22M28 Midterm 1 Practice - 100 minutes

1. Let P = (1, 1, 2), Q = (2, 0, 1) and R = (1, 0, 0).

a. Find a parametric representation for the line passing through P and Q.

b. Find a closed equation (i.e. Ax + By + Cz = D) for the plane passing through P, Q and R.

c. Find the area of the triangle ΔPQR .

2. Let $g(x, y) = 4 - x^2 - y^2 : \mathbf{R}^2 \to \mathbf{R}$.

a. Sketch the level sets of g for the values k = 0, 4, 8. Label each axis.

b. Sketch the (explicit) graph of g. Label each axis.

3. Let $h(x, y) = y^2 x^3 + e^{3x-y}$.

a. Calculate all first and second order partial derivatives of h.

b. Find an equation describing the tangent plane to the explicit graph of z = h(x, y) when x = 1 and y = 3.

4. Let $f(x, y, z) = (x^2 - y^2, xyz)$ and $g(u, v) = (uv, u - 3v, u^2 + v^3)$. Calculate the following: $Df, Dg, D(f \circ g)(1, 2)$ and $D(g \circ f)(1, 2, 3)$

5. Let $f(x,y) = x^2 - \frac{y}{2}$. Label all axes. Label all curves with the appropriate values to distinguish them.

a. Sketch the sections z = f(a, y), in the planes x = a for a = 0 and 1.

b. Sketch the sections z = f(x, b), in the planes y = b for b = 0 and 1.

c. Sketch the contour curves (implicit graphs) f(x, y) = c for c = 0 and 1.

d. Sketch the explicit graph of z = f(x, y). Describe it in words if you can't draw it.

6. Let P = (1, 4, 3), Q = (3, 5, 4) and R = (-1, 6, 5) in \mathbb{R}^3 .

a. Find the angle $\measuredangle QPR$ at the vertex P of the triangle $\triangle PQR$.

b. Find a parametric equation for the plane passing through the points P, Q and R.

7. a. Calculate the following: $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial x}{\partial u}, \frac{\partial x}{\partial v}, \frac{\partial y}{\partial u}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial u}, \frac{\partial z}{\partial v}$ where $\begin{cases} z = \sin(xy) \\ x = 2ue^{3v} \\ y = vu^4 + \ln u \end{cases}$ **b.** Let $f(x,y) = \sin(xy)$ and $g(u,v) = (2ue^{3v}, vu^4 + \ln u)$, and $h = f \circ g$. Calculate the derivative Dh(1,0).

8. Let $g(x, y) = xe^{-y}$.

a. Calculate the gradient ∇g and the derivative Dg of g.

b. Find the (explicit) tangent plane to the (explicit) graph of z = g(x, y) above (x, y) = (3, 0).

c. Find the approximate value of g(3.1, 0.3) by using (a) or (b) above.

(The value 2.296536484... which you may read from a calculator, is NOT the answer.)

d. In which direction does g increase at the fastest rate at (x, y) = (3, 0)? What is the steepest rate of increase at (x, y) = (3, 0)?

9. Let $F(x, y, z) = x^3 + 3xyz - 2z^2$

a. Calculate the gradient of F.

b. Find the directional derivative of F at the point (2, 0, -1) in the direction of the vector (2, 1, -2).

c. Find an equation for the tangent plane to the surface F(x, y, z) = 6 at (2, 0, -1).

d. It is given that the equation $x^3 + 3xyz - 2z^2 = 6$ defines x implicitly in terms of y and z near (2, 0, -1). Calculate $\frac{\partial x}{\partial z}(2, 0, -1)$.

10. Write the final answer only.

a. Let $A = \{(x, y) | 0 < x < 1 \text{ and } 0 \le y \le 2\}$. What is the boundary of A? Is A an open set? Circle the correct answer: YES or NO. Is A a closed set? Circle the correct answer: YES or NO **b.** Calculate the following limits. If any of them does not exist, state it so. i. $\lim_{t\to 2} (t^2 + 2t, \frac{t^2 - 1}{t-1}, e^t) =$ ii. $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2} =$ iii. $\lim_{(x,y)\to(1,1)} \frac{xy-x}{1-y^2} =$