1. Let $P=(1,1,2), Q=(2,0,1)$ and $R=(1,0,0)$.
a. Find a parametric representation for the line passing through P and Q.
b. Find a closed equation (i.e. $A x+B y+C z=D$) for the plane passing through P, Q and R.
c. Find the area of the triangle $\triangle P Q R$.
2. Let $g(x, y)=4-x^{2}-y^{2}: \mathbf{R}^{2} \rightarrow \mathbf{R}$.
a. Sketch the level sets of g for the values $k=0,4,8$. Label each axis.
b. Sketch the (explicit) graph of g. Label each axis.
3. Let $h(x, y)=y^{2} x^{3}+e^{3 x-y}$.
a. Calculate all first and second order partial derivatives of h.
b. Find an equation describing the tangent plane to the explicit graph of $z=h(x, y)$ when $x=1$ and $y=3$.
4. Let $f(x, y, z)=\left(x^{2}-y^{2}, x y z\right)$ and $g(u, v)=\left(u v, u-3 v, u^{2}+v^{3}\right)$. Calculate the following: $D f, D g, D(f \circ g)(1,2)$ and $D(g \circ f)(1,2,3)$
5. Let $f(x, y)=x^{2}-\frac{y}{2}$. Label all axes. Label all curves with the appropriate values to distinguish them.
a. Sketch the sections $z=f(a, y)$, in the planes $x=a$ for $a=0$ and 1 .
b. Sketch the sections $z=f(x, b)$, in the planes $y=b$ for $b=0$ and 1 .
c. Sketch the contour curves (implicit graphs) $f(x, y)=c$ for $c=0$ and 1 .
d. Sketch the explicit graph of $z=f(x, y)$. Describe it in words if you can't draw it.
6. Let $P=(1,4,3), Q=(3,5,4)$ and $R=(-1,6,5)$ in \mathbf{R}^{3}.
a. Find the angle $\measuredangle Q P R$ at the vertex P of the triangle $\triangle P Q R$.
b. Find a parametric equation for the plane passing through the points P, Q and R.
7. a. Calculate the following: $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial x}{\partial u}, \frac{\partial x}{\partial v}, \frac{\partial y}{\partial u}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial u}, \frac{\partial z}{\partial v}$ where $\left\{\begin{array}{llc}z & = & \sin (x y) \\ x & = & 2 u e^{3 v} \\ y & = & v u^{4}+\ln u\end{array}\right.$.
b. Let $f(x, y)=\sin (x y)$ and $g(u, v)=\left(2 u e^{3 v}, v u^{4}+\ln u\right)$, and $h=f \circ g$. Calculate the derivative $D h(1,0)$.
8. Let $g(x, y)=x e^{-y}$.
a. Calculate the gradient ∇g and the derivative $D g$ of g.
b. Find the (explicit) tangent plane to the (explicit) graph of $z=g(x, y)$ above $(x, y)=(3,0)$.
c. Find the approximate value of $g(3.1,0.3)$ by using (a) or (b) above.
(The value $2.296536484 \ldots$ which you may read from a calculator, is NOT the answer.)
d. In which direction does g increase at the fastest rate at $(x, y)=(3,0)$? What is the steepest rate of increase at $(x, y)=(3,0)$?
9. Let $F(x, y, z)=x^{3}+3 x y z-2 z^{2}$
a. Calculate the gradient of F.
b. Find the directional derivative of F at the point $(2,0,-1)$ in the direction of the vector $(2,1,-2)$.
c. Find an equation for the tangent plane to the surface $F(x, y, z)=6$ at $(2,0,-1)$.
d. It is given that the equation $x^{3}+3 x y z-2 z^{2}=6$ defines x implicitly in terms of y and z near $(2,0,-1)$. Calculate $\frac{\partial x}{\partial z}(2,0,-1)$.

10. Write the final answer only.

a. Let $A=\{(x, y) \mid 0<x<1$ and $0 \leq y \leq 2\}$.

What is the boundary of A?
Is A an open set? Circle the correct answer: YES or NO.
Is A a closed set? Circle the correct answer: YES or NO
b. Calculate the following limits. If any of them does not exist, state it so.
i. $\lim _{t \rightarrow 2}\left(t^{2}+2 t, \frac{t^{2}-1}{t-1}, e^{t}\right)=$
ii. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}=$
iii. $\lim _{(x, y) \rightarrow(1,1)} \frac{x y-x}{1-y^{2}}=$

