Achieving Reliable Communication in Dynamic Emergency Responses

Octav Chipara*, Anders N. Plymoth, Fang Liu, Ricky Huang, Brian Evans, Per Johansson, Ramesh Rao, William G. Griswold

University of California San Diego
*now with University of Iowa
octav-chipara@uiowa.edu
State-of-the-practice exhibits

- Communications using radios & paper
 - Error-prone and labor-intensive
 - Slow dissemination of information
- Electronic data may address these limitations
“Typical” disaster scenario

Golden Guardian drill, April 2010
“Typical” disaster scenario

Golden Guardian drill, April 2010
“Typical” disaster scenario

Golden Guardian drill, April 2010
Reliable communication is a key challenge

- Responders and commanders must communicate reliably

Challenges:

- limited infrastructure ➔ existence of network partitions
 - cannot rely on existing infrastructure
 - limited opportunities to deploy infrastructure during emergencies

- dynamic radio environment ➔ continuously changing topology
 - heavy equipment attenuates radio signals
 - external interference (e.g., video broadcasts)
 - mobile users
Initial approach: Client-server + Adhoc routing

Failure to update end-to-end paths ⇒ low reliability
Initial approach: Client-server + Adhoc routing

Failure to update end-to-end paths ⇒ low reliability
Initial approach: Client-server + Adhoc routing

Failure to update end-to-end paths ⇒ low reliability
Initial approach: Client-server + Adhoc routing

Failure to update end-to-end paths \implies low reliability
Initial approach: Client-server + Adhoc routing

Failure to update end-to-end paths ⇒ low reliability

Network partitions ⇒ prevent clients from communicating
Peer-to-peer + Gossip
Peer-to-peer + Gossip
Peer-to-peer + Gossip

Peers communicate locally \Rightarrow tolerates topology changes
Peer-to-peer + Gossip

Peers communicate locally \Rightarrow tolerates topology changes

Mobility \Rightarrow bridges network partitions
Peer-to-peer + Gossip

Peers communicate locally ⇒ tolerates topology changes

Mobility ⇒ bridges network partitions

Infrastructure peers ⇒ augments communication
Impact of network partitions

client server

peer-to-peer
Impact of network partitions

Client server

Peer-to-peer
Impact of network partitions

Delivery from A to B without infrastructure
- client-server + routing: 0%
- peer-to-peer + gossip: 100%
Impact of mobility
Impact of mobility
Impact of mobility

Mobile node moving between A & B with infrastructure

- client-server + routing: 67.2%
- peer-to-peer + gossip: 100%
Conclusions

• Medical response in disasters creates unique challenges for rapid, effective, affordable response
 • IT solutions can help ⇒ robust communication a key challenge

• Standard client-server + routing solutions has poor reliability
 • difficult to maintain end-to-end routes in dynamic environments
 • network partitions prevent clients from communicating

• Peer-to-peer + gossip significantly improves performance
 • relies only on local information that is less susceptible to dynamics
 • tolerates network partitions