principle directions in our non-umbilic region, so that S(¢,) = k1 - ¢, and
S(¢y) = ko - ¢y, for some ki # ko. Since S(¢,,) @ ¢, = m = S(¢,) ¢, we have:

m = S(py) ® by = ki (¢ ® dy) and
m = S(d)v) [ ] ¢u = k2 (¢1} L ¢u) .
Hence:

O=m—m= (ki —k2) py® 0,

Since our assumption that the surface is non-umbilic means that ki # ko, we deduce that F = ¢, e ¢, = 0,
and hence m = 0 as well.

Conversely, assume now that m = F' = 0. Writing the shape operator as S = {Ccl 2} , we have:

Ozm:S(¢u).¢v:(a¢u+b¢v)‘¢v:a¢u.¢v+b¢v.¢:b¢v‘¢v
——

=F=0
0=m= S(¢v).¢u = (C¢u+d¢v).¢u :c¢u'¢u+d¢v.¢u :Cqsu.(bu
=F=0

Since neither ¢, nor ¢, is zero, the first equation implies that b = 0, and the second implies that ¢ = 0.
Hence we have as claimed:

S(¢u) = ap, and S(¢v> = do,
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Exercise 3.2.13: Consider the elliptic paraboloid M which is graph in R? of z = Z; + g—j. Parameterize M

a2
by:
2 2
o) = (w2 + 55

We compute the Gaussian curvature of M as follows:

2u 2v
(rbu = <1a 07 a2> ¢v = <07 1a b2)

2 2
(]Suu = (0707 a2) (buv = (07070) (bvv = <0a07 b2>
20 2w 4u?  4? 1/2
¢ux¢v_<a}27b271) |¢ux¢v|_<a4+b4+l>

U= 1 ( 2u v )
- 12\ 720 120
(4424 A a0

42 a* + 4u?

E:¢u.¢u:1+¥: Y
duv
F:¢u.¢vzw
402 b+ 40?
G:¢v.¢v:1+bT:T
2 1
b=t¢yuoU=—-

“oE ey

m= ¢y, U =0

n:(rbvv‘U:b%' > 12
(5 + 3+

K = (tn—m?) - (BG - F?)™

B 4 1 —0 a* 4+ 4u? b+ 4? B 160202\ !
- a2b? %2 + 41%2 +1 at b4 atbt

1/2
)

1 1 a*b?
Coa?h? wp v L (o 4 du?) (b 40?) — 16ue?
1 1 a'b?
 a?b? o4l atht + 16uv? + datv? + 4bt? — 16u?v?
1 a'b?
= 252 %2 + Z*z +% atbt +4a4v2 +4b4’l}2
B 1 1

TR R

1

- u? v2 1)2

4a?0? (3r + 7 + 3)
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Exercise 3.2.18: We assume the result of part (a), which says that a ruled surface ¢(u,v) = B(u) + vd(u)
has Gauss curvature:

— (B’ ed x 5')2

K= 7

Here, we have W := |3’ x § + v’ x 4.

(b): Let M be the saddle surface given by z = zy. Ruling M by ¢(u,v) = (u,0,0) 4+v (0,1, u), we have:

=8 =5
= (1,0,0)
=(0,0,1)
ﬂ x 0= (0,—u,1)
"x 8§ =1(1,0,0)
= (0, —u, 1) + v(1,0,0)[* = (u® + 0% + 1)
o —((1,0,0)e (=1,0,0))* _ ~1
W4 (u2 +v2 +1)2
(¢): Now consider an arbitrary cone ruled by ¢(u,v) = p + vd(u), where 8 = p, a constant. Since

B =0, ‘ the curvature K must equal zero ‘ everywhere it is defined. Observing that W = |8' x § + vd’ x §| =
|vd” x d|, we see that K will be defined (and zero) everywhere except where v = 0 (at p) and where &’ x§ =0
The fact that we have a regular surface implies that the latter is impossible, and hence that everywhere other
than at p our surface has curvature K = 0.

(d): Consider an arbitrary cylinder ruled by ¢(u,v) = S(u) + vq, where § = q, a constant. This gives
8’ =0, and hence K = 7. Since we further have here that W = [’ x 6| # 0, due to the regularity of ¢, we

conclude that .

(e): Consider the helicoid ruled by ¢(u,v) = (0,0, cu) +v (Rcosu, Rsinu,0). We have:
)
=3 =

B’ x § = (—Resinu, —Recos u, 0)
W* = |(=Resinu, —Recosu, 0) + (0,0, R2)| |(—Resinu, —Recos u, —UR2)}4 = (rR*¢? +U2R4)2
P (0 s

(R2¢2 +v2R4)2 (c2 +U2R2)2

Note that with R = 1, this simplifies to:



