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Abstract. Relatively extremal knots are the relative minima of the rope-
length functional in the C1 topology. They are the relative maxima of the
thickness (normal injectivity radius) functional on the set of curves of �xed
length, and they include the ideal knots. We prove that a C1;1 relatively ex-
tremal knot in Rn either has constant maximal (generalized) curvature, or its
thickness is equal to half of the double critical self distance. This local result
also applies to the links. Our main approach is to show that the shortest
curves with bounded curvature and C1 boundary conditions in Rn contain
CLC (circle-line-circle) curves, if they do not have constant maximal curva-
ture.

1. Introduction

In this article, we study the local structure of C1;1 relatively extremal knots
in Rn (n � 2); by using a length minimization problem with bounded curvature
and C1 boundary conditions. The thickness of a knotted curve is the radius of the
largest tubular neighborhood around the curve without intersections of the normal
discs: This is also known as the normal injectivity radius NIR(K;Rn) of the normal
exponential map of the curve K in the Euclidean space Rn. The ideal knots are the
embeddings of S1 into Rn; maximizing NIR(K;Rn) in a �xed isotopy (knot) class
of �xed length. A relatively extremal knot is a relative maximum of NIR(K;Rn)
in the C1 topology, if the length is �xed.
Several di¤erent notations for thickness appeared in the literature. R(K) was

used for thickness in [LSDR] and [BS]. [GM] showed that the thickness ��(K) was
equal to the minimum �(K) of �G, the global radius of curvature for C2 curves.
In [CKS], Cantarella-Kusner-Sullivan de�ned thickness �(K) by the in�mum of the
global radius of curvature and proved that it was the normal injectivity radius for
C1;1 curves. They also de�ned ideal (thickest) knots and links as "tight".
We prove every result in Rn (n � 2) in this article, since our methods are

not dependent on the dimension. Although ideal knots are not interesting for
n 6= 3 since they are trivial, relatively extremal knots, the length minimization
with bounded curvature, and some of the local results on curves we obtained may
be useful for other purposes.
As noted in [Ka], �...the average shape of knotted polymeric chains in thermal

equilibrium is closely related to the ideal representation of the corresponding knot
type�. �Knotted DNA molecules placed in certain solutions follow paths of random

Date : January 2002, Revised December 2005 and June 2007.
2000 Mathematics Subject Classi�cation. Primary 57M25, 53A04, 53C21, 53C20; Secondary

58E30.
Key words and phrases. Thickness of Knots, Ideal Knots, Normal Injectivity Radius.

1



2 OGUZ C. DURUMERIC

closed walks and the ideal trajectories are good predictors of time averaged prop-
erties of knotted polymers�as a biologist referee pointed out to the author. Since
the length of the molecule is �xed, this problem becomes the maximization of its
thickness within a �xed isotopy class of a knot. The analytical properties of the
ideal knots will be useful tools in the research on the knotted polymers.
Approximations of the ideal shapes of some simple knots have been obtained

using computers, see [Ka], [GM] and [SKK]. Gonzales and Maddocks used the
notion of the global radius of curvature on discrete curves to obtain approximations
of the ideal shapes in [GM]. However, we do not know the exact shape of the most of
the nontrivial knots (including trefoil knots) in ideal position or the exact value of
their thickness. Some estimates of the thickness of ideal knots have been obtained
by Litherland et al. [LSDR], Cantarella, Kusner and Sullivan [CKS], Diao [Di],
Buck and Simon [BS], and Rawdon and Simon [RS] by using results of Freedman,
He and Wang [FHW].
One of the earliest results about the shape of ideal knots was obtained by Gon-

zales and Maddocks [GM, p 4771]: A smooth ideal knot can be partitioned into arcs
of constant (maximal) global curvature and line segments.
Since a positive lower bound on thickness bounds curvature, the completion of

this class must include C1;1 curves. The extremal cases in R3 are unlikely to be
smooth. Very few ideal knots in R3 are expected to be C2, and the unknotted
standard circles are possibly the only smooth ones. [CKS] discovered examples of
tight (ideal) links which are C1;1 but not C2: Hence, we will study NIR(K;Rn)
for the C1;1 curves. One of our results, Proposition 8, generalizes [GM]�s result in
the preceding paragraph to the unions of �nitely many disjoint C1;1 simple closed
curves which are relative minima of ropelength.
In [D1], the author proved the following Thickness Formula in the general con-

text and developed the notion of �Geometric Focal Distance, Fg(K)� by using
metric balls, which naturally extends the notion of the focal distance of the smooth
category to the C1 category. DCSD(K) is the double critical self distance and
RO(K;M) is the rolling ball radius. See Section 2 for the basic de�nitions:

GENERAL THICKNESS FORMULA [D1, Theorem 1]
For every complete smooth Riemannian manifold Mn and every compact C1;1

submanifold Kk (@K = ;) of M;

NIR(K;M) = RO(K;M) = minfFg(K);
1

2
DCSD(K)g:

Nabutovsky, [N] had an extensive study of C1;1 hypersurfaces K in Rn and their
injectivity radii: [N] proved the upper semicontinuity of NIR(K;Rn) and lower
semicontinuity of vol(K)=NIR(K;Rn)k in C1 topology. These were also done by
Litherland in [L] for C1;1-knots in R3 and by [CKS] for links:We will use Corollary
1 of the formula for curves in Rn in Section 4. NIR(K;M) = RO(K;M); a rolling
ball/bead description of the injectivity radius in Rn, was known by Nabutovsky for
hypersurfaces, by Buck and Simon for C2 curves, [BS], and by Cantarella, Kusner
and Sullivan [CKS], Lemma 1. The rolling ball/bead characterization is our main
geometric tool.
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For a C1;1 curve ; 00 exists almost everywhere by Rademacher�s Theorem, [F].
For a C1;1 curve (s) parametrized by the arclength s, de�ne the (generalized) cur-
vature �(s) = lim sup

x6=y!s

](0(x);0(y))
jx�yj for all s and the analytic focal distance Fk() =

(sup �)
�1
: For K with several components, take the smallest focal distance of the

components. See Lemmas 1 and 2, for a proof of Fg() = Fk() = (ess sup k00k)�1
for curves parametrized by arclength in Rn, and [D1, Proposition 12] for a similar
curvature description of Fg(Kk) for higher dimensional Kk � Rn:

Corollary 1. (Thickness Formula) For every union K of �nitely many disjoint
C1;1 simple closed curves in Rn, one has
NIR(K;M) = RO(K;M) = minfFk(K); 12DCSD(K)g:
Thickness Formula was �rst discussed for C2�knots in R3 in [LSDR], and for

C1;1 knots in R3 by Litherland in [L], without RO. [CKS, Lemma 1] proved the
Thickness Formula for C1;1 knots and links in R3; since Fg = Fk:
The notion of the global radius of curvature �G was developed by Gonzales

and Maddocks in [GM] for smooth curves in R3, de�ned by using circles passing
through triple distinct points of the curve. This gives another characterization:
NIR(K;R3) = infK �G, [GM]. This is still true for all C1 curves by [CKS, Lemma
1]. The construction of �G and RO for curves in R3 are di¤erent in nature due to 3-
point intersection condition versus 1-point of tangency and 1-point of intersection
condition. However, at their in�ma they are the same quantity: NIR(K;R3);
[CKS, Lemma 1]. Although the equality NIR(K;M) = RO(K;M) is generalizable
to all dimensions and Riemannian manifolds [D1], the notion of �G may not be
e¤ective beyond the spaces of constant curvature.

Remark 1. In this article, we study the pieces of relatively extremal knots away
from the points of minimal double critical self distance by using minimization of
length with curvature bounded by �. Since all problems we discuss are in Rn; we
can rescale and take � = 1 to simplify our statements and proofs.

Problem 1. (Markov [M]-Dubins [Du]) Given p; q; v; w inRn; with kvk = kwk = 1:
Classify all shortest curves in C(p; q; v; w) which is the set of all curves  between
the points p and q in Rn with 0(p) = v, 0(q) = w and � � 1 = �.
A CLC(circle-line-circle) curve is one circular arc followed by a line segment and

then by another circular arc in a C1 fashion (like two letters J with common straight
parts, one hook at each end, and possibly non-coplanar, see Figure 10 ), where the
circular arcs have radius 1:We will use CLC(�) if the upper bound of curvature is
�: Similarly, one can de�ne CCC -curves by C1�concatenation of 3 arcs of circles
of the same curvature. If p = q and v = �w, then the shortest curve with curvature
restriction satis�es � � 1 and it is not a CLC -curve, see the examples and remarks
following the proof of Theorem 1 as well as Figure 11. One can construct curves
of constant (generalized) curvature 1 such that the curve is not twice di¤erentiable
at countably in�nite points.
We note that the classi�cation of shortest curves in C(p; q; v; w) with � � 1 is not

a simple matter. Markov [M], Dubins [Du] and Reeds and Shepp [ReSh] studied the
2 dimensional cases. In dimension 3, the following results of H. Sussmann obtained
the possible types solutions for this problem. A helicoidal arc is a smooth curve
in R3 with constant curvature 1 and positive torsion � satisfying the di¤erential
equation � 00 = 1:5� 0��1 � 2�3 + 2� � �� j� j1=2 for some nonnegative constant �:
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THEOREM. (Sussmann [S])
1. For the Markov-Dubins problem in dimension three, every minimizer is either

(a) a helicoidal arc or (b) a concatenation of three pieces each of which is a circle
or a straight line. For a minimizer of the form CCC, the middle arc has length � �
and < 2�.
2. Every helicoidal arc corresponding to a value of � such that � > 0 is local

strict minimizer.
Sussmann further proved that CSC Conjecture (every minimizer is either CCC

or CLC, [ReSh]) is false in R3 [S, Proposition 2.1 and 2.2]. In [S], the proofs
of Propositions 2.1 and 2.2, a detailed outline of the main steps of the proof of
Sussmann�s Theorem 1, and some remarks about that of Sussmann�s Theorem 2
are given. For a given initial data inR3; the determination of which type minimizing
curve, � and � still needs to be studied. The complete set of types of minimizing
curves is not known in dimensions n � 4.
Theorem 1 of this article below provides some answers in Rn except the constant

maximal curvature case. The methods used by Sussmann were in Control theory,
ordinary di¤erential equations, and were speci�c to dimension 3. In contrast, the
results of our article are proved by using simple geometric methods in Rn, and the
proofs are independent of [S].

Theorem 1. Let  : I = [0; L] ! Rn be a shortest curve in C(p; q; v; w) parame-
trized by arclength.
(a) If  does not have constant curvature 1, i.e. �(s0) < 1 for some s0; then

there exist a and b such that s0 2 [a; b] � [0; L] and ([a; b]) is a CLC-curve where
the line segment of positive length contains (s0) and each circular part has length
at least � unless it contains the initial or the terminal point of :
(b) If RO((I);Rn) � 1 and  does not have constant curvature 1; then all of 

is a CLC curve where each circular part has length at most � and the line segment
has positive length.

Theorem 1 tells us that the parts of a relatively extremal knot with the points
of minimal double critical self distance removed are CLC-curves or overwound, i.e.
� � 1: As J. Simon pointed out that there are physical examples (no proofs) of
relatively extremal unknots in R3, which are not circles, and hence not ideal knots.
One can construct similar physical examples for composite knots.
Given a certain type of knot and a rope of set thickness, �nding the exact shape

to tie the knot by using the shortest amount of the rope is basically the same as
�nding the shape of a thickest knot of �xed length in this knot type in R3. For
any (�nite union of �nitely many disjoint) C1;1 simple closed curve(s)  in Rn,
de�ne the ropelength or extrinsically isoembolic length to be `e() =

`()
Ro()

where
`() is the length of . The notion of ropelength has been de�ned and studied by
several authors, for example, Litherland-Simon-Durumeric-Rawdon [LSDR] (called
its reciprocal thickness), Gonzales and Maddocks [GM], Cantarella-Kusner-Sullivan
[CKS], Litherland [B], Buck-Simon [BS]. A curve 0 is called an ideal (thickest or
tight) knot or link in a class [�]; if `e attains its absolute minimum over [�] at 0;
and 0 is called relatively extremal, if `e attains a relative minimum at 0 with
respect to C1 topology. Let K be a union of �nitely many disjoint C1;1 simple
closed curves in Rn and  : D ! K � Rn be a parametrization. We de�ne
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Ic(K) = fx 2 D : 9y 2 D � fxg such that k(x)� (y)k = DCSD(K) and
(x)� (y) ? K at both (x) and (y)g.

Theorem 2. Let K be a union of �nitely many disjoint C1;1 simple closed curves
in Rn and  : D ! K � Rn be a parametrization. If  is a relative minimum for
`e and 9s0 2 D; �(s0) < sup�, then both of the following hold for (D) = K :
(a) NIR(K;Rn) = RO(K;R

n) = 1
2DCSD(K).

(b) If s0 =2 Ic(K), then there exists a; b such that s0 2 [a; b]; ([a; b]) is a
CLC(sup�)-curve where the line segment has positive length and contains (s0),
and each circular part has at most � radians angle ending at a point of Ic(K):

As an immediate consequence we obtain the following.

Corollary 2. Let K be a union of �nitely many disjoint C1;1 simple closed curves
in Rn: If K is a relative minimum for `e and curvature of K is not identically
constant RO(K)�1, then the thickness of K is 1

2DCSD(K).
Equivalently, if there exists a relative minimumK for `e such that 12DCSD(K) >

RO(K) = Fk(K); then K must have constant generalized curvature Fk(K)�1:

Remark 2. In dimension n = 3; there does not exist a link or a knot in R3 with
constant generalized curvature � � RO(K)�1 and RO(K) = Fk() < 1

2DCSD(K);
by the results of our forthcoming article:

THEOREM. [D2, Theorem 1] Let n be a dimension such that
(i) every minimizer for the Markov-Dubins problem in Rn is either a smooth

curve with curvature 1 and positive torsion, or a C1�concatenation of �nitely many
circular arcs of curvature 1 and a line segment, and
(ii) every CCC�curve with the middle arc of length < � is not a minimizer.
Then, NIR(K;Rn) = 1

2DCSD(K) for every relative minimum K of `e where
K is a union of �nitely many disjoint C1;1 simple closed curves in Rn:
COROLLARY [D2, Corollary 1] Let K be a union of �nitely many disjoint

C1;1 simple closed curves in R3: If K is a relative minimum of `e, then
NIR(K;R3) = 1

2DCSD(K):

Proposition 8 and [GM, section 4 for smooth knots] obtain that ideal knots away
from the maxima of the global radius of curvature �G consists of line segments.
However, maximal �G does not distinguish between the points of minimal double
critical self distance and points of maximal curvature. For an ideal (or relatively
extremal) C1;1 knot or link, Theorem 2 proves that (i) after a line segment, the ideal
curve must go through a minimal double critical point before reaching the next line
segment, and (ii) if there is a non-linear piece of the ideal curve(s) between a line
segment and the next minimal double critical point of the same component, then
that must be a planar circular arc whose radius is the thickness of the ideal knot.
Basic de�nitions are given in Section 2, shortest curves with curvature restric-

tions and proof of Theorem 1 are given in Section 3, and ideal knots and proof of
Theorem 2 are given in Section 4.
The author wishes to thank J. Simon and E. Rawdon for several encouraging

and helpful discussions during the completion of this work. The author also wishes
to thank the referee for the time and e¤ort (s)he spent for providing indispensable
comments to improve this manuscript.



6 OGUZ C. DURUMERIC

2. Basic definitions for Thickness Formula

Let K denote a union of �nitely many disjoint simple C1 curves in Rn

throughout this section. For the generalizations of the following concepts to
C1;1 submanifolds of Riemannian manifolds, we refer to [D1].

De�nition 1. TK and NK denote the tangent and normal bundles of the subman-
ifold K in Rn, respectively: UTK and UNK denote the unit vectors, NKp denotes
the set normal vectors at p, and similarly for the others.

De�nition 2. For a metric space (X; d), B(p; r) and �B(p; r) denote open and closed
metric balls. For A � X, B(A; r) = fx 2 X : d(x;A) < rg: The diameter d(X) is
supfd(x; y) : x; y 2 Xg: If there is an ambiguity, we will use dX and B(p; r;X): For
a curve  � A � Rn; `() is the length of  in Rn: `ab() and `pq() both denote
the length of  between (a) = p and (b) = q:

De�nition 3. expNp v = p+ v : NK ! Rn is the normal exponential map of K in
Rn. The thickness of K in Rn or the normal injectivity radius of expN is

NIR(K;Rn) = sup(f0g[fr > 0 : expN : fv 2 NK : kvk < rg !M is one-to-oneg):

Equivalently, if (s) parametrizes K; then

r > NIR(K;Rn),

0@ 9(s); (t); q 2 Rn;
(s) 6= (t); k(s)� qk < r; k(t)� qk < r; and

((s)� q) � 0(s) = ((t)� q) � 0(t) = 0

1A :
Figure 1 shows the smoothness of the boundary of a tubular neighborhood when

r < NIR(K;Rn). Figure 2 shows the failure of injectivity near p; q; x and y when
r > NIR(K;Rn): Figure 3 is a magni�cation of Figure 2 near p; showing the
singular behavior near focal points.

Figure 1. The case of r < NIR(K) : A portion
of expN (fv : kvk = rg) which is the smooth
boundary of the tubular r�neighborhood
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Figure 2. The case of r > NIR(K) :
expN (fv : kvk = rg) is not smooth near p and
q; and the failure of injectivity can be seen

around the points p; q; x and y:

Figure 3. A
magni�cation of Figure

2 near p

De�nition 4. For any v 2 UTRn
p and any r > 0; de�ne

(a) Op(v; r) =
[

w2v?(1)

B(expp rw; r), where v
?(1) = fw 2 UTRn

p : hv; wi = 0g

or equivalently,
Op(v; r) = fx 2 Rn : 9w 2 Rn; v � w = 0; kwk = 1; kx� p� rwk < rg

(b) Ocp(v; r) = R
n �Op(v; r)

(c) Op(r;K) = Op(v; r) where v 2 UTKp

(d) O(r;K) =
[
p2K

Op(r;K)

In all of the above, r may be omitted when r = 1: K will be omitted unless there
is ambiguity.

Intuitively, @Op(v; r) is a torus pinched at p in R3; see Figure 4: p =2 Op(v; r)
which is the the open set inside the pinched torus, referred by some as a "fat torus".
Op(v; r) is a donut pinched at p. Figure 5 shows a portion of @Op(v; r) and the
behavior around p:
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Figure 4. The pinched torus
bounding Op(v)

Figure 5. A portion of @Op(v)

De�nition 5. (a) The ball radius of K in Rn is

RO(K;R
n) = inffr > 0 : O(r;K) \K 6= ;g:

(b) The pointwise geometric focal distance at p 2 K is

Fg(p) = inffr > 0 : p 2 Op(r;K) \Kg:
and the geometric focal distance of K is Fg(K) = infp2K Fg(p): Of course, on a
line segment one has Fg(p) =1 = inf ?:

De�nition 6. A pair of distinct points p and q in K are called a double critical
pair for K; if the line segment pq is normal to K at both p and q: The double critical
self distance is

DCSD(K) = inffkp� qk : fp; qg is a double critical pair for Kg
A double critical pair fp; qg is called minimal if DCSD(K) = kp� qk : We denote
such a pair as MDC:

3. Shortest Curves in Rn with Curvature Restrictions

In this section,  : I ! Rn denotes a simple C1 curve with a compact
interval I, k0k 6= 0 and K = image(); unless stated otherwise. fei : i =
1; 2; ::; ng, Ei; E+i ; E

�
i denote the standard basis in Rn, the ei � axis; its positive

and negative parts, respectively.

De�nition 7. For  : I ! Rn, de�ne:

Dilations: dild0(s; t) = k0(s)�0(t)k
`(([s;t])) and dil�0(s; t) = ](0(s);0(t))

`(([s;t])) for s 6= t
(Generalized) Curvature: �(s) = lim sup

t6=u and t;u!s
dil�0(t; u)



9

Lower curvature: ��(s) = lim sup
t!s

dil�0(s; t)

Analytic focal distance: Fk() = (supI�(s))
�1: If K is a union of �nitely many

disjoint C1;1 curves (i) in Rn; then Fk(K) = mini Fk((i)):

Remark 3. (a) Since lim
v!w

](v;w)
kv�wk = 1 for kvk = kwk = 1; one obtains the same �,

if one uses dild instead of dil�, provided that k0k � 1. The same is true for ��:
(b) �(s) � ��(s);8s:
(c) If  2 C1;1 and k0k � 1; then k00(s)k = ��(s); for almost all s.
(d) lim sup

sn!s
�(sn) � �(s).

Lemma 1. All of the following are equivalent for  : I ! Rn with k0k � 1:
(a) �(s) � 1;8s 2 I:
(b) dild0(s; t) � 1;8s; t 2 I:
(c) dil�0(s; t) � 1;8s; t 2 I:
(d) k00(s)k � 1 for almost all s 2 I; and 0 is absolutely continuous.

Proof. (a =) c) : 8s < t < u; dil�0(s; u) � max(dil�0(s; t); dil�0(t; u)): Hence, if
dil�0(s; u) � A for some s 6= u and A; then there exists s0 2 [s; u] with �(s0) � A:

(d =) a) : k0(t)� 0(s)k =
 tR
s

00(u)du

 � tR
s

k00(u)k du � kt� sk ; by absolute

continuity. The rest are obvious. �

De�nition 8. A C1;1 curve  : I = [a; b] ! Rn is called a CLC�curve if there
exists [c; d] � [a; b] such that (a) ([c; d]) is a line segment of possibly zero length,
and (b) each of ([a; c]) and ([d; b]) is a planar circular arc of radius 1 and of
length in [0; 2�). The curve  need not be planar. We will use CLC(�), if the
upper bound of curvature is �:

Proposition 1. Let p 2 Rn and v 2 Rn with kvk = 1:
(a) 8q 2 Ocp(v);9w 2 Rn;9q0 2 @Ocp(v) and a C1 curve pq � fpg+ spanfv; wg

such that
(a.i) v � w = 0; kwk = 1; and

(a.ii) pq(t) =
�

p+ v sin t+ w(1� cos t) if 0 � t � t0
q0 + (t� t0)(q � q0)= kq � q0k if t0 � t � t1 = t0 + kq � q0k

;

where q0 = pq(t0) and q = pq(t1); and
(a.iii) pq is a shortest curve among all the continuous curves ' from p to q in

Ocp(v) with ('(t)� p) � v > 0 for small t > 0 and '(0) = p.
(b) If q � p 6= �v;8� 2 R; then q0 and w are unique and pq is unique up to

parametrization. Consequently, pq depends on p; q and v continuously, if q � p 6=
�v;8�:

See Figure 6 for Proposition 1.
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Figure 6. pq of Proposition 1

Proof. It su¢ ces to prove all for p = 0; v = e1 and q 6= 0; using  = pq. Consider
the non-empty set of all recti�able curves ' of length � L satisfying (a.iii) for some
su¢ ciently large L < 1. Parametrize each curve ' by arclength and extend its
domain to [0; L] by keeping ' constant after reaching q so that k'(s)� '(t)k �
js� tj ;8s; t: This forms a non-empty, bounded and equicontinuous family, and
length functional is lower semi-continuous under uniform convergence. By Arzela-
Ascoli Theorem, a shortest C0;1 curve  from 0 to q in Oc0(e1) satisfying (a.iii)
exists. The proof below will also show that we can deform any curve ' as in (a.iii)
to a shorter curve until we reach  which can be reparametrized to be C1: For any
u 2 Rn, de�ne uN = u� (u � e1)e1:
Case 1. If q 2 E+1 ; then  is the line segment from 0 to q where q0 = 0 and

t0 = 0. Furthermore, if  intersects E
+
1 at any q00 6= 0, then q 2 E+1 : For,  must

be along E+1 between 0 and q00, and then it extends uniquely as a geodesic of Rn

beyond q00 2 int Oc0(e1) to q:
Case 2.  \ E1 = f0g: Let w = qN=

qN ; since qN 6= 0: It su¢ ces to prove
the rest for w = e2: De�ne

f : Rn�E1 ! A = fxe1+ye2 : x; y 2 R and y > 0g by f(u) = (u �e1)e1+
uN e2:

f is a smooth length decreasing map:

kf(u)� f(z)k2 = k(u � e1)e1 � (z � e1)e1k2 +
�uN� zN�2

� k(u� z) � e1k2 +
uN � zN2 = ku� zk2 :

Equality holds if and only if uN = czN for some c > 0; implying u 2 span(e1; z):
Parametrize  with respect to arclength. Extend f � by f((0)) = 0: By following
Federer [F], pp. 109, 163-168, we obtain that  and f �  are lipschitz, absolutely
continuous, 0 and (f � )0 exist a.e., and

`() =

`()Z
0

k0(s)k ds �
`()Z
0

kf�0(s)k ds � `(f()):

Since  is a shortest curve from 0 to q = f(q), k0(s)k = kf�0(s)k and 0(s) 2
spanfe1; (s)g for almost all s 2 (0; `()]:

(N )0(s) = 0(s)N = �(s)N (s); for s 2 (0; `()]; a:e:
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d

ds
(N (s)(N (s) � N (s))� 1

2 ) = 0; for s 2 (0; `()]; a:e:

By absolute continuity and (`())N = qN =
qN e2; one obtains that  �

spanfe1; e2g. This reduces the proof to the R2 case.
Subcase 2.1. kq � e2k = 1, that is q 2 @Oc0(e1): De�ne

g : fu 2 R2 : ku� e2k � 1g ! fu 2 R2 : ku� e2k = 1g by g(u) = e2 +
u� e2
ku� e2k

:

Then, g is a distance decreasing map, kg(u)� g(z)k � ku� zk ; and equality holds
if and only if ku� e2k = kz � e2k = 1: Hence, `() � `(g()), and consequently the
shortest curve  must lie on the circle ku� e2k = 1 between p and q, by a proof
similar to above with f .
Subcase 2.2. kq � e2k > 1, that is q 2 intOc0(e1): Any component of  \

intOc0(e1) is a line segment. Let � be the component containing q. By the case
assumption and the Case 1, ��\E+1 = ;: There exists unique q0 in ��\@Oc0(e1) with
kq0 � e2k = 1: By Case 2.1,  is a union of a line segment and a circular arc. If
 were not C1 at q0 = (t0), then for su¢ ciently small " > 0; the line segments
between (t0 � ") and (t0 + ") lie in Ocp(v) and have length < 2", by the �rst
variation. Hence,  is C1; satis�es (a.i-iii) in R2 = spanfe1; e2g and consequently
in Rn.
Case 3.  \ E�1 6= ;: Subcase 3.1. q 2 E�1 : q 2 intOc0(e1): Let � be the

line segment component of  \ intOc0(e1) ending at q: Obviously, � * E�1 : Choose
q00 2 (�� fqg � @Oc0(e1)): The part of  between p to q00 must be shortest also. By
Case 2,  must follow a circular arc to q0 then a line segment to q00; which must be
along �: This proves (a.i-iii). By rotating  around E1, one obtains in�nitely many
shortest curves � satisfying (a.i-iii).
Subcase 3.2. Suppose there exists q000 2  \ E�1 and q000 6= q: Following any

� 6=  from p to q000; and  from q000 to q, would create a shortest curve with a
corner within intOc0(e1); an open subset of R

n: Hence, Subcase 3.2 can not occur.
(b) In Case 2, q0 and w are unique and  is unique up to parametrization. �

Proposition 2. Let  : I = [0; L]! Rn be with � � 1 and k0k � 1: Then,
(a) (s) 2 Oc(a)(0(a)), 8a; s 2 I with js� aj � �:
Furthermore, (rigidity)

((s0) 2 @Oc(a)(0(a)) for some a; s0 2 I with 0 < js0 � aj � �) ,
 is a circular arc of radius 1 in @Oc(a)(

0(a)) between (a) and (s0):
(b) If k(0)k = k(L)k = 1 and k(a)k > 1 for some a 2 [0; L], then L > �:
(c) If 00(a) exists and k00(a)k = 1; for some a 2 [0; L); then

8R > 1;9" > 0 such that ((a; a+ ")) � B((a) +R00(a); R):
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See Figure 7 for Proposition 2.

Figure 7. Proposition 2b, q = (m)

Proof. The proof follows the following order: �rst (a) for 0 � js� aj � �
2 without

the rigidity, (b) is next, and then all of (a) for js� aj � � with the rigidity. (c) is
independent.
(a:�2 ) By using an isometry of R

n, reparametrization and symmetry, it su¢ ces
to prove this for a = 0; (0) = 0, 0(0) = e1 and for 0 � s � L0 = min(�2 ; L):
0(s) = c1(s)e1 + c2(s)w(s) where kw(s)k = 1 and w(s) � e1 = 0; for s 2 [0; L0]:

Then, by Lemma 1, ](0(0); 0(s)) � s and c1(s) � cos s: jc2(s)j � sin s; since
c21 + c

2
2 = 1: For any u 2 Rn, de�ne uN = u� (u � e1)e1:

(s) � e1 =
Z s

0

0(t) � e1dt � sin s(s)N � Z s

0

jc2(t)j dt � 1� cos s

For any unit vector u normal to e1;
ku� (s)k2 = ((s) � e1)2 +

u� (s)N2 � sin2 s +
�u� (s)Nu�2 � 1:

Hence, (s) 2 Oc0(e1) for 0 � s � L0:
(b) Choose m 2 (0; L) such that k(m)k � k(s)k ;8s 2 [0; L]: k(m)k > 1. We

will prove that m > �
2 : We will use p = (0), q = (m), v = �

0(m), Oc for Ocq(v);
M for the line through q parallel to v; H for hyperplane through q normal to v,
and B for B(0; 1):
Suppose that m � �

2 : Then, ([0;m]) � O
c by part (a:�2 ). Since p 2 @B \ O

c,
consider a shortest curve � in Oc from q to p and in the direction of v at q; described
as in Proposition 1 : `(�) � `(([0;m])) = m � �

2 : Since q is a furthest point of 
from 0; v � q = 0(m) � (m) = 0, and hence, 0 2 H: M \B = ;; since kqk > 1: By
Proposition 1 and p =2 M; � lies in a unique 2-plane X through q and p, parallel
to v; and � is a C1;1 curve following a circular arc of length �0 of radius 1 and a
line segment to p. Each of Oc; X; M and B is symmetric with respect to H; and
X intersects @B and @Oc along circles.
Consider an isometry f : X ! R2 so that f(H \X) and f(M) are x and y axes,

respectively, and f(�) satis�es x > 0: Every point (x; y) 2 f
�
Oc \B \X

�
satis�es
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(x�1)2+y2 � 1 and (x�a)2+y2 � r2:One has 0 � r < a and r � 1, sinceM\B = ;
and 0 is not necessarily on X: If r < a � 1, then the above inequalities have no
solution in R2 (by 1 � k(x; y)� (1; 0)k � k(x; y)� (a; 0)k+(1�a) � r+1�a < 1).
Consequently, r � 1 < a must hold, since f(p) 2 f(Oc\B\X): For f(p) = (x0; y0);

0 � 1� r2 � (x0 � 1)2 + y20 � (x0 � a)2 � y20 = (a� 1)(2x0 � a� 1)

x0 �
a+ 1

2
> 1; since a > 1:

The circular part of f(�) has length �0 � m � �
2 and it goes along the circle

(x�1)2+y2 � 1 starting at (0; 0). It has to follow a tangent line segment of length
at least tan(�2 � �0) �

�
2 � �0 to reach x = 1 line before f(p): This contradicts

with `(f(�)) � m � �
2 ; since x0 > 1: This proves that one has to have m > �

2 ; and
L�m > �

2 similarly.
(a:�) It su¢ ces to prove this for a = 0; (0) = 0; 0(0) = e1 and 0 � s �

min(�; L): Suppose that (b) 2 O0(e1) for some b 2 (0; �]\ I: Then (b) 2 B(w; 1)
for some unit vector w normal to e1. There is a unique c 2 [0; b) such that ((c; b]) �
B(w; 1) and (c) 2 @B(w; 1): One must have ([0; c]) � B(w; 1) by part (b), since 0
and (c) are in @B(w; 1) and c < �. 0(c) is tangent to @B(w; 1); since k(t)� wk
has a local maximum at t = c when c 6= 0; and c = 0 case is obvious. By part (a:�2 ),
(t) must stay out of O(c)(0(c)) � B(w; 1) for t 2 [c; c+ �

2 ]\ I; which contradicts
((c; b]) � B(w; 1): Hence, ([0;min(�; L)]) \O0(e1) = ;:
Assume that 9s0 2 I with (s0) 2 @Oc0(e1) and 0 < s0 � �: Then, both (s0)

and 0 are on @B(w0; 1) where w0 = (s0)N
(s0)N�1 is a unit vector normal to

e1. By part (b) and the previous paragraph, ([0; s0]) � B(w0; 1) \ Oc0(e1) which
is a circle, and (s) = (sin s) e1 + (1� cos s)w0: The converse is obvious.
(c) Let q = (a) +R00(a), and de�ne f(s) = 1

2 k(s)� qk
2
:

f 0(s) = 0(s) � ((s)� q) which is lipschitz, and f 0(a) = 0(a) � (�R00(a)) = 0;
by k0k � 1:
f 00(s) = 00(s)�((s)� q)+0(s)�0(s) a.e., and f 00(a) = 00(a)�(�R00(a))+1 < 0:
Hence, lim

s!a+

1
s�a (f

0(s) � f 0(a)) < 0: There exists " > 0 such that f 0(s) < 0,

8s 2 (a; a+ "). Consequently, f(s) < f(a), 8s 2 (a; a+ "): �

Example 1. The constant � in Proposition 2 is sharp. For (b), consider the part
of the circle C", (x � ")2 + y2 = 1 in R2 outside the disc x2 + y2 � 1; for small
": For (a), consider the LC curve in R2, which follows C" counterclockwise until it
reaches ("; 1) and then the line segment [0; "]� f1g backwards to (0; 1).

Lemma 2. For all C1;1 curves  : I ! Rn; analytic and geometric focal distances
are the same: Fg() = Fk() := (supI�(s))

�1: If k0(s)k = 1 on I, then Fg() =

Fk() = (ess sup k00k)�1:

Proof. Reparametrize  to assume that k0(s)k = 1: 1
Fk()

� �: By Proposition
2(a: �2 ) and rescaling, 8p 2 ;  locally avoids Op(Fk(); ) near p and Fk() �
Fg(p) = inffr > 0 : p 2 Op(r; ) \ g: Hence, Fk() � Fg() = infp2 Fg(p):
Suppose that Fk() < Fg(); i.e. sup� > 1

Fg()
: Let

A =

�
s 2 I : �(s) > 1

Fg()

�
and B = fs 2 I : 00(s) existsg :
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A 6= ; and the Lebesgue measure �(I �B) = 0; by Rademacher�s Theorem.
Case 1. A\B 6= ;: There exists s0 2 A\B such that c := k00(s0)k = �(s0) >
1

Fg()
: Choose r such that 1c < r < Fg(). Let �(s) = c(

s
c ); so that k�

0(s)k = 1;8s;
and k�00(cs0)k = 1: By Proposition 2c, �((cs0; cs0+c")) � B(�(cs0)+cr�00(cs0); cr)
for some " > 0, since cr > 1: Hence,  ((s0; s0 + ")) � B((s0) + r

00(s0)
k00(s0)k ; r) �

O(s0)(r; ): However this contradicts r < Fg() by De�nition 5b of Fg:
Case 2. A \ B = ;: Since  is C1;1; 0 is absolutely continuous, 00(s) exists

almost everywhere by Rademacher�s Theorem and k00(s)k = �(s) � 1
Fg()

a.e.

By Lemma 1, 1
Fk()

= supI �(s) � 1
Fg()

which contradicts Fk() < Fg():
Neither of the cases is possible, hence one must have Fk() = Fg(). By Lemma

1, Fk() = (ess sup k00k)�1 : �

De�nition 9. Let p; q 2 Rn, v 2 UTRn
p , and w 2 UTRn

q be given. De�ne
C(p; q; v; w) to be the set of all C1;1 curves  : [0; L]! Rn with (0) = p; 0(0) = v;
(L) = q; 0(L) = w; k0k � 1; and � � 1; where L = `() is not �xed on C:

Proposition 3. There exists a shortest curve in C(p; q; v; w):

Proof. Obviously, C(p; q; v; w) 6= ;: Any sequence of curves fmg1m=1, with `(m)!
inff`() :  2 Cg has uniformly bounded lengths and all starting at p. Extend all
m to a common compact interval by following the lines q + (s � `(m))w after q:
By Lemma 1, 8 2 C, k0(s)� 0(t)k � js� tj, and thus, C is C1-equicontinuous.
C is C1-bounded by k0k � 1. C0-equicontinuity and boundedness are obvious. By
Arzela-Ascoli Theorem, there exists a subsequence of fmg1m=1 uniformly converg-
ing to 0 in C1 sense: (m(s); 0m(s))! (0(s); 

0
0(s)). 0 2 C, since all conditions

of C are preserved under this convergence and `(m)! `(0). �

Proposition 4. Let  : I = [0; L]! Rn be a shortest curve in C(p; q; v; w): Then,
8s 2 I; (�(s) = 0 or 1): ��1(1) is a closed subset of I, and ��1(0) is countable
union of disjoint line segments.

Proof. By the upper semi-continuity of � (Remark 3d); 8� � 1; ��1([�; 1]) is a
closed subset of I and J(�) = ��1([0; �)) is countable union of relatively open
disjoint intervals in I: Choose any � < 1; and a < b in a given component J 0 of
J(�):
Suppose that 0(a) 6= 0(b): Choose any smooth bump function h : R ! [0; 1]

such that supp(h) � [�1; 1]; h(0) = 1; and
R 1
�1 h(s)ds = 1: Let hn be de�ned by

hn(
a+b
2 ) = 1 and h

0
n(s) = n[h(n(s� a))� h(n(s� b))]: Then,

lim
n!1

Z
I

h0n(s)
0(s)ds = 0(b)� 0(a) 6= 0:

Fix a su¢ ciently large n such that supp(hn) � J 0 and �
R
J0
h0n(s)

0(s)ds := V 6= 0:
Let "(s) = (s) + "V hn(s) be a variation of : By the First Variation formula,
[CE, p6],

d

d"
`(")j"=0 =

Z
I

[V hn(s)]
00(s)ds = �kV k2 < 0

Hence, for su¢ ciently small " > 0, " is strictly shorter that :
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For all s < t and 0 < " < 1
2 (sup jh

0
n(u)j kV k)�1 :

dild0"(s; t) =
k0"(t)� 0"(s)k

`st(")
� k0(t)� 0(s)k+ " kV k jh0n(t)� h0n(s)j

(t� s)(1� " sup jh0n(u)j kV k)

� (1 + "C1)
k0(t)� 0(s)k

t� s + "C2

where Ci = Ci(kV k ; sup jh0nj ; sup jh00nj) for i = 1; 2:
By Remark 3a, and since � � � < 1 on J 0; for su¢ ciently small ", �" � 1+�

2 <
1; and " 2 C: This contradicts the minimality of : Consequently, 0(a) = 0(b)
and 0 is constant on J 0: 8� < 1; (J(�)) is a countable union of disjoint line
segments, to conclude that (J(1)) is a countable union of disjoint line segments,
and �(J(1)) � 0: �

3.1. Proof of Theorem 1. See Figures 8 and 9 in conjunction with this proof.

Figure 8. Theorem 1a, for the proof of the impossibility of the case a > 0 and
c� a < �, where qt = (t)

Proof. (a) By Proposition 4, there exist maximally chosen c and d such that s0 2
[c; d] � [0; L] and ([c; d]) is a line segment L0 which is a CLC�curve. There exist
maximally chosen a and b such that 0 � a � c < d � b � L and ([a; b]) still is a
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CLC-curve. We want to show that either a = 0 or c� a � �: Suppose that a > 0
and c � a < �. Below, we will prove that 9� > 0 such that ([a � �; b]) still is a
CLC-curve, contradicting the maximality of [a; b]:
De�ne Jr = f(a � r) � �0(a � r) : � > 0g and Vr = Oc(a�r)(

0(a � r)), for
r 2 [0; a]:

(i) Let " = 1
2 min(a; d � c; � � (c � a); 1); c1 = c + "; and m = (c1):

m 2 intV0, since ([a; c]) is an arc of a circle of radius 1 and ([c; c1]) is a line
segment, a � c < c1; and Proposition 2a.

(ii) One obtains that 8r 2 [0; "); ([a � r; c1]) � Vr by Proposition 2a and
c1 � (a � r) < c � a + 2" � �. By Proposition 2a rigidity, m 2 intVr, since
([c; c1]) = L0 is a line segment.
For each �xed r 2 [0; "); de�ne r to be the shortest curve parametrized by

arclength from (a � r) to m within Vr without curvature restrictions, by
using Proposition 1. r follows a circular arc of radius 1 starting from (a � r)
along @Vr, then a line segment Lr of positive length until m: In Proposition 1, 0r
at m is not controlled.
Claim 1. 0r(m) = 

0(m) for su¢ ciently small r > 0:
9�1 > 0 such that 8r 2 [0; �1); `(Lr) � "

2 , d(m;Jr) > 0; since Jr and @Vr
change continuously in r, `(L0) = " and d(m;J0) � " (by 0 � c � a < �): For r 2
[0; �1); r is uniquely de�ned and depends on r continuously. limr!0+ ]m(L0; Lr) =
0; otherwise one can construct a shortest curve other than  from (a) to m in
V0 contradicting Proposition 1b: 9�2 > 0 such that 8r 2 [0; �2); ]m(L0; Lr) �
2 tan�1 "2 :
Let � = min("; �1; �2): 8r 2 [0; �); de�ne a curve ~r which follows  from p to

(a � r); then r from (a � r) to m, and  from m to q: ~r is C1 at (a � r),
squeezed by O(a�r)(0(a� r)): Recall that " � d�c

2 and L0 = ([c; c1]): De�ne the
line segment L00 := ([c1; c1 +

"
2 ]):

Suppose that ~r is not C1 at m for some r 2 (0; �); that is ]m(L0; Lr) =
��]m(L00; Lr) := � > 0: Fix such an r: ~r \B(m; "2 ) is a union of two segments of
length "

2 , joined at m with an angle of ���, in L00[Lr: There exists a unique circle
C of radius 1 in the same 2-plane as L00 [ Lr, tangent to Lr at p1 and tangent to
L00 at p2 where kpi �mk � "

2 ; since � � 2 tan
�1 "

2 : Let ~ be the C
1 curve obtained

from ~r by replacing the part of L00 [Lr between p1 and p2 by the shorter arc of C
between p1 and p2:

`(~) < `(~r) � `() and �~ � 1
This contradicts the minimality of  in C. Hence, 8r 2 [0; �); ~r is C1 at m; and
]m(L0; Lr) = 0: This proves Claim 1.
For each given r 2 (0; �) :
1. ~r 2 C1 and �~r � 1; hence ~r 2 C and `(~r) � `():
2.  and ~r follow the same path before (a� r) as well as after m:
3. ([a� r; c1]) � Vr; r is the unique shortest curve from (a� r) to m in Vr,

and hence `(([a� r; c1])) � `(r([a� r; c1])):
Consequently, `(~r) = `();  and ~r are equal up to parametrization, and

8r 2 [0; �); j[a � r; b]) is a CLC-curve. Since this contradicts the maximality of
[a; b]; we must have either a = 0 or c�a � �: By using the symmetry, we must also
have L = b or d� b � �.
(b) RO() � 1 implies that � � 1 by Proposition 2c, Lemma 1 and the de�ni-

tion of RO. Choose a; b; c; d maximally as in part (a). Let X be fx 2 Rn : 9t 2 [c; d]
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such that x � (t) ? ([c; d]) and 0 < kx� (t)k < 2g, the solid cylindrical tube
with central axis removed. Then, X � O(1; ); and hence X\ = ? by RO() � 1.
Suppose that c� a > �: Then, ([a; d]) is a C1�concatenation of a line segment

with a circular arc of strictly more that � radian angle, contained in a unique 2
plane. For su¢ ciently small r > 0; k(c� � � r)� (c+ sin r)k = 1 + cos r < 2
and (c � � � r) � (c + sin r) ? ([c; d]); contradicting X \ ([0; � � c)) = ?:
Consequently, c� a � �:
Suppose that a > 0: Then, c = a + �; by part (a) and previous paragraph.

([0; a]) \ X = ? follows similarly. We repeat the proof of part (a) with two
modi�cations at (i) and (ii) only. At (i), choose " = 1

2 min(a; d � c; 1): At (ii) the
inequality c1 � a + r � � is not needed, since 8r 2 [0; "); ([a � r; c1]) � Vr holds
by RO() � 1: The remainder of the proof reaches to a contradiction with the
maximality of a, as in part (a) when a > 0. Consequently, the �nal conclusions are
a = 0 and c� a � �; and by a similar argument, b = L and b� d � �: �

Figure 9. Theorem 1b, for the proof of the impossibility
of the case c� a > � when R0() � 1; where qt = (t)

Example 2. Consider CLC-curves  : [a; b]! Rn with the circle arcs C1, C2 and
segment piece L and each piece has positive length. Each of Ci [ L is contained in
a unique 2-plane for i = 1; 2. p = (a) =2 L and q = (b) =2 L:
a. See Figure 10 for a non-planar case.
b. Consider another case that has p = q and v = 0(a) = �0(b) = �w: See

Figure 11. Then, all of  is contained in the same 2-plane. There is only one
possibility, that is, C1 and C2 are tangent to each other at p; each `(Ci) = 3�

2 and
`(L) = 2. The length of the CLC curve  is 3� + 2: It is left to the reader to show
that any of the pieces C1, C2; L to have length 0 is not possible. However, there
is shorter planar CCC�curve, 2 of length 7�

3 , as shown in Figure 11. 2 is the
shortest curve for the initial data above when problem is considered in R2, but it is
not known to the author that it is the (or a) shortest curve in Rn for n � 3: By
Sussmann [S] and the argument above, a shortest curve for this initial data must
be CCC or a helicoidal curve when n = 3:
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Figure 10. A nonplanar
CLC�curve

Figure 11. The shortest curve in
the plane for the p = q and
v = �w initial data is a

CCC�curve, not a CLC�curve.

Figure 12. If the line segment is too
long in a U�bend  (a circular arc
of more than � radians), then the
minimizing property may be lost:

`(3) < `():

Example 3. a. The CLC�curve  : [a; d]! Rn in Figure 9 (even though RO() <
1) is the shortest curve with � � 1 and c � a � � (U-bend) for the given C1
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boundary data at t = a and d, as long as d� c is small, by Proposition 1 (a.iii and
b). However, as d�c becomes larger, some other shorter curves 3 will appear. See
Figure 12, drawn in the 2-plane containing  and 3:
b. If kp� qk is large, and p� q; v; w are linearly independent, then the shortest

curves in C(p; q; v; w) will be non-coplanar CLC-curves, by studying the shortest
curves in Rn � (Op(v) \ Oq(w)) in a similar fashion to Proposition 1. See Figure
10. If 0 < `(Ci) < � (no U-bends) and 0 < `(L); then the CLC-curves are expected
to be the unique minimizers.

Remark 4. a. The classi�cation in dimension 3 by Sussmann,Theorem 1 [S], im-
plies the nonexistence of interior CLC sections (proper open subset) of a minimizer
 in C(p; q; v; w); if L 6= ?: In other words, if a minimizer contains a CLC part
with L 6= ?, then the minimizer itself is CLC with possibly longer circular arcs.
We should remark that the nonexistence of LCC or CCL (with L 6= ?) minimizers
in R3 are actually proved in the proof of Theorem 1 of Sussmann, even though that
is not explicitly mentioned in the statement. Hence, except the trivial cases with a
line segment of length 0 in a CCC curve, see Figure 11, there can not exist any
examples of interior CLC sections in R3. In higher dimensions, it is obvious that
C::CLC::C-curves are not minimizers (if L 6= ?), since any section CCL lies in a
3-dimensional subspace, and it is not a minimizer there. However, the minimality
of other concatenations, such as helicoidal curves with CLC curves has not been
studied in higher dimensions yet.
b. Sussmann�s Theorem 2 [S] states that the helices are local strict minimizers in

R3 if the torsion j� j < 1 and � = 1: Hence, there are shortest curves in C(p; q; v; w),
which do not contain any interior CLC sections. However, [S] contains some re-
marks about the proof of Theorem 2, but not all details are shown.

4. Relatively Extremal Knots and Links in Rn

In this section, K denotes a union of �nitely many disjoint C1;1 simple
closed curves in Rn and  : D ! K � Rn denotes a one-to-one non-
singular parametrization, where D =

Sk
i=1S

1
(i), a union of k copies disjoint

circles, unless stated otherwise. When k0k � 1 is assumed, S1(i) are taken
with the appropriate radius and length.
A knot or link class [�] is a free C1 (ambient) isotopy class of embeddings of

 : D ! Rn with a �xed number of components. Since all of our proofs involve
local perturbations of only one component at a time, we will work with (i) :
S1(i) ! Rn and we will omit the lower index (i) to simplify the notation wherever
it is possible. We will identify S1 �= R=LZ, for L > 0; and use interval notation to
describe connected proper subsets of R=LZ: In other words, (i)(t + L) = (i)(t)

and 0(i)(t+ L) = 
0
(i)(t), 8t 2 R with

0(i) 6= 0 and (i) is one-to-one on [0; L):
The following notion of ropelength has been de�ned and studied by several au-

thors, Litherland-Simon-Durumeric-Rawdon (its reciprocal was called �thickness"
in [LSDR]), Gonzales and Maddocks [GM], Cantarella-Kusner-Sullivan [CKS] and
others. Cantarella-Kusner-Sullivan [CKS] de�ned ideal (thickest) knots as �tight"
knots.

De�nition 10. For any  : D! K � Rn , one de�nes the ropelength or extrinsi-
cally isoembolic length to be `e() = `e(K) =

`(K)
Ro(K)

= vol1(K)
NIR(K;Rn) :
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De�nition 11. (a) A 0 : D ! K0 � Rn is called ideal (or thickest or tight
[CKS]) in a knot/link type [0]; if 8 2 [0] with  : D! K one has `e(0) � `e():
K0 � Rn is called ideal if any of its parametrizations 0 is ideal.
(b) A 0 : D ! K0 � Rn is called relatively extremal or relatively minimal, if

there exists an open set U in C1 topology such that 0 2 U and 8 2 U\[0] with
 : D! K one has `e(0) � `e(): K0 � Rn is called relatively extremal /minimal
if any of its parametrizations 0 is relatively extremal/minimal.

Since both length and thickness are independent of orientations and parame-
trizations, we have the freedom of choosing the parametrizations to secure isotopies
and C1 convergence. We consider 1 and 2 to be geometrically equivalent, if there
exists an orientation preserving h : Rn ! Rn, a composition of an isometry and a
dilation (x ! �x; � 6= 0) of Rn, such that h(1) = 2 up to a reparametrization.
On each geometric equivalence class of C1;1-closed curves, le remains constant.

Lemma 3. Let  : D! K � Rn be a C1 knot or link.
(a) If DCSD(K) > 0; then there exists a critical pair fp0; q0g such that
DCSD(K) = kp0 � q0k :
(b) If sup� <1; i.e.  is C1;1, then DCSD(K) > 0:

Proof. For every sequence of critical pairs fpm; qmg with kpm � qmk ! DCSD(K),
one extracts a convergent subsequence (denoted by the same index) such that pm !
p0 and qm ! q0, by compactness. Then 0 = (pm � qm)�0(pm)! (p0�q0)�0(p0) =
0, asm!1; and kp0 � q0k = DCSD(K): In order fp0; q0g to be a minimal double
critical pair, p0 6= q0 is necessary.
For (a), kpm � qmk � DCSD(K) > 0 is su¢ cient to show that p0 6= q0:
For (b), dilate and reparametrize  so that with k0k = 1 and � � 1: Suppose

that pm � qm ! 0: 9m0 such that 8m � m0; kpm � qmk < 1 and pm and qm
belong the same component of K since the distances between di¤erent (compact)
components of K has a positive lower bound. By Proposition 2, 8m � m0; and
for

��s� �1(pm)�� � �; (s) 2 Ocpm(
0(pm)). But qm 2 Opm(

0(pm)) since 0 =
(pm � qm) � 0(pm) and kpm � qmk < 1. Hence the length of  between pm and qm
is � �: Same is true between p0 and q0: Consequently, kp0 � q0k = DCSD(K) >
0: �

Proposition 5. Let fmg1m=1 : D! Rn be a sequence uniformly converging to 
in C1 sense, i.e. (m(s); 0m(s))! ((s); 0(s)) uniformly on D: Let Km = m(D)
for m � 1 and K = (D):
(a) ([CKS, Lemma 3] and [L]) If RO(Km) � r for su¢ ciently large m, then

RO(K) � r. Consequently, lim supmRO(Km) � RO(K):
(b) If lim infmDCSD(Km) > 0; then lim infmDCSD(Km) � DCSD(K):

Proof. (a) The lower semi-continuity of thickness was established earlier by several
authors, [CKS, Lemma 3] and [L], and their proofs immediately generalize to Rn:
We provide a proof for the sake of completeness and to emphasize the contrast of
(a) and (b), which we use repeatedly.
Suppose that RO(K) < r, for a given r > 0: By the de�nition RO; there exists

a 2 D, v 2 Rn with kvk = 1 and v �0(a) = 0 such that B((a)+rv; r)\K 6= ;: One
can �nd (b) 2 B((a) + rv; r � ") for su¢ ciently small " > 0: Choose a sequence
fvmg1m=1 in Rn such that 8m; kvmk = 1, vm � 0m(a) = 0; and vm ! v. Then for
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su¢ ciently large m,

k(m(a) + rvm)� m(b)k < k((a) + rv)� (b)k+ " < r:
Hence, B(m(a)+rvm; r)\m 6= ; and RO(Km) < r; for su¢ ciently large m; which
contradicts the hypothesis. Consequently, RO(K) � r:
(b) We will use the same indices for subsequences. Let a = lim infmDCSD(Km)

and choose a subsequence with a = limmDCSD(Km) and DCSD(Km) > 0;8m:
For each m; there exists a minimal double critical pair fpm; qmg for Km, kpm � qmk
=DCSD(Km): SinceK is compact and a > 0; there exists subsequences pm ! p0 2
K, qm ! q0 2 K; where p0 6= q0. Since 0 = (pm � qm)�0m(pm)! (p0�q0)�0(p0) =
0, as m!1; fp0; q0g is a double critical pair.

DCSD(K) � kp0 � q0k = lim
m
kpm � qmk = lim

m
DCSD(Km) = a:

�
De�nition 12. For  : D! K � Rn; (with 0 6= 0); de�ne
(a) Ic = fx 2 D : 9y 2 D such that k(x)� (y)k = DCSD(K) and

((x)� (y)) � 0(x) = ((x)� (y)) � 0(y) = 0g and Kc = c = (Ic)
(b) Iz = fx 2 D : �(x) = 0g and Kz = z = (Iz)
(c) Imx = fx 2 D : �(x) = 1=RO(K)g and Kmx = mx = (Imx)
(d) Ib = fx 2 D : 0 < �(x) < 1=RO(K)g and Kb = b = (Ib)

Remark 5. Kc and Kmx are closed subsets of K if it is C1;1. To show this for
Kc, one can modify the proof of Lemma 3. See the proof of Proposition 8, for Kmx:

This following result was proved earlier in several articles: [CKS, Theorem 7],
[GL], [GMSM], It is an immediate consequence of Arzela-Ascoli theorem, and it
does not depend on the (�nite) dimension. The existence of normal injectivity
radius maximizers in �xed isotopy classes is also true in a more general case of
Riemannian manifolds by using Gromov�s Compactness Theorem, see [D1].

Proposition 6. ([CKS, Theorem 7], [GL], [GMSM]) For any knot/link class [�]
in Rn, 90 2 [�] such that
(a) 8 2 [�]; 0 < `e(0) � `e(); and hence
(b) 8 2 [�]; (`(0) = `() =) RO(0) � RO()) :

Proposition 7. Let fmg1m=1 : D! Rn be a sequence uniformly converging to 
in C1 sense, K = (D) and Km = m(D) such that 9C <1;8m; sup�m � C:
(a) Let A � D be a given compact set with fs 2 D : m(s) 6= (s)g � A;8m: If

A \ Ic = ;; then 9m1 such that 8m � m1; DCSD(Km) � DCSD(K):
(b) If Fk(K) < 1

2DCSD(K) and Fk(Km) � Fk(K);8m; then 9m1 such that
8m � m1; RO(Km) � RO(K):

Proof. All subsequences will be denoted by the same index m. The critical pairs
will be identi�ed from the common domain D:
(a) Suppose there exists a subsequence m such that DCSD(Km) < DCSD(K);

8m. For all m, there exists a minimal double critical pair fxm; ymg in D for
m; DCSD(Km) = km(xm)� m(ym)k < DCSD(K): There exist subsequences
xm ! x0, ym ! y0, by compactness of D.
x0 6= y0, if they are in di¤erent components of D. If both x0 and y0 2 S1(i);

then for su¢ ciently large m; xm and ym 2 S1(i): As in the proof of Lemma 3, by
Proposition 2, for su¢ ciently largem; the length of m between m(xm) and m(ym)
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will be at least �C . The same is true for  between (x0) and (y0); to conclude that
x0 6= y0. Since 0 = (m(xm)� m(ym)) � 0(xm)! ((x0)� (y0)) � 0(x0) = 0, as
m!1; fx0; y0g is a double critical pair for K:

DCSD(K) � k(x0)� (y0)k = lim
m
km(xm)� m(ym)k

= lim
m
DCSD(Km) � DCSD(K)

Hence, fx0; y0g is a minimal double critical pair for K and fx0; y0g � Ic: Since Ic
and A are disjoint compact subsets of D, the subsequences fxmg1m=1 and fymg

1
m=1

can be taken in D�A: 8m; fxm; ymg is a double critical pair for K; since m = 
on D�A:

DCSD(K) � k(xm)� (ym)k = km(xm)� m(ym)k = DCSD(Km)

which contradicts the initial assumption. Consequently, there does not exist any
subsequence m such that 8m;DCSD(Km) < DCSD(K), proving (a).
(b) By the hypothesis, Thickness formula and Proposition 5 :

2RO(K) = 2Fk(K) < DCSD(K) � lim
m
infDCSD(Km):

Hence, 9m1 such that 8m � m1; DCSD(Km) > 2RO(K), and Fk(Km) � Fk(K);
to conclude

RO(Km) = min

�
Fk(Km);

1

2
DCSD(Km)

�
� min (Fk(K); RO(K)) = RO(K):

�

Proposition 8. (Also see [GM, p4771] for another version for smooth ideal knots.)
Let K be a C1;1 relatively minimal knot or link for the ropelength `e.
(a) If DCSD(K) = 2RO(K); then K� (Kc[Kmx) is a countable union of open

ended line segments, and hence Ib � Ic:
(b) If DCSD(K) > 2RO(K), then K �Kmx is a countable union of open ended

line segments.

Remark 6. Theorem 2 below shows that K �Kmx is actually empty when
DCSD(K) > 2RO(K):

Proof. By using dilations of Rn, one can assume that sup� = 1: Let U be an open
set in C1 topology such that  2 U and `e() � `e(�);8� 2 U \ []:
(a) As in the proof of Proposition 4, for all � � 1; ��1([0; �))� Ic is countable

union of relatively open intervals or component circles in D: Choose any � < 1 and
a closed interval [a; b] contained in a component of ��1([0; �))� Ic: By repeating
the proof of Proposition 4, if j [a; b] is not a line segment, then there exists a
length decreasing variation "(s) = (s)+"V hn(s) supported in [a; b]. There exists
a su¢ ciently small "1 > 0 such that 8"; 0 < " � "1; one has

1. " and  belong to the same knot class and " 2 U :
2. `(") < `(); (proof of Proposition 4 )
3. �" � 1 and hence Fk(K") � Fk(K) = 1; (proof of Proposition 4 ), and
4. DCSD(K") � DCSD(K) (Proposition 7(a) and [a; b] \ Ic = ;).

By the Thickness Formula, RO(K") � RO(K) and `e(") = `(")
RO(K")

< `()
RO(K)

=

`e() which contradicts the hypothesis. Hence, j [a; b] must be a line segment.
Consequently, Ib � Ic:
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(b) We assume that DCSD(K) > 2RO(K) = 2Fk(K) = 2: The proof is essen-
tially the same as in (a), with the following modi�cations. [a; b] is taken in any
component of ��1([0; �)); thus [a; b]\ Ic may not be empty. (1-3) above hold. To
conclude RO(K") � RO(K), one uses Proposition 7(b). In this case, Ib = ; and
K �Kmx is a countable union of open ended line segments. �

4.1. Proof of Theorem 2.

Proof. Proof of (a) is a simpler version of (b), and we will prove (b) for a connected
 : D = S1 ! K � Rn �rst. By using dilations of Rn, one can assume that
sup� = 1 and consequently Fk(K) = 1; as well as k0k � 1: Let U be an open set
in C1 topology such that  2 U and 8� 2 U \ []; `e() � `e(�):
(b) By Proposition 8, there exist maximally chosen c; d such that j(c; d) is an

open ended line segment, s0 2 (c; d) and (c; d) \ Ic = ;: If d 2 Ic; then take b = d;
and there is nothing to prove at this end. If d =2 Ic, proceed as follows. Assume that
j[s0; d0] is a CLC-curve (in fact, a line segment followed by circular arc of possibly
zero length, that is an LC � curve) such that d � d0 < d+ � and [s0; d0] \ Ic = ;:
We will show that the same is true for d0 + " for some " > 0: We point out that
a priori j[s0; d0] is not known to be a shortest curve in a certain C; replacing it
with a shortest curve may create a knot outside U or the knot class of , and this
shortest curve may not have a point of zero curvature.
Let fdmg1m=1 be a sequence and � > 0 be such that

1. dm+1 < dm;8m 2 N+;
2. dm ! d0;
3. 0 < dm � d � � < �; and
4. [s0; d+ �] \ Ic = ;:

Since (s0) 2 int Oc(d0)(�
0(d0)) (Proposition 2a); (s0) 2 int Oc(dm)(�

0(dm))

for su¢ ciently large m: Let fm(s) be the unique shortest curve parametrized by
arclength in C((s0); (dm); 0(s0); 0(dm)) by Propositions 2 and 3, such that
fm(s0) = (s0) and fm(tm) = (dm) for some tm 2 (s0; dm]: Extend fm to [s0; d+�]
in a C1 fashion beyond (dm) by (s� tm + dm) = fm(s):
For su¢ ciently large m; �fm � 1; kf 0mk = 1 and fm(s0) = (s0): Hence, the se-

quence ffmg1m=1 is C1�equicontinuous and C1�bounded. By Arzela-Ascoli The-
orem, there exists a convergent subsequence (which we will denote by the same
subindices m) fm ! f0 uniformly in C1 topology. By the construction above, f0
follows  past (d0) and f0(t0) = (d0) for some t0.

tm � s0 � dm � s0
lim sup

m
tm � d0

t0 � d0

f0(s0) = (s0) and f0(t0) = (d0)

f0 2 C1 and f 00(t0) = 0(d0)
�f0 � 1

j[s0; d0] is a line segment followed by a circular arc of length at most �; and
by Proposition 1, it is the unique shortest curve satisfying the last 3 conditions.
Consequently, d0 = t0 and f0 =  on [s0; d+ �]:
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Let m be the C1 curve obtained from  by replacing j [s0; dm] by fmj[s0; tm]:
Reparametrize m (not necessarily with respect to arclength) so that m(s) = (s)
for s =2 [s0; d+�] and m !  in C1 sense on S1, which is possible since dm�s0tm�s0 ! 1:

Let Km = m(S
1). For su¢ ciently large m � m1 :

1. m and  belong to the same knot class and m 2 U :
2. fs : m(s) 6= (s)g � [s0; d+ �] which is disjoint from Ic:
3. Fk(Km) � Fk(K) = 1; by construction of fm:
4. DCSD(Km) � DCSD(K), by Proposition 7(a).
5. RO(Km) � RO(K); by Thickness Formula, (3) and (4).
6. `e(Km) � `e(K); since K is relatively extremal and (1).
7. `(Km) � `(K) by (5), (6) and the de�nition of `e:
8. `(Km) � `(K) by construction of fm and m:
9. fmj[s0; tm] and j [s0; dm] have the same minimal length in

C((s0); (dm); 0(s0); 0(dm)):
10. j[s0; dm] is a CLC-curve, by Theorem 1(a) and �([s0; d]) = 0.

We proved that if j[s0; d0] is a LC-curve such that d � d0 < d+ � and
[s0; d0] \ Ic = ;, then there exists " = dm1

� d0 > 0 such that j[s0; d0 + "] is a
CLC-curve. In fact, j[s0; d0 + "] must be an LC � curve by Theorem 1(a), since
d0 + " � d < �: Hence, �0 := max f� : j[s0; d+ �] is a LC � curveg satis�es that
either d+ �0 2 Ic or �0 � �:
In the case of �0 � �; (d) and (d+�) are an antipodal pair on a circle of radius

1; forming a double critical pair. This shows that 1
2DCSD(K) � 1: Suppose that

1
2DCSD(K) < 1 = Fk(K) which implies that RO(K) = 1

2DCSD(K) < 1. The
existence of the semi-circle ([d; d+ �]) would then contradict Proposition 8a, (see
De�nition 12). Hence, (d) and (d+�) must form a minimal double critical pair,
which implies that d 2 Ic:
In all cases, there exists a smallest b 2 [d; d+ �)\ Ic such that ([s0; b]) is a line

segment of positive length followed by a circular arc of length b � d 2 [0; �): The
proof is the same for the opposite direction before c:
(a) Suppose that 1

2DCSD(K) > RO(K) = Fk(K) = 1: One proceeds as above
in (b) by omitting all conditions about avoiding Ic. Use Proposition 8(b), to obtain
the line segment j(c; d). Even though DCSD(Km) � DCSD(K) may not be valid
by Proposition 7(a), RO(Km) � RO(K) is valid by Proposition 7(b). This shows
that j[s0; d + �] is a CLC�curve, even passing through DCSD-points. (d) and
(d + �) are an antipodal pair on a circle of radius 1; forming a double critical
pair. This shows that DCSD(K) � k(d)� (d+ �)k = 2 which is contrary to the
hypothesis. Consequently, the case of 12DCSD(K) > RO(K) = Fk(K) = 1 with
9s0 2 S1; �(s0) < sup� = 1 is vacuous.
The generalizations of this proof to K with several components is straightfor-

ward, since (b) is a local result, and in (a) the existence of any s0 with �(s0) < 1
leads to a contradiction. �

5. References

[BS] G. Buck and J. Simon, Energy and lengths of knots, Lectures at Knots
96, 219-234.
[CKS] J. Cantarella, R. B. Kusner, and J. M. Sullivan, On the minimum

ropelength of knots and links, Inventiones Mathematicae 150 (2002) no. 2, p. 257-
286.



25

[CE] J. Cheeger and D. G. Ebin, Comparison theorems in Riemannian geom-
etry, Vol 9, North-Holland, Amsterdam, 1975.
[Di] Y. Diao, The lower bounds of the lengths of thick knots, Journal of Knot

Theory and Its Rami�cations, Vol. 12, No. 1 (2003) 1-16.
[Du] L. E. Dubins, On curves of minimal length with a constraint on average

curvature and with prescribed initial and terminal positions and tangents, Amer. J.
Math. 79 (1957), 497-516.
[D1] O. C. Durumeric, Thickness formula and C1�compactness of C1;1 Rie-

mannian submanifolds, preprint, arXiv:math/0204050 [math.DG]
[D2] O. C. Durumeric, Local structure of the ideal shapes of knots, II, Con-

stant curvature case, preprint, arXiv:0706.1037v1 [math.GT]
[F] H. Federer, Geometric measure theory, Springer, 1969.
[FHW] M. Freedman, Z.-X. He, and Z. Wang, Mobius energy of knots and

unknots, Annals of Math, 139 (1994) 1-50.
[GL] O. Gonzales and R. de La Llave, Existence of ideal knots, J. Knot

Theory Rami�cations, 12 (2003) 123-133.
[GM] O. Gonzales and H. Maddocks, Global curvature, thickness and the

ideal shapes of knots, Proceedings of National Academy of Sciences, 96 (1999)
4769-4773.
[GMSM] O. Gonzales, H. Maddocks, F. Schuricht, and H. von der Mosel,

Global curvature and self-contact of nonlinearly elastic curves and rods, Calc. Var.
Partial Di¤erential Equations, 14 (2002) 29-68.
[Ka] V. Katrich, J. Bendar, D. Michoud, R.G. Scharein, J. Dubochet and A.

Stasiak, Geometry and physics of knots, Nature, 384 (1996) 142-145.
[L] Litherland, Unbearable thickness of knots, preprint.
[LSDR] A. Litherland, J Simon, O. Durumeric and E. Rawdon, Thickness of

knots, Topology and its Applications, 91(1999) 233-244.
[N] A. Nabutovsky, Non-recursive functions, knots �with thick ropes� and

self-clenching �thick�hyperspheres, Communications on Pure and Applied Mathe-
matics, 48 (1995) 381-428.
[M] A. A. Markov, Some examples of the solution of a special kind of problem

in greatest and least quantities, (in Russian), Soobbshch. Karkovsk. Mat. Obshch.
1 (1887), 250-276.
[RS] E. Rawdon and J. Simon, Mobius energy of thick knots, Topology and

its Applications,125 (2002) 97-109.
[ReSh] J. A. Reeds and L. A. Shepp, Optimal paths for a car that goes both

forwards and backwards, Paci�c J. Math. 145 (1990), 367-393.
[SKK] A. Stasiak, V. Katrich, and L. H. Kau¤man, Editors, Ideal Knots,

World Scienti�c Publishing, Singapore 1998.
[S] H. J. Sussmann, Shortest 3-dimensional paths with a prescribed curvature

bound, Proceedings of the 34th Conference on Decision & Control, New Orleans,
LA-December 1995, IEEE Publications, New York, 1995, 3306-3312.

Department of Mathematics, University of Iowa, Iowa City, Iowa 52242, Phone: 319-
335-0774, Fax: 319-335-0627

E-mail address : odurumer@math.uiowa.edu


