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Abstract
This paper presents the design, deployment, and empirical

study of a wireless clinical monitoring system that collects
pulse and oxygen saturation readings from patients. The pri-
mary contribution of this paper is an in-depth clinical trial
that assesses the feasibility of wireless sensor networks for
patient monitoring in general hospital units. We present a de-
tailed analysis of the system reliability from a long term hos-
pital deployment over seven months involving 41 patients in
a step-down cardiology unit. The network achieved high reli-
ability (median 99.68%, range 95.21% – 100%). The overall
reliability of the system was dominated by sensing reliabil-
ity of the pulse oximeters (median 80.85%, range 0.46% –
97.69%). Sensing failures usually occurred in short bursts,
although longer periods were also present due to sensor dis-
connections. We show that the sensing reliability could be
significantly improved through oversampling and by imple-
menting a disconnection alarm system that incurs minimal
intervention cost. A retrospective data analysis indicated that
the system provided sufficient temporal resolution to support
the detection of clinical deterioration in three patients who
suffered from significant clinical events including transfer to
Intensive Care Units. These results indicate the feasibility
and promise of using wireless sensor networks for continu-
ous patient monitoring and clinical deterioration detection in
general hospital units.

Categories and Subject Descriptors
C.2.4 [Computer-communication Networks]: Dis-

tributed Systems

General Terms
Design, Implementation, Measurement, Experimentation
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1 Introduction
Clinical deterioration in patients in general hospital units

is a major concern for hospitals. Of the hospitalized patients,
4% – 17% suffer from adverse events such as cardiac or res-
piratory arrests [1,6,24]. A retrospective study found that as
many as 70% of such events could have been prevented [17].
A key factor in improving patient outcomes is to detect clini-
cal deterioration early so that clinicians may intervene before
a patient’s condition worsens. The detection of clinical dete-
rioration is possible because most patients exhibit changes in
their vital signs hours prior to an adverse event (median 6.5
hours, range 0 – 462 hours) [2]. Automatic scoring systems
aimed at identifying clinical deterioration in patients based
on their vital signs are being developed [13, 14]. However,
the efficacy of such systems is significantly affected by the
scarcity of up-to-date vital signs. This may not be a problem
in Intensive Care Units (ICUs) where vital signs are moni-
tored by wired devices. However, the population that would
most benefit from early detection of clinical deterioration is
in general or step-down hospital units. In such units, vital
signs are often measured manually at long time intervals.
For example, in postoperative care, nurses measure the vi-
tal signs only 10 times during the first 24 hours following an
operation [26]. This could lead to a prolonged delay until
clinical deterioration is detected. Thus, it is necessary to de-
velop a real-time monitoring system for collecting the vital
signs of patients in general hospital units.

Collecting vital signs in general hospital units poses
unique challenges that are poorly addressed by existing com-
mercial telemetry systems. In contrast to cardiac or epilepsy
care which require high data rate EKG, EEG, or accelera-
tion measurements, the collection of vital signs1 requires low
data rates. For low data rate applications, wireless sensor
networks based on the IEEE 802.15.4 standard may be a bet-
ter choice than Wi-Fi networks based on the IEEE 802.11
standard for the following reasons. First, 802.15.4 radios are
more energy efficient than 802.11 at low data rates. As a re-
sult, patient devices that use 802.15.4 radios would have a
longer battery life. The nursing staff is routinely overloaded
and the bothersome and error-prone process of changing bat-
teries may interfere with their primary function – provid-

1The primary vital signs used for patient care in hospitals in-
clude temperature, blood pressure, pulse, and respiratory rate,
which typically change over minutes.
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ing care. Second, results form the clinical trial indicate that
sensing was the primary source of unreliability and that, at
the low data rates required by vital sign monitoring, wire-
less sensor networks are already highly reliable (the median
patient reliability was 99.68%). Therefore, the minor gains
in network reliability that may be achieved by using a well-
engineered Wi-Fi network would only improve system reli-
ability marginally. Third, the cost of deploying a mesh net-
work consisting of wireless sensors is lower than that of in-
stalling a Wi-Fi system since mesh networks do not require
a fixed wired infrastructure. Therefore, the cost of adopting
our system in a hospital without Wi-Fi infrastructure (e.g.,
field hospitals, rural areas, developing countries) is lower
than that of existing commercial systems. While an increas-
ing number of hospitals do have Wi-Fi infrastructure today,
Wi-Fi access is not pervasive in the general hospital units
even in major hospitals like the one in which we performed
our study. Moreover, since hospitals perceive Wi-Fi access
as a value added service, Wi-Fi coverage may be insufficient
to ensure reliable patient monitoring as we observed in our
own deployment (see Section 6). Finally, wireless sensor
networks may be deployed on demand. This flexibility may
be important for hospitals which do not have sufficient re-
sources to monitor all patients hospitalized in general units.
Accordingly, it may be desirable to deploy a wireless moni-
toring system on-demand when a patient at high risk of clin-
ical deterioration is admitted to a general hospital unit.

The requirements of low data rate and flexible deploy-
ment motivate the development of a patient monitoring sys-
tem using wireless sensor network (WSN) technology based
on the IEEE 802.15.4 standard. While wireless sensor net-
works have gained attention as a promising technology for
elderly care [25], disaster recovery [10], epilepsy care [21],
and patient monitoring [7,19], there has not been an in-depth
clinical study of the feasibility of wireless clinical monitor-
ing systems for in-patients in general hospital units. In this
paper we present the first in-depth reliability study of a pa-
tient monitoring system based on sensor network technol-
ogy operating in-situ. The patient monitoring system was
deployed in a step-down cardiac unit at Barnes-Jewish Hos-
pital, St. Louis for seven months. During this time, the sys-
tem collected heart rate (HR) and blood oxygenation (SpO2)
from 41 consenting patients. This resulted in over 41 days
of continuous data monitoring. The time a patient was mon-
itored varied significantly from a few hours to three days.

Collected data indicates that the median network and
sensing reliabilities per patient were 99.68% and 80.55%,
respectively. Somewhat surprisingly, the primary source of
unreliability was sensing, not networking. Therefore, even
if wired communication would have been used the over-
all system reliability would have been similar to our wire-
less patient monitoring system. While sensing failures were
common, the sensors usually recovered from most outages
quickly. However, the distribution of sensing outages is
long-tailed containing prolonged outages caused by sensor
disconnections. Through trace analysis we show that over-
sampling and automatic disconnection alarms can substan-
tially improve sensing reliability with minimum manual in-
tervention.

The ultimate goal of such a system is to detect clinical de-
terioration based on real-time vital signs. We developed an
algorithm for detecting clinical deterioration based on time
series analysis techniques. By inspecting the medical records
of patients admitted to the study, we divided the patients in
two groups: patients diagnosed with a significant cardiac or
pulmonary disease and patients without such a diagnostic.
Retrospective time-series analysis on the pulse oximetry data
collected by our system indicated the feasibility to detect sig-
nificant clinical deterioration based on the data streams col-
lected by our wireless clinical monitoring while incurring a
low false alarm rate. These results suggest the benefits of
integrating the collection and analysis of vital signs for de-
tecting clinical deterioration.

The remainder of the paper is organized as follows. The
next section reviews the related work. The patient monitor-
ing system is described in Section 3. The methods and results
of the clinical trial are presented in Section 4, while a retro-
spective study looking at the feasibility of detecting clinical
deterioration based on vital signs is presented in Section 5.
We discuss our experience with the design and the operation
of the patient monitoring system in Section 6. Conclusions
are presented in Section 7.

2 Related Work
Numerous systems for measuring a patient’s physiolog-

ical state have been developed. These systems employ
various wireless technologies: cell phones [5, 20], Wi-Fi
[7, 10, 18], and wireless sensor networks [10, 19, 25]. In the
following, we focus on systems that use sensor network tech-
nology due to its energy efficiency and ease of deployment.
Wireless sensor networks have been developed for elderly
care [25], disaster recovery [7, 10, 15], and clinical monitor-
ing [5, 7, 16, 20]. The monitoring of vital signs is a basic
function which is supported by these systems. Our work is
closely related to the work done as part of the Code Blue,
AlarmNet, and MEDiSN projects. Code Blue focuses on
disaster response applications and supports many-to-many
communication through a publish/subscribe system [3]. The
AlarmNet project supports the collection of data from mo-
bile and static sensors through a query service [25]. ME-
DiSIN and our own project independently developed similar
network architectures: stationary relay nodes are deployed to
ensure connectivity between a patient worn sensor and a base
station. However, we adopt different solutions for handling
patient mobility and radio power management.

In spite of the numerous patient monitoring systems that
have been developed, they are seldom evaluated with real
users and real-world deployment. The evaluation of most
systems does not focus on reliability and is usually per-
formed in laboratories rather than in healthcare environ-
ments. However, there are a few notable exceptions. The
MEDiSN [16] and SMART [7] projects focus on monitor-
ing patients waiting in emergency rooms. In [16], network-
ing statistics were collected in the emergency room at Johns
Hopkins Hospital. The study focused on understanding the
low-level channel characteristics of a typical clinical envi-
ronment which is particularly useful for developing novel
wireless communication protocols. The study focuses on
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a small scale deployment and, more importantly, it ignored
sensing reliability which we will show dominates the overall
system reliability. A holistic, system-level reliability study
is a key contribution of our clinical study. In [7], pulse and
oxygenation measurements were collected from 145 patients
for an average of 47 minutes (range 5 minutes – 3 hours).
No data regarding the reliability of the system is reported.
Results from disaster response drills are reported in [7, 10];
however, these results do not measure network performance
or system reliability.

Before deploying the clinical monitoring system in the
hospital, we performed extensive tests of its networking per-
formance. We evaluated the impact of mobility on network-
ing performance through a small scale study which involved
data collection from healthy volunteers in an office environ-
ment. These results were reported in [4]. During these exper-
iments, no actual vital signs were collected. In contrast, the
focus of this paper is the holistic evaluation of system relia-
bility through a clinical study performed in a step-down hos-
pital unit. A distinguishing aspect of this study is its scale:
the system was deployed for seven months and collected
pulse and oxygenation measurements from 41 patients. This
resulted in more than 41 days worth of pulse and oxygena-
tion data. Moreover, the system we deployed had 18 relays
and required multi-hop communication for data delivery. To
the best of our knowledge, this is the first study that analyzes
the reliability of such a system from a holistic perspective
including both sensing and networking reliability. Addition-
ally, a preliminary study indicates that the traces of pulse and
oxygenation collected during the trial may be used to detect
clinical deterioration.

3 Clinical Monitoring System
This section presents the system architecture, hardware

components, and software we developed for the patient mon-
itoring system. The presentation focuses on the key design
decisions we made to meet the challenges of vital sign mon-
itoring in general hospital units.

3.1 System Architecture
Our clinical monitoring system consists of a base station,

a set of relays, and patient nodes attached to patients. The
base station runs a data collection application that saves the
collected patient data in a local database. In addition, the
base station supports remote login for debugging and data
backup through the hospital’s Wi-Fi network. Patient nodes
(shown in Figure 1(a)) measure and transmit the heart rate
and blood oxygenation of patients. The relay nodes (as
shown in Figure 1(b)) form a mesh network that provides
connectivity between the patient nodes and the base station.
The delivery of patient data may involve multiple hops. As
patients may be ambulatory, we deploy sufficient relay nodes
to ensure that a patient node is always one hop away from at
least a relay node.

The system architecture has three notable features. First,
unlike commercial medical telemetry systems, our system
does not require the relay nodes to be connected to the hos-
pital’s wired network. In the case when Wi-Fi access is not
available, the cost of our system would be significantly lower
than that of a similar 802.11-based system since we do not

require additional wiring.
Second, in contrast to other environments in which sen-

sor networks operate (e.g., habitat monitoring), power out-
lets are widely available in hospitals. We take advantage of
this by deploying the relay nodes using USB-to-power adap-
tors plugged into electrical outlets. This simple deployment
approach, coupled with the self-organizing features of mesh
networking protocols, enables on-demand deployment. Note
that power management remains necessary on patient nodes
since they operate on batteries.

Finally, the proposed architecture isolates the impact of
patient mobility: mobility may affect only the delivery of
packets from the patient node to the first relay, while the re-
maining hops are over static relay nodes. As discussed in
Section 3.3.1, this allows us to reuse the widely used Col-
lection Tree Protocol (CTP) [11] for forwarding data over
the static relays and develop a new protocol that finds the
best relays to be used by a node even in the case of frequent
mobility. To improve network reliability, we prohibit patient
nodes from relaying patient data. This has the additional ad-
vantage of simplifying the radio power management on sen-
sor nodes.

3.2 Hardware
The relay and patient nodes use the TelosB mote as an em-

bedded platform. Each TelosB mote has a 16-bit RISC pro-
cessor with 48 KB code memory and 10 KB RAM. Wireless
communication is provided using a Chipcon CC2420 radio
chip compatible with IEEE 802.15.4. The radio operates in
the unlicensed 2.4GHz band and provides a raw bandwidth
of 250 kbps. TelosB also has a 1MB external flash which
may be used for logging.

A patient node integrates a TelosB mote with an OxiLink
pulse-oximeter from Smiths Medical OEM. Both the Ox-
iLink and TelosB support serial communication, albeit at dif-
ferent voltage levels. We developed a custom circuit board
which performs the necessary voltage conversions to enable
serial communication between them. The circuit also en-
ables the TelosB to turn on and off the OxiLink through
a hardware switch controlled by one of the TelosB’s I/O
pins. This mechanism enabled us to duty-cycle the sen-
sor as discussed in Section 3.3.3. Similar hardware capa-
bilities have been developed and used as part of ALARM-
NET [25], MEDiSN [16], AID-IN [10], SMART [7], and
WIISARD [15] projects.

3.3 Software Components
The patient monitoring system was developed using the

TinyOS 2.0 operating system [12]. The system has three
key software components: networking, sensing, and logging.
Next, we describe each component.

3.3.1 Network Protocols
TinyOS supports data collection from nodes through the

Collection Tree Protocol (CTP), a commonly used data col-
lection protocol in sensor networks. CTP has been shown to
achieve high reliability in stationary networks [11]. We de-
veloped a system prototype which used CTP to collect data
from patient nodes. In this prototype, CTP is deployed both
on the patient and on the relay nodes. This initial prototype
suffered from low reliability in the presence of user mobility.
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(a) Patient node (b) Relay

Figure 1. Hardware used in the wireless clinical monitoring system. The cover of the patient node was removed for
illustration purposes. During the clinical trial adult disposable probes were used instead of the clip-style probe shown
in the picture.

Through experiments with healthy volunteers in a sen-
sor network testbed, we discovered that the following sce-
nario results in significant data loss from a mobile user [4].
The patient node discovers the nodes within its communi-
cation range and adds them to its neighbor table. Out of
these neighbors, the patient node selects the neighbor with
the lowest-cost path to the root as its parent. When the pa-
tient’s movement breaks the link to the current parent, CTP
will select the next lowest-cost neighbor as parent. However,
as result of mobility, it is likely that many of the neighbors in
the neighbor table are now out of the communication range.
Accordingly, using the stale information present in the rout-
ing table would result in repeatedly selecting nodes outside
the communication range of the patient node. Automatic re-
Quest Retry (ARQ) used by CTP exacerbates this problem
by repeating a packet transmission multiple times (e.g., 31
times by default) before dropping the packet and changing
the route.

A pragmatic approach to achieving high end-to-end re-
liability is to isolate the impact of mobility from multi-hop
routing. In our network architecture we divide the problem
of data delivery from patients nodes to the base station into
two parts: single-hop communication from the patient node
to the first relay and (potentially multi-hop) communication
from that relay to the base station. We deploy CTP on the re-
lay nodes to forward data to the base station since it achieves
high reliability over static relay nodes. Next, we designed
a new protocol called Dynamic Relay Association Protocol
(DRAP) which is deployed on patient nodes to discover and
select relays as the patient moves.

The design of DRAP must address three questions: how
are neighbors discovered, how to select the best relay to asso-
ciate with, and how to detect mobility. DRAP discovers new
neighbors by listening for beacons periodically broadcast by
the relay nodes. DRAP estimates the average Receive Sig-
nal Strength Indicator (RSSI) for each neighbor by using a
low-pass filter over the RSSI values from both beacons and
data packets. DRAP associates with the relay which has the
highest RSSI estimate. As packets are sent to the current
relay, DRAP keeps track of the number of packet failures.
DRAP will invalidate the current neighbor when the number

of retransmissions exceeds a threshold. DRAP’s approach of
combining feedback from the physical (RSSI) and link layer
(number of retransmission) in assessing link quality is sim-
ilar to that proposed in [9]. The novelty of DRAP is that
it can also detect mobility by using a single counter which
keeps track of the number of consecutive relay invalidations:
the counter is incremented when a relay is invalidated and
reset to zero when data is successfully delivered to a relay.
When the counter exceeds a threshold, DRAP flushes the
neighbor table and rediscovers neighbors using its discovery
mechanism. The threshold for the number of consecutive re-
lay invalidations involves a trade-off between the expected
churn caused by dynamic channel conditions and the possi-
bility that a large number of entries are invalidated due to
mobility: if the constant is set too low, DRAP will spend
most of the time rebuilding routing tables without relaying
packets; conversely, if the constant is set too high, DRAP
will waste energy and bandwidth in transmitting numerous
packets to nodes outside its communication range. In our
system, we set this threshold to three.

It is worth noting that a patient’s vital signs are stored in
the flash memory of each patient node. This data may be
downloaded reliably upon the discharge of a patient. How-
ever, for the medical application of our interest – detecting
clinical deterioration – this information has little value. We
opted not to implement any reliable transport protocol, be-
cause the added complexity of such mechanisms may not be
justified by the small margin of potential improvements over
the high reliability delivered by our current protocols during
the clinical trial.

3.3.2 Radio Power Management
The radio may have a significant contribution to the en-

ergy budget of patient nodes. In low data rate applications,
the radio wastes most of the energy when it is active with-
out transmitting or receiving packets. To address this is-
sue DRAP is augmented with the following power manage-
ment policy. Typically, power management protocols involve
mechanisms that enable a sender and a receiver to coordi-
nate the exchange of packets. These mechanisms assume
that power management is performed on both the sender and
the receiver. However, in our system, the relay nodes do not
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require power management since they are plugged into wall
outlets. Accordingly, the patient node could turn on the radio
when it has a packet to transmit and turn it off after the asso-
ciated relay acknowledges the reception of the packet. This
simple policy handles the bulk of the traffic sent from the
patient node to its associated relay without explicit coordi-
nation between them. However, a problem arises during the
discovery phase of DRAP: the patient node must be awake
to receive beacons from the relay nodes. This problem is
solved by keeping the radio awake when the neighbor table
is empty (e.g., after it was flushed due to mobility or when
a node boots up) for a fixed period of time after the discov-
ery of the first relay node. This allows DRAP to populate its
neighbor table with several relays.

Our power management scheme has two salient features.
First, in contrast to existing power management schemes,
DRAP requires neither time synchronization nor additional
packet transmissions. Second, the policy is flexible in that
the time the radio of a patient node remains active changes
based on the observed link dynamics, variations in workload,
and mobility.

3.3.3 Sensor Component
The sensor component supports serial communication be-

tween the TelosB mote and the OxiLink pulse-oximeter and
performs power management. The sensor component mea-
sures pulse and oxygenation at user specified rates. Accord-
ingly, every sensing period, the OxiLink sensor is turned on
by signaling a hardware switch on the custom board to power
up the sensor. The OxiLink sensor provides an indication of
the validity of each measurement. The values reported by
OxiLink are averages over eight seconds. As a result, dur-
ing the first eight seconds after the sensor is powered up,
it reports invalid measurements; subsequent measurements
may be valid or invalid. Patient movement or improper sen-
sor placement may lead to invalid measurements. The sensor
component reads the measurements provided by the OxiLink
sensor continuously until a valid reading is received for up to
15 seconds.

3.3.4 Logging Component
We have developed a logging component which is primar-

ily used for debugging and profiling the patient monitoring
system. The logging component dedicates a significant por-
tion of the RAM to buffer the generated statistics. Period-
ically or when the buffer is about to be full, the content of
the RAM is saved to the flash in a single batch. We found
that batching the flash writing can significantly reduce the
amount of time the flash is active, hence reducing energy
consumption.

4 Clinical Study
To evaluate the feasibility of employing wireless sensor

networks for patient monitoring in general hospital units, we
performed a clinical trial that focuses on the following ques-
tions at Barnes-Jewish Hospital:

1. How reliable is the clinical monitoring system?

2. What is the distribution of failures of the sensing and
networking components?

Figure 2. Deployment of the wireless clinical monitoring
system in the step-down unit of Barnes-Jewish Hospital.
The blue square denotes the base station. The red circles
denote relay nodes.

3. How often would nurses need to intervene to achieve
high reliability?

4. Does the system provide sufficient temporal resolution
for detecting clinical deterioration?

4.1 Methodology
We deployed the patient monitoring system in a step-

down hospital unit at Barnes-Jewish Hospital. Step-down
units provide care for higher risk patients that do not require
intensive care, but do require more intensive monitoring and
nursing care than can be provided on general care units. Pa-
tients admitted to step-down units may be ambulatory. We
chose to perform the clinical trial in a step-down unit rather
than a general unit because patients in step-down units have
a greater risk of clinical deterioration. The step-down unit
provides cardiac care for up to 32 patients. The unit is al-
ready equipped with a commercial wireless EKG monitor-
ing system. The data collected by the hospital’s system was
not made available to us. Moreover, due to the significantly
different sensing technology, a direct comparison of the two
systems would not have been possible.

Participants were recruited in two phases: the unit’s head
nurse identified patients who were suitable candidates; we
then sought the consent of the identified patients to partic-
ipate in the trial. On average, one in six patients accepted
to participate in the trial. A main reason for denying par-
ticipation was the inconvenience of wearing two monitoring
devices: one provided by us and the one already used in the
unit. We expect the acceptance rate to be higher in units
without telemetry systems.

After obtaining consent, a patient node was placed in a
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telemetry pouch around the patient’s neck with the pulse-
oximeter probe attached to his/her finger. We used adult
disposable probes during the trial. Patients were monitored
continuously until their discharge or for up to three days.
During this time, patients often left the unit for diagnostic
testing. The nursing staff recorded the times when a patient
was not monitored by our system using a time sheet posted in
the patient’s room. A total of 20 such events were recorded
for the 41 participants suggesting that these events were un-
derreported. We excluded from the presented results only
the time intervals recorded by the nursing staff. Upon dis-
charge, the statistics stored in the flash of the patient node
were downloaded and stored in a database. These data in-
dicated whether the sensor reported a valid measurement,
whether the data were successfully delivered to a relay node,
and the duty cycle of the radio, flash, and sensor compo-
nents. New 9V batteries, monitoring pouches, and dispos-
able pulse-oximetry sensors were used for each patient. Af-
ter each use, the patient node was disinfected with a bleach
solution.

The data collected by our clinical monitoring system was
not available to the nursing staff. The hospital was not
obliged to act based on the measurements collected by our
experimental system. Usually, each morning we logged into
our system remotely and checked whether the collected vi-
tal signs were valid. If the data provided were invalid, the
nursing staff was notified to check whether the sensor was
disconnected. Such manual checking of data validity was
performed infrequently (usually daily).

The unit has 16 patient rooms and covers an area of
1200 m2. We deployed 18 relay nodes to provide cover-
age within the unit as shown in Figure 2. Most of the relays
were placed in the patient rooms. The hospitals has two inde-
pendent power circuits: one dedicated for critical equipment
and one for non-critical equipment. The relay nodes were
plugged into the power outlets on the power circuit dedicated
to non-critical equipment. During the trial, the custodial staff
unplugged the relay nodes occasionally to power their clean-
ing equipment. In addition, two relays were destroyed by
impact with cleaning equipment. Due to the redundancy of
the deployed relays, neither of these events had adverse ef-
fects on network reliability. The base station was deployed in
a room behind the nurse’s station. The base station was pow-
ered and had access to the hospital’s Wi-Fi network. The
system operated on 802.15.4’s channel 26 such that it would
not interfere with the existing Wi-Fi network or other teleme-
try systems. During the deployment, the maximum number
of hops varied between 3 – 4.

Patients were enrolled in the study between June 4, 2009
and January 31, 2010. During this time, a total of 46 patients
were enrolled. Demographic data is presented in Table 1.
We excluded the results of five patients from the reliability
study. The data from the first patient admitted to the trial
was excluded because it had poor network reliability. We
determined that an older version of CTP was the source of
the problem and updating it to the latest version available
solved this issue. The other patients were excluded because
no data was collected from them. This was the result of a
improperly handled exception in the data collection software

Variable Number
Gender 18 male

28 female
Age range 34 – 89
Race 24 Caucasian

22 African American
Adverse events 2 patients transfered to ICU

1 patient diagnosed with severe sleep apnea
Total 46 consented patients

41 patients included in data analysis
System up time 7 months

Total monitoring time 41 days, 4 hours, 48 minutes

Table 1. Demographic information of patients consented

running on the base station.

The pulse and oxygenation were measured at 30- and 60-
second intervals. We selected two sampling rates to evaluate
the impact of sensing rate on sensing reliability and energy
consumption. Note that at these rates the temporal resolu-
tion provided by our system is orders of magnitude higher
than that achieved by manually collecting vital signs. The
system collected more than 41 days of pulse and oxygena-
tion data. The duration a patient was monitored varied from
a few hours to three days (average 25.36 hours, range of 2
– 68 hours). The system monitored up to three patients si-
multaneously during the clinical trial and usually monitored
one patient at a time. During the trial the condition of two
patients deteriorated and they were moved to the ICU. An
additional patient was diagnosed with life-threatening sleep
apnea.

4.2 Reliability
In this section, we provide a detailed analysis of the sys-

tem reliability. To quantify the reliability of the clinical mon-
itoring system we introduce the following metrics:

• Network reliability is the fraction of packets delivered
to the base station.

• Sensing reliability is the fraction of packets delivered
to the base station that had valid pulse and oxygenation
readings. The pulse oximeter indicates the validity of
each reading and uses an error code to represent invalid
readings. Our system sends both the valid readings and
the error codes to the base station for reliability analy-
sis. In a production system the invalid readings may be
dropped at the patient nodes to save energy.

• Time-to-failure is the time interval during which a com-
ponent operates continuously without a failure. A net-
work failure refers to the case when a packet is not
delivered to the base station, while a sensing failure
refers to pulse-oximeter obtaining an invalid measure-
ment. The time-to-failure is a measure of how frequent
failures occur.

• Time-to-recovery is the time interval from the occur-
rence of a failure until the component recovers. The
time-to-recovery is a measure of how quickly a compo-
nent recovers after a failure.

160



1
1

1
2 4 1 6

2
0

3
0

1
3

3
4

3
5

4
2

1
9

3
8

2
8

2
7 9

2
2

3
3 2

1
6

3
9

2
4

2
6

2
5

1
7 8

3
1

2
3

3
6

1
5

2
1

1
0

3
2

3
7

4
1

1
4 5

1
8

4
0

2
9

Patient

0

10

20

30

40

50

60

70

80

90

100
95

S
e
n
s
o
r 

re
li
a
b
il
it

y
 (

%
)

(a) Sensing reliability

1
1

1
2 4 1 6

2
0

3
0

1
3

3
4

3
5

4
2

1
9

3
8

2
8

2
7 9

2
2

3
3 2

1
6

3
9

2
4

2
6

2
5

1
7 8

3
1

2
3

3
6

1
5

2
1

1
0

3
2

3
7

4
1

1
4 5

1
8

4
0

2
9

Patient

0

10

20

30

40

50

60

70

80

90

100
95

N
e
tw

o
rk

 r
e
li
a
b
il
it

y
 (

%
)

(b) Network reliability

Figure 3. Network and sensing reliability per patient
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Figure 4. Distribution of time-to-failure and time-to-
recovery of the network

4.2.1 System Reliability
Figure 3 plots the network and sensing reliability for the

vital sign data from each patient. As shown in Figure 3(b),

the system achieved a median network reliability of 99.68%
(range 95.2% – 100%). In contrast, the sensing reliability
was significantly lower as shown in Figure 3(a). The median
sensing reliability was 80.85% (range 0.46% – 97.69%).

Several key observations may be drawn from this data.
First, the results indicate the system achieved high network
reliability for all patients in spite of dynamic channel con-
ditions and relay failures. This demonstrates the robustness
of CTP and DRAP as well as that of our network architec-
ture which integrates the two protocols. Second, the median
sensing reliability is sufficient to provide health practitioners
with pulse and oxygenation data at two orders of magnitude
higher resolution than that achieved through manual collec-
tion. However, the wide range of the sensing reliability is
disconcerting: 12 patients had reliability below 50%. An
in-depth analysis of sensing reliability is deferred to Section
4.2.3. Third, the system reliability is dominated by sensing
reliability rather than networking reliability. Therefore, even
a wired patient monitoring system with perfect network reli-
ability, would have had similar system reliability.
Result: The system reliability is dominated by sensing reli-
ability. Therefore, a wired system would have had similar
system reliability as our wireless system.
4.2.2 Network Reliability

To analyze the network reliability in greater detail,
we study the distributions of time-to-failure and time-to-
recovery. Figure 4(a) plots the CDF of the time-to-failure for
all patients. The median time-to-failure is 19 minutes. Figure
4(b) plots the CDF of the time-to-recovery for all patients.
The 90%- and 95%-percentiles of the time-to-recovery were
shorter than 2 and 2.5 minutes, respectively. Thus, the net-
work components recover from failures quickly.
Result: The network component provides high reliability:
the network experiences failures infrequently and recovers
within 2.5 minutes most of the time.

We profiled the behavior of DRAP for twelve of the pa-
tients. DRAP remained associated with the same relay for
five of the patients. This is a consequence of the low noise
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Figure 5. Impact of movement on sensing

level on 802.15.4’s channel 26 which does not overlap with
other wireless devices. For the remaining seven patient
nodes, DRAP changed the relay association at least once.
Logs indicated that DRAP’s mechanism for detecting mo-
bility was invoked four times. It is also worth mentioning
that two patients changed rooms while being monitored . No
manual system reconfiguration was necessary for handling
this change.

4.2.3 Sensing Reliability
The quality of pulse and oxygenation readings was sig-

nificantly affected by patient movement, sensor disconnec-
tions, sensor placement, and nail polish2; this experience is
consistent with results previously reported in literature [22].
Patient movement which includes movement of the arm on
which the pulse oximeter was placed, finger tapping, or fid-
geting may lead to invalid readings. The impact of body
movement may be significant (see Figure 5): when a healthy
volunteer moved his hand up and down (300 – 600 seconds),
none of the obtained measurements were valid. In contrast,
when the volunteer did not move his arm, a single measure-
ment was invalid. This experiment also indicates that it is
unlikely for the sensor errors to be the result of software bugs
in the serial driver since valid readings were obtained when
the volunteer did not move his arm. Sensor disconnection
also had a significant impact: sensor outages longer than 30
minutes were observed in 17 patients.

The distributions of time-to-failure and time-to-recovery
for the sensor component are shown in Figure 6. We re-
mind the reader that a sensing failure occurs when the pulse
oximeter sensor reports an invalid reading. The median time-
to-failure is 1.9 minutes, as shown in Figure 6(a) when the
data from all patients is considered. As few as 8.4% of
the time-to-failure intervals are longer than 19 minutes (the
mean time-to-failure for the network component). The short
duration of the median time-to-failure indicates that sensor
failures are common.

Figure 6(b) plots the CDF of time-to-recovery. The re-
sults support two important observations. First, the time-to-
recovery is short: 75.5% of the outages last for less than a

2Nursing staff indicated that nail polish was the cause of sens-
ing errors in a patient. After removal, valid sensor readings were
obtained.
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Figure 6. Distribution of time-to-failure and time-to-
recovery of the sensor

minute. This suggests that the sensing distribution is char-
acterized by frequent failures which occur in short bursts.
These types of failures are the result of patient movement
or improper sensor placement. Second, the distribution of
time-to-recovery is long-tailed: 1.3% of the sensing outages
are significantly longer than 20 minutes. The longest time-
to-recovery was 14.3 hours. These long outages are due to
sensor disconnections. Nurses did not have access to the pa-
tient’s data and we checked for disconnections infrequently.
In Section 4.3, we consider the effectiveness of an alarm sys-
tem both in terms of its alarm rates and in the number of in-
terventions required by the nursing staff.
Result: The sensor failure distribution is characterized by
frequent failures which usually occur in short bursts; occa-
sional disconnections cause prolonged sensing failures.

Since most sensing failures occur in short bursts, the sens-
ing reliability may be improved through oversampling: the
sensor could take measurements at a rate higher than the one
specified by clinical needs. It is important to note that in-
creasing the sampling rate would be beneficial only if the
duration of a patient’s motion is shorter than 60 seconds. To
test this hypothesis, we reduced the sampling interval from
60 to 30 seconds. Figures 6(a) and 6(b) also plot the time-to-
failure and time-to-recovery when measurements were taken
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every 30 and 60 seconds. Data indicates that reducing the
sampling period from 60 seconds to 30 seconds, results in
shorter time-to-failure as well as shorter time-to-recovery.
The reduction in time-to-recovery is expected because the
sensor is sampled at a higher rate. The 90-percentile of the
time-to-recovery is reduced from 3.9 minutes to 1.9 min-
utes when the sampling rate is increased from once to twice
a minute. The short time-to-recovery also explains the in-
crease in the prevalence of short time-to-failure: since nu-
merous outages are shorter than 30 seconds, then when sen-
sor is sampled at a higher rate, some of the outages may not
be observed. The median sensing reliability of the patients
monitored at 30 and 60 seconds were 84% and 75%, respec-
tively. This shows that oversampling leads to improved reli-
ability.

Result: The sensing reliability may be improved through
oversampling.
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Figure 7. Impact of oversampling on sensing reliability

To further quantify the impact of sampling rate on sensing
reliability, we consider the reliability of the system when the
requirement of receiving valid pulse and oxygenation mea-
surements is relaxed to receiving at least one valid reading
every 1, 5, 10, and 15 minutes. The updated sensing reliabil-
ity results are computed based on the collected traces sam-
pled at 30 and 60 seconds. Note that even under these relaxed
sensing requirements, the resolution provided by our system
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Figure 8. Expected performance of a sensor disconnec-
tion alarm system

remains significantly higher than it is possible through man-
ual collection. As expected, the sensing reliability per patient
increases as the sensing requirement is relaxed, as shown
in Figure 7(a). For example, the fraction of patients whose
sensing reliability was below 80% was reduced from 50% to
35% when the sensing requirement was relaxed to 5 minutes.
In fact, as can be seen in Figure 7(b), the increase in sensing
reliability can be as much as 62.4%. The patients which ben-
efited the most from these improvements had medium and
low reliability sensing reliability. Most of the performance
improvements were observed when the sensing requirement
was relaxed to 5 minutes; further relaxation of the sensing
requirement resulted in smaller improvements. This may be
explained by the fact that the bursts of sensing errors are
short. The highest additional increase in reliability when
the sensing requirement was relaxed from 5 minutes to 10
minutes was 13.4% for patient 16; while the highest addi-
tional increase in reliability for lowering the sensing require-
ment from 10 minutes to 15 minutes was 8% for patients 22
and 45. While the sensing reliability of most patients im-
proved, it is worth mentioning that oversampling had limited
impact on the sensing reliability of some patients. In the case
of these patients, the low reliability was caused by the sen-
sors becoming disconnected rather than intermittent failures.
Hence, reducing the sampling requirement had no impact.
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4.3 Benefits of Disconnection Alarms
As previously discussed, when a sensor became discon-

nected, the nursing staff should be notified to adjust the sen-
sor. We propose an alarm system to notify the nursing staff
when the sensor is disconnected. A disconnection may be
detected by keeping track of the time since the the last valid
sensor reading was obtained by the sensor. When this time
exceeds a disconnection threshold, the alarm is triggered.
The selection of the disconnection threshold must consider
the trade-off between the nursing effort (i.e., the number of
notifications for manual intervention) and the amount of time
that no valid sensor readings are obtained. Figure 8(a) plots
the number of alarms that our system would have triggered
for different values of the disconnection threshold based on
the data traces collected from the clinical trial. As expected,
the system shows that as the disconnection threshold is in-
creased, the number of alarms triggered per day is reduced.
When the disconnection threshold is 3 minutes, the number
of required interventions per patient per day is 9.3 times.
This is comparable to the number of times pulse and oxy-
genation are manually measured in postoperative care. A
disconnection threshold between 10 – 15 minutes results in
about 1.5 interventions per patient per day. At this thresh-
old value, our system significantly reduces the burden on the
nursing staff compared to manual collection, while achieving
a sampling rate two orders of magnitude higher than manual
collection.

Figure 8(b) shows the impact of the alarm system on the
sensing reliability. The sensing reliability values are com-
puted as follows. Sensing outages longer than the discon-
nection threshold are identified. The system is penalized for
the sensor failures during the time interval from the start of
the outage until the disconnection alarm is triggered. The
remaining time, from when the disconnection alarm is trig-
gered until the end of the outage, is excluded from the re-
computed sensing reliability. We assume that the nursing
staff would respond timely to such alarms.

The CDF of patient sensing reliability looks similar for
different disconnection thresholds. The most pronounced
differences are for patients with reliability in the range 10%
– 75%. As expected, the best sensing reliability is obtained
when the disconnection threshold is set to its lowest value
of 5 minutes, but increasing the threshold interval has only
a small impact on sensing reliability. Outside the reliability
range 10% – 75%, the impact of the disconnection thresh-
old is negligible. This shows that a disconnection threshold
in the range 10 – 15 minutes results in a desirable balance
between sensing reliability and intervention cost.
Result: Disconnections may be mitigated through an auto-
matic alarm system with low alarm rates.

In the following, we estimate the potential benefit of com-
bining oversampling and the disconnection alarm system to
achieve even better performance. First, we consider the base
case when the sensing requirement is one sample per minute.
As previously discussed, reducing the sampling requirement
to a sample every 5 minutes results in significant reliability
improvements for most patients (see Figure 9). Similarly, in-
corporating an alarm system with disconnection threshold of
15 minutes also results in reliability improvements. By com-
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Figure 9. Combining oversampling and sensor discon-
nection alarm systems

paring these two curves (5 min, no alarm and 1 min, alarm:
15 min), one can see that the two mechanisms act in different
ways. The sensor disconnection alarm system has the most
impact on patients with low reliability (i.e., those that had
disconnections) while the oversampling mechanism handles
intermittent sensing errors. Combining the two mechanisms
results in significant improvements: only 5 patients (12% of
patients) had lower than 70% sensing reliability when the
measurements are required once every 5 minutes and a dis-
connection threshold of 15 minutes is used. From the pa-
tients whose sensing reliability was below 70%, we obtained
less than 8.5 minutes of valid measurements. This makes
their reliability unrepresentative for the case when an alarm
system would be employed.
Result: Oversampling and disconnection alarms are com-
plementary and can be combined to achieve further improve-
ment in sensing reliability.
5 Detecting Clinical Deterioration

Thus far, our focus has been on assessing the feasibility of
using wireless sensor network technology for real-time and
reliable collection of heart rate and oxygenation measure-
ments. The ultimate goal of real-time patient monitoring is
that the collected vital signs may be analyzed to detect the
onset of clinical deterioration and, as a result, improve pa-
tient outcomes. In this section, we start by presenting traces
obtained from three patients which suffered significant clin-
ical events during the trial. In addition, we develop an algo-
rithm for detecting clinical deterioration using a time series
analysis technique. We apply the developed algorithm to the
collected traces retrospectively. While this is a preliminary
exploration, our analysis indicates the feasibility and poten-
tial for detecting clinical deterioration based on sensor data
streams collected by wireless clinical monitoring systems.

5.1 Major Clinical Events
During the trial, there were three major events. Patient 3

(see Figure 10(a)) suffered from bradycardia (low heart rate).
Upon being admitted in the unit, the patient had a average
heart rate of 55 beats per minute. By the time the patient was
transferred to the ICU, the heart rate dropped to 35 beats per
minute over a period of about two hours. A slight degrada-
tion in oxygenation is also present.
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Patient 19 (see Figure 10(b)) suffered from pulmonary
edema and required intubation and was transferred to the
ICU. The collected pulse and oxygenation trace indicates
two correlated increases in heart rate and decreases in oxy-
genation. Most clearly towards the end of the trace, we see
both an increase in the heart rate as well as a decrease in
oxygenation with SpO2 being below 90%.

Patient 24 (see Figure 10(c)) suffered from sleep apnea
– a sleep disorder during which a person stops breathing –
later confirmed to be severe sleep apnea by a formal sleep
study. Significant drops in the SpO2 levels are one sign of
sleep apnea. Based on our traces, the SpO2 levels dropped
below 80% indicating severe oxygen desaturation.

These examples highlight that the patient monitoring sys-
tem provides sufficient resolution for a clinician to identify
life-threatening conditions such as bradycardia or oxygen de-
saturation resulting from sleep apnea or pulmonary edema.
Physician review of the data traces confirmed that the data
traces of these patients are consistent with their medical con-
ditions indicated in the clinical records.

Result: Preliminary results show that the system has suffi-
cient resolution for detecting clinical deterioration.

5.2 Automatic Detection of Clinical Deterio-
ration

To assess the feasibility of detecting clinical deteriora-
tion based on the collected heart rate and oxygenation traces,
we implemented an event detection algorithm based on the
CUSUM algorithm [8]. The CUSUM algorithm is capable of
detecting statistically significant changes in a series of mea-
surements. The CUSUM algorithm takes as input a series of
measurements along with a confidence level. The algorithm
outputs the point in the series at which statistically signifi-
cant changes are detected. If no such point is found, then the
series of measurements are statistically similar at the speci-
fied level of confidence. The algorithm can be applied recur-
sively to identify all intervals that contain statistically similar
measurements. It is important to note that even though con-
secutive intervals may have statistically different vital signs,
it does necessarily imply that the patient’s condition has de-
teriorated. To determine whether an alarm should be issued,
we consider each interval in which CUSUM identified data
to be similar with a confidence level of 99%. We compute
the following statistics for each interval and vital sign: the 5-
th percentile, 95-th percentile, and the slope of the linear fit
over the data points in each interval. Clinical deterioration is
detected using thresholds on the computed values. For exam-
ple, bradycardia may be detected when the 5-th percentile is
below a set threshold. Similarly, tachycardia may be detected
when the 95-th percentile exceeds a different set threshold.
Finally, the slope of the trend line may be used to identify
sharp declines/increases in pulse or oxygenation measure-
ments which may be signs of clinical deterioration. The use
of such thresholds for identifying abnormal changes in vital
signs is common to automatic scoring systems [14, 23].

The proposed algorithm has several advantages over com-
puting statistics over sliding windows. First, sliding window
algorithms tend to be susceptible to the choice of window
sizes. In contrast, CUSUM automatically identifies intervals

in which points are statistically similar. Second, the process-
ing complexity is lower since statistics are computed over the
identified intervals rather than at each data point as required
by an algorithm based on sliding windows.

We have retroactively applied the automatic event detec-
tion algorithm to the collected traces. As previously dis-
cussed, some of the traces were short due to sensor discon-
nection. These traces are excluded from our results. By
inspecting the medical records of patients admitted to the
study, we divided the patients in two groups: a total of 29
patients diagnosed with a significant cardiac or pulmonary
disease and 7 patients without such a diagnostic (see Ta-
ble 2). By constraining the threshold values for heart rate
and oxygenation to clinically relevant values we were able
to compute the performance of the alarm systems for dif-
ferent configurations. Figure 11 plots the Receiver Operat-
ing Characteristic (ROC) for the alarm system. The straight
line in the figure denotes the performance of an alarm sys-
tem which would trigger an alarm at random. The closer
the points are to the (0,1) corner of the graph, the better the
performance of the alarm system is.

Condition Signs Patients
Bradycardia low HR 3, 14, 30, 34
Sleep apnea low SpO2 2, 10, 18, 22, 23, 24, 35, 38
Desaturation low SpO2 11, 12, 19, 26

Pulmonary edema low SpO2 19
Tachycardia high HR 6, 27, 31

variable HR
Congestive heart low SpO2 8, 9, 20, 21, 25, 30, 41

failure
Atrial fibrillation 8, 11, 13, 28

Table 2. Medical conditions of the patients admitted in
the trial.
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In hospitals, alert fatigue results from high false positive
rates. Therefore, we are interested in the case when the false
positive rate is zero i.e., when the algorithm would correctly
not trigger an alarm for any of the patients which did not
have any major conditions. The lowest false positive rate
observed for the considered threshold combinations was 0%
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(a) Patient 3: Bradycardia (b) Patient 19: Pulmonary Edema

(c) Patient 24: Sleep apnea

Figure 10. Pulse (red) and oxygenation (purple) measurements from patients which suffered clinical deterioration

i.e., no alarm was issued for patients which were not diag-
nosed with heart/pulmonary rate. At this false positive rate,
the true positive rate was 79.3%.

The obtained results are encouraging. First, vital signs
measurements collected at frequencies as low as 0.016Hz
provide sufficient resolution for detecting a range of signs
that may be indicative of potentially dangerous conditions
such as bradycardia, tachycardia, and sleep apnea. We note
the possibility of applying the devised system as a screen-
ing tool for sleep apnea. Patients whose oxygenation drops
significantly during sleep without an alternative explanation
would be required to undergo sleep studies. Second, other
vital sign measurements (e.g., blood pressure, temperature)
and clinical tests may provide additional valuable informa-
tion to improve the detection of clinical deterioration. To
this end, we plan on integrating our system with patient elec-
tronic records to explore the possibility of integrating other
low data rate sensors in our system. Finally, the preliminary
study shows that the proposed algorithm for issuing alarms
performed well on the collected data sets. As part of our
future work, we plan on integrating the data collection and
data analysis components for detecting clinical deterioration
in real-time. It is our intention to validate the performance
of the constructed system through a larger study. This would
allow us to directly quantify the impact of such a system on

patient care and outcomes.

6 Discussion
Relay Redundancy: The need to ensure network cover-

age within the step-down unit was one of the concerns raised
during the planning of the clinical trial. We considered the
possibility of minimizing the number of relay nodes neces-
sary for ensuring coverage. However, this would have re-
quired performing in situ measurements to assess the cover-
age of the relays, which could have been a significant incon-
venience to the care providers. Instead, we opted to deploy
a redundant network of relays to ensure coverage. The ar-
chitecture of the system which relies on mesh networking
and the availability of power outlets in the hospital makes
the deployment of the system effortless. It is worth noting
that we were able to redeploy the entire system within 15
minutes. Relay redundancy was essential for tolerating the
unplugging of the relays by the cleaning staff and the dam-
aging of relays. Our data indicates that these failures did
not adversely impact network performance. Moreover, it is
unlikely that any packet losses may be attributed to cover-
age gaps. In retrospect, adopting the more practical solution
of deploying additional relay for redundancy was the right
choice due to the unexpectedly frequent relay failures.

Existing Wi-Fi support: Even though this paper focuses
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on reliability concerns, we have not yet discussed the most
unreliable part of the system: the 802.11 wireless link from
the base station to the hospital’s wireless infrastructure. The
poor link quality often prevented us from logging into the
base station to determine if valid readings were obtained
from the monitored patients. Additionally, the transfer of
large files was impossible due the same reason. In spite of
these issues, we chose not to move the base station in order
to maintain a consistent network setup.

It has been argued that a patient monitoring system should
take advantage of existing 802.11 infrastructure. If the pa-
tient monitoring system would have been required to use this
Wi-Fi link, the network reliability would have been signifi-
cantly lower than that reported in this trial. It is worth not-
ing that the hospital invested numerous man-hours to ensure
“100% coverage”. However, Wi-Fi users are accustomed to
having to change their location to achieve better performance
and, as a result, there is little incentive to deploy more routers
to provide true “100% coverage”. In contrast, in our system
redundancy may be easily achieved and, with 802.15.4 tech-
nology, it comes at a low cost.

Power Management: During the clinical trial, patient
nodes achieved a life time of up to 69 hours by duty cy-
cling the radio, sensor, and flash. This meets the maximum
time we can monitor a patient per our human subject study
agreement. The radio and sensor duty cycle was measured
on six nodes. The radio consumes 19 mA and had a duty cy-
cle ranging from 0.12% to 2.09%. The sensor draws 24 mA
and its duty cycle depends on the sampling rate. Existing
pulse-oximeters take up to 8 seconds until average values for
hear rate and oxygenation are reported. After 15 seconds, the
sensor is turned off to conserve power. Accordingly, when
the sampling rate is 30 seconds, we expect a duty cycle be-
tween 26.66% – 50.00%. On the observed devices we ob-
tained duty cycles between 27.3% – 40.27%. Similarly, for
a sampling rate of 60 seconds, we expect duty cycles be-
tween 13.33% – 25%. In the field, we observed duty cycles
in the range 16.24% – 18.97%. These numbers indicate that
sensing dominates the energy budget of the patient nodes.
The obstacle in achieving lower duty cycles is the prolonged
start-up time.

We believe that there are significant opportunities for fur-
ther reducing the time the sensor is active. For example,
a significant amount of energy is wasted when the patient
node is left active while a patient goes for treatment outside
the unit. A simple policy of reducing the sampling rate after
multiple consecutive sensing failures could save significant
energy. However, note that even without any of these more
complex power management policies, we achieved a lifetime
of 3 days. Interesting opportunities also exist for improving
energy efficiency by using additional sensors. For example,
accelerometers which have lower energy consumption than
pulse oximeters, may be used to asses whether a patient is
moving. The detection of patient movement would prevent
us from turning on the pulse oximeter sensor when it cannot
provide valid readings and waste energy as a result. The ces-
sation of patient movement would constitute a trigger for the
start of measurements.

7 Conclusions
This paper presents the design, deployment, and evalu-

ation of a wireless pulse-oximetry monitoring system in a
hospital unit. The study presented in this paper involves
real patients monitored in a clinical setting. The patients
were monitored in situ to realistically assess the feasibility
of WSN technology for patient monitoring. The system we
deployed had 18 relay nodes and required multi-hop com-
munication for data delivery. As part of the study, we mon-
itored 41 patients recruited over seven months for a total of
41 days of continuous monitoring. Our work makes several
main contributions to wireless sensor network technology
and clinical monitoring. (1) Our network achieved a 99.69%
median reliability over 41 hours of monitoring. The high
network reliability indicates the feasibility of applying wire-
less sensor network technology for clinical monitoring and
the efficacy of separating end-to-end routing from first-hop
relay association in a clinical environments. (2) System re-
liability is dominated by the sensing reliability of the com-
mercial pulse oximeter. This shows that the performance of
our system is comparable to that of a wired pulse-oximetry
system with additional benefits of increased flexibility and
lower cost. Sensing failures are frequent, but usually occur in
short bursts with the exception of prolonged sensor discon-
nections. Oversampling and disconnection alarms that could
substantially enhance sensing reliability. (3) Our study pro-
vides clinical examples that show the potential of wireless
clinical monitoring system in enabling real-time detection of
clinical deterioration in patients. Moreover, a retrospective
study shows that an alarm system was able to issue alarms
for patients with severe clinical conditions based on the col-
lected vital signs traces. This analysis of the data traces col-
lected by our system shows the promise of using real-time
and low data rate monitoring of vital signs for detecting clin-
ical deterioration in patients. Our work also points to several
important future areas of research, such as the integration
of real-time clinical monitoring systems with the electronic
health record systems and the development of clinical event
detection algorithms based on real-time sensor streams.
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