mHealth Apps for Tracking Patients In-situ

Octav Chipara
Department of Computer Science
Part of the Aging Mind and Brain Initiative

https://cs.uiowa.edu/~ochipara
Linking patient behavior and their health

• Patient behavior is inexorably linked to their health

• Understanding the behavior ⇔ health relationship would allow us to:
 • **diagnostic techniques**
 • e.g., changes of memory, mood, activity level are precursors to Alzheimer’s
 • **evaluate efficacy of medical treatment**
 • e.g., measure the impact of cognitive behavior therapy over time
 • **support for clinical interventions interventions**
 • e.g., deliver interventions for smoke cessation
The “gold” standard

- Manual data collection is the gold standard...
 - subjective (e.g., memory bias, Hawthorne effects)
 - poor scalability
 - low temporal resolution
 - cannot monitor many subjects
 - people are expensive!

- ... but, our tools fundamentally limit our understanding

We need better measurement tools!
The mHealth alternative

• **Assesses behavioral states**
 • with objective metrics
 • in real-time
 • in-situ

• **mHealth enables**
 • longitudinal studies with large patient populations
 • interventions delivered just-in-timed
 • empower patients to participate in their care
A word of caution ...

Source: Gartner (July 2011)
The rest of the talk

Clinical monitoring: delivers 100x more data than possible through manual collection

Emergency response: reliable data delivery to many responders

Rapid mHealth App development: reduce the burden of developing mHealth Apps
Detecting clinical deterioration in general hospital units

- Early detection of clinical deterioration
 - clinical deterioration is often preceded by changes in vitals
- Real-time patient monitoring is required
 - wired patient monitoring ➞ inconvenient
 - wireless telemetry systems ➞ too expensive for wide adoption
 - most general hospital units collect vitals manually and infrequently

Goal: **reliable** and **real-time** wireless clinical monitoring for **general** hospital units
Clinical deployment

Step-down cardiac care unit
41 patient monitored
System reliability

- Network reliability per patient: 99.68% median, range 95.2% - 100%
- Sensing reliability per patient: 80% median, range 0.46% - 97.69%
 - 29% of patients with sensing reliability < 50%
- System reliability dominated by sensing reliability!
Sources of sensing errors

- Hand movement
- Improper placement

Heart Rate vs. Time (min)

- Hand movement
- Improper placement
Sensor reliability

- Automatically notify a nurse after receiving no valid data for a time
 - balance nursing effort and reliability gain
 - at 15 min timeout
 - ➡ 1.55 interventions per patient, per day
 - ➡ 100x more data per day

Sensing reliability with different timeouts

<table>
<thead>
<tr>
<th>Timeout</th>
<th>Fraction of patients (%)</th>
<th># of alarms per patient, per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 min, no alarm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 min, alarm: 5 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 min, alarm: 10 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 min, alarm: 15 min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Infusing technology into emergency response workflow

- Mobile technology improved information quality
 - identical time to triage patients
 - reduced the rate of missing/duplicate patients
Reliable communication

• **Initial approach: required deployment of infrastructure**
 - poor performance due to incomplete coverage
 - **as little as 10% of the data delivered**

• **Peer-to-peer communication architecture:**
 - requires no infrastructure, mobile phones communicate directly
 - epidemic propagation of information
Deployment

• Drill exercise at UCSD
 • 19 responders
 • 41 victims

• Deployed devices
 • responders - 16 phones
 • commanders - 3 tablet PCs

• Time synchronization via NTP
 • accuracy < 1s
Application performance

- **Reliability:**
 - median reliability 98% per source
- **Delay:**
 - 90% of data delivered with 5 minutes, max delay 10 minutes
- **Shows the feasibility of DTN-based techniques**
Understanding the impact of technology
mHealth apps

Data collection

Feature extraction

Data upload

Data analysis
Rapid development of mHealth systems

• mHealth systems are difficult to develop
 • requires diverse expertise: embedded, web apps, machine learning, and domain experts
 • tedious management of resources on embedded sensors and phones

• Current systems are stovepipe lacking flexibility and reuse
 • impossible to reuse software
 • difficult to integrate with existing legacy software

• Our research:
 • develop a toolkit to simplify the development of mHealth systems
 • focus on developing reusable components
 • flexible mechanisms to integrate with legacy software

• Applications:
 • ecological momentary assessment for audiology
 • EgoSense - monitoring social interactions
Measuring hearing aid performance in-situ

• A fraction of people with hearing loss do use hearing aids due to high cost
 • unclear which features of the hearing aids make them effective in the real world

• Laboratory hearing performance is not predictive of that in the real world

• Develop a new methodology for measuring auditory performance in the real world
 • deliver surveys to users via mobile phones to minimize memory bias
 • record the auditory context in which surveys are completed
 • evaluate correlations between user-provided scores and auditory contexts

• Collaboration with Yu-Hsiang Wu
 (Dept. of Communication Sciences and Disorders)
• Delivers surveys to users according to a predetermined schedule

• Collects sensor data contemporaneously with administering surveys

• Uploads the collected data to a server for real-time analysis over cellular network

• You can develop new surveys to be administered within minutes!
EgoSense system

• **Components:**
 - mobile phones carried by patients: accelerometers + proximity + sound
 - environmental sensors: notebooks with proximity + sound

• **Social interaction:** inferred using proximity and speaker identification

• **Physical activity:** measured using accelerometers
Speaker recognition problem

Recognition Phase
(e.g. Verification)

“It’s me!”

Feature Extraction ➔ Model Training ➔ Model for each speaker

Text

Feature Extraction ➔ Verification Decision ➔ Accepted/Rejected

Training speech for each speaker

credit: Nikki Mirghafori
Performance of speaker recognition systems

- **Text-dependent (Combinations)**
 - Clean Data
 - Single microphone
 - Large amount of train/test speech

- **Text-independent (Conversational)**
 - Telephone Data
 - Multiple microphones
 - Moderate amount of training data

- **Text-dependent (Digit strings)**
 - Telephone Data
 - Multiple microphones
 - Small amount of training data

- **Text-independent (Read sentences)**
 - Military radio Data
 - Multiple radios & microphones
 - Moderate amount of training data

Increasing constraints
Sensor fusion can improve performance

• Detection performance can be improved using other sources of information
 • select the most informative audio stream from microphones
 • track conversations over long periods of time
 • limit the candidate speakers to one’s social network
 • leverage on proximity information

• Manage sensors for energy efficient operation
 • turn on sensors as necessary to track social information
 • => preferential use of environmental sensors that are plugged in
Conclusions

• Mobile technology and sensors will transform behavioral studies
 • enable large-scale longitudinal studies
 • open new venues for diagnostic, measurement of patient outcomes, QOL

• Significant engineering challenges remain:
 • reliable wireless communication
 • coping with sensor failures
 • sensor fusion and adaptation

• Developing mHealth systems require engineers and clinicians to collaborate:
 • understand what are the clinically relevant information that must be collected
 • develop a minimally invasive system to collect these measurements
Acknowledgements

• **Students:**
 • Farley Lai, Syed Shabih Hasan, Austin Laugesen

• **CS Collaborators:**
 • Chenyang Lu, Washington University in St. Louis
 • William G. Griswold, University of California San Diego
 • Alberto Segre, University of Iowa

• **AMBI Collaborators:**
 • Michelle Voss (Department of Psychology),
 • Nazan Aksan, Steven W. Anderson, Matthew Rizzo (Department of Neurology),
 • Melissa Duff (Department of Communication Sciences and Disorders)
 • Marianne Smith (College of Nursing)
 • any many others

• **Funding Agencies**

![NSF Logo](image)

![National Library of Medicine Logo](image)
Monitoring people...

...in...

...smart environments