Achieving Reliable Communication in Dynamic Emergency Responses

Octav Chipara*, Anders N. Plymoth, Fang Liu, Ricky Huang, Brian Evans, Per Johansson, Ramesh Rao, William G. Griswold

> University of California San Diego *now with University of Iowa <u>octav-chipara@uiowa.edu</u>

State-of-the-practice exhibits

Example Coordination

HOSPIELL		IMMEDIATE BEIDS			DELAYED INSTRA		1000
- sheep		(a) \$1 11 Marks			30 40 18 15		A RIAN
UCSO		14)	W Colo		5		2 .
IVIS201		UI MACAI		5		5	
Dalarty		140	NO MERCENAI		4		
Thate	6.9	1	(crowing)	w. 1	-		4
Ab altoon		(5)	(a) particul 3		22.82		73
Fallbroke		(b) # 2.1		3		1 3	
Kisse		(8)	\$ 5 .		0		4
Balanado		10	91.		3		7
ATTENT #	STATUS		LARY / CO	T a	NIT#	DESTRUCTION	ATA
36	2					Lelbar	
5	T	1		-		Balia	
18	1	-		-	_	Palour	
2-	T	-		-		Palante	
10	T	-		-		Merry	-
1	T			-		Jaco	
11	T			-		Kacar	
21	I					Kausar	
12-	I					Kaua	
23	T	-		-		Shin	-
~ ~	1 100	layta				to lank	

Communications using radios & paper

- Error-prone and labor-intensive
- Slow dissemination of information
- Electronic data may address these limitations

"Typical" disaster scenario

Golden Guardian drill, April 2010

"Typical" disaster scenario

Golden Guardian drill, April 2010

"Typical" disaster scenario

Golden Guardian drill, April 2010

Reliable communication is a key challenge

Responders and commanders must communicate reliably

• Challenges:

- limited infrastructure -> existence of network partitions
 - cannot rely on existing infrastructure
 - limited opportunities to deploy infrastructure during emergencies
- dynamic radio environment -> continuously changing topology
 - heavy equipment attenuates radio signals
 - external interference (e.g., video broadcasts)
 - mobile users

Failure to update end-to-end paths \Rightarrow low reliability

Network partitions \Rightarrow prevent clients from communicating

Peers communicate locally \Rightarrow tolerates topology changes

Peers communicate locally \Rightarrow tolerates topology changes

Mobility \Rightarrow bridges network partitions

Peers communicate locally \Rightarrow tolerates topology changes

Mobility ⇒ bridges network partitions

Infrastructure peers \Rightarrow augments communication

Impact of network partitions

client server

Impact of network partitions

client server

Impact of network partitions

client server

Delivery from A to B without infrastructureclient-server + routing: 0%peer-to-peer + gossip: 100%

9

Impact of mobility

Impact of mobility

Impact of mobility

Mobile node moving between A & B with infrastructure •client-server + routing: 67.2% •peer-to-peer + gossip: 100%

Conclusions

- Medical response in disasters creates unique challenges for rapid, effective, affordable response
 - IT solutions can help \Rightarrow robust communication a key challenge
- Standard client-server + routing solutions has poor reliability
 - difficult to maintain end-to-end routes in dynamic environments
 - network partitions prevent clients from communicating

Peer-to-peer + gossip significantly improves performance

- relies only on local information that is less susceptible to dynamics
- tolerates network partitions