Introduction to Differential Geometry I Homework 1
 MATH:4500

September 6, 2017

Problem 1. 1.1.13

Solution:

From the hint of the graph,

The coordinate of $P=(x, y)$ is given by:

$$
\begin{gathered}
x=|\overrightarrow{O X}|=|\overrightarrow{O B}|-|\overrightarrow{X B}|=a \cdot t-a \sin t \\
y=|\overrightarrow{O Y}|=|\overrightarrow{O C}|-|\overrightarrow{Y C}|=a-a \cos t
\end{gathered}
$$

Therefore, $(x, y)=(a t-a \sin t, a-a \cos t)$. i.e.,

$$
\alpha(t)=(a(t-\sin (t), a(1-\cos (t)) .
$$

Problem 2. 1.1.17

Solution:

See the graph, the point on the witch of Agnesi is denoted as W in the graph.
Suppose its coordinate is $W=(x, y)$, i.e., $|\overrightarrow{O X}|=x,|\overrightarrow{O Y}|=y$, so we need to computer the length of these vectors to have the value of x and y.

Connect the point A, Y with P.
Graph 1.1.17

Note that the points Y, P, W is on the same line $\overrightarrow{P W}$ is a horizontal line as we defined, same reasoning for the points Q, W, X are on the same vertical line.
Since $\overrightarrow{O A}$ is the diagram of the circle of radius a centered at $(0, a)$, then $\triangle A P O$ is a right triangle, which with $\angle A P O=\frac{\pi}{2}, \angle A O P=t$.
In addition, $\triangle A P Y$ is also a right triangle, which with $\angle P Y O=\frac{\pi}{2}, \angle Y O P=t$.
Therefore,

$$
\begin{aligned}
y=|\overrightarrow{O Y}| & =|\overrightarrow{O P}| \cdot \cos (t) & & (\text { in } \triangle \mathrm{PYO}) \\
& =|\overrightarrow{O A}| \cdot \cos (t) \cdot \cos (t) & & (\text { in } \triangle \mathrm{APO}) \\
& =2 a \cos ^{2}(t) . & &
\end{aligned}
$$

And if we consider the right triangle $\triangle O A Q$ which with $\angle O A Q=\frac{\pi}{2}, \angle A O Q=t$, we can derive:

$$
\begin{aligned}
x=|\overrightarrow{O X}| & =|\overrightarrow{A Q}| \\
& =|\overrightarrow{O A}| \cdot \tan (t) \\
& =2 a \tan (t) .
\end{aligned}
$$

As a result, we have

$$
W(t)=(x, y)=\left(2 a \tan (t), 2 a \cos ^{2}(t)\right)
$$

Problem 3. 1.1.25

Solution:Since $|\alpha(t)|=\sqrt{\left[\frac{1}{\sqrt{2}} \cos (t)\right]^{2}+\sin ^{2}(t)+\left[\frac{1}{\sqrt{2}} \cos (t)\right]^{2}}=1$,
In fact, since $\alpha(t)=v \cos t+w \sin t$ where $v=\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$, and $w=(0,1,0)$.
thus this curve $\alpha(t)$ is a circle lies on the plane $x=z$. Also shown by the graph below:

And we have,

$$
\alpha^{\prime}(t)=\left(-\frac{1}{\sqrt{2}} \sin (t), \cos (t),-\frac{1}{\sqrt{2}} \sin (t)\right), \alpha^{\prime \prime}(t)=\left(\frac{1}{\sqrt{2}} \cos (t)\right)+\sin (t)+\left(\frac{1}{\sqrt{2}} \cos (t)\right)
$$

In addition,

$$
\begin{aligned}
L(\alpha) & =\int_{0}^{2 \pi}\left|\alpha^{\prime}(t)\right| d t \\
& =\int_{0}^{2 \pi} \sqrt{\left[-\frac{1}{\sqrt{2}} \sin (t)\right]^{2}+\cos ^{2}(t)+\left[-\frac{1}{\sqrt{2}} \sin (t)\right]^{2}} d t \\
& =\int_{0}^{2 \pi} d t \\
& =2 \pi
\end{aligned}
$$

Problem 4. 1.1.26

Solution:

If we move the center point of the our circle (a, b) to the origin $(0,0)$, then we will derive the unit circle. And every point (x, y) on the circle is move to the point $((x-a),(y-b))$.

Let $\hat{x}=x-a, \hat{y}=y-b$, then the points (\hat{x}, \hat{y}) are on the unit circle.
For which has a parameterized equation

$$
\hat{x}=\cos (t), \quad \hat{y}=\sin (t) .
$$

Therefore, we have the parameterization for the circle center at (a, b) as:

$$
x=a+\cos (t), \quad y=b+\sin (t) .
$$

i.e.,

$$
\alpha(t)=(a+\cos (t), b+\sin (t)) .
$$

Problem 5. 1.1.27

Solution:

Given $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, i.e., we have $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$
Denote $\hat{x}=\frac{x}{a}, \hat{y}=\frac{y}{b}$, therefore,

$$
\hat{x}^{2}+\hat{y}^{2}=1 .
$$

And we know the parameterization of a circle as

$$
\hat{x}=\cos (t), \quad \hat{y}=\sin (t) .
$$

Thus, we derive the parameterization of a ellipse as:

$$
x=a \cos (t), \quad y=b \sin (t) .
$$

i.e.,

$$
\alpha(t)=(a \cos (t), b \sin (t)) .
$$

