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Abstract
The diverse requirements of wireless sensor network ap-

plications necessitate the development of multiple media ac-
cess control (MAC) protocols to meet their varying through-
put, latency, and network lifetime needs. Building new
MAC protocols has proven to be extremely difficult, how-
ever, given the monolithic nature of existing protocol im-
plementations as well as their dependence on a particular
radio or processor platform. To address these issues, we
propose the MAC Layer Architecture (MLA), a component-
based architecture for power-efficient MAC protocol devel-
opment in wireless sensor networks. MLA consists of opti-
mized, reusable components that implement a common set
of features shared by existing MAC protocols, as well as
abstractions that encapsulate the intricacies of the hardware
platforms they run on. Through an instantiation of MLA
in TinyOS 2.0.1, we have implemented five representative
MAC protocols. Empirical results show that MLA results
in significant code reuse among different protocols, while
achieving comparative performance and memory footprints
to monolithic implementations of the same protocols.
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1 Introduction
Sophisticated power management schemes are often used

to meet the extremely long lifetime requirements typical of
wireless sensor network deployments. At the heart of these
schemes exist power-efficient media access control (MAC)
protocols designed to meet the various throughput, latency,
and lifetime requirements of different applications. With the
diverse set of applications now being run on wireless sensor
network hardware, it is becoming increasingly important to
provide flexibility in the choice of MAC protocols that best
meet the requirements of each particular application.

Experience has shown us, however, that providing such
flexibility is an extremely difficult task. Existing MAC pro-
tocol implementations tend to be monolithic in nature, tying
them to a particular radio platform or microprocessor. Devel-
opment of a new protocol has meant redesigning the entire
radio stack, forcing designers to have intimate knowledge
of the hardware for which they are developing their proto-
cols, as well as revisit many of the tricky system issues that
plagued the developers of the original stack.

To address these issues, we propose the MAC Layer Ar-
chitecture (MLA), a component-based architecture for MAC
protocols in wireless sensor networks. We have distilled
the various features common to existing protocols into a set
of reusable components, optimized for the specific function
they are intended to provide. Some of these components are
low level, encapsulating the intricacies of a particular hard-
ware platform. Others are high level, providing various func-
tionality typical of MAC protocol design in a reusable fash-
ion. Using these components, developers can quickly con-
struct new MAC protocols that meet the demands of their
specific applications.

It has been argued that power-efficient MAC protocols
cannot be implemented without exploiting features specific
to the target CPU and radio platform [1]. For example,
TDMA protocols often have precise timing constraints that
require fine grained access to hardware resources. Imple-
mentations of these protocols must handle timer interrupts
immediately after they have been fired and gain access to
the radio at the exact instant it is needed. CSMA/CA-
based protocols are not as dependent on timing, but re-
quire special radio functionality such as clear channel as-
sessment (CCA) and the ability to switch between different
radio states quickly. These implementations typically sacri-
fice both modularity and portablity in favor of an increased
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level of efficiency. MLA demonstrates that such a sacrifice is
unnecessary in an optimized component-based architecture.

In [2], we propose a Unified Radio Power Management
Architecture (UPMA) for developing flexible, cross-layer im-
plementations of radio power management protocols in wire-
less sensor networks. UPMA defines link-layer interfaces
that allow for a separation between “core” radio function-
ality and the logic required to perform radio power man-
agement [3]. MLA extends this work by identifying addi-
tional hardware-independent interfaces required by timing
sensitive MAC protocols, and defining platform-independent
reusable components that implement MAC layer logic on top
of them. The resultant MLA architecture can be used to de-
velop a large number of platform-independent MAC imple-
mentations, with little or no further effort required to adapt
these implementations to new hardware platforms.

Our work is complementary to the Sensornet Protocol
(SP) [1]. SP defines a narrow waist around which various
networking and data link technologies can be implemented
independently, while sharing a common set of data, and com-
municating through a unified set of interfaces. However, SP
does not provide the power management support that MLA
focuses on. In [4] a Network Layer Architecture (NLA)
was proposed that allows different networking protocols to
be built on top of SP. Our work focuses on providing a simi-
lar architecture for developing MAC protocols underneath.

Specifically, we make the following contributions with
this paper. (1) We propose the design for a set of robust,
reusable components that facilitate the development of a
wide variety of MAC protocols. (2) We provide an instanti-
ation of these components for the TinyOS operating system.
(3) We evaluate the flexibility provided by these components
through the development of five representative MAC proto-
cols that span the existing protocol design space. (4) We
provide empirical results that show that our architecture re-
sults in significant code reuse of existing components, while
achieving comparative performance and memory footprint to
monolithic implementations of the same MAC protocols.

The rest of this paper is organized as follows. Section
2 provides an overview of existing MAC protocols. Sec-
tion 3 distills the common features of these MAC protocols
into a component-based architecture. Section 4 describes
our implementation of five component-based MAC layers on
top of this architecture. Section 5 analyzes the code re-use,
throughput, latency, and radio duty cycle of these MAC layer
implementations. Finally, Section 6 concludes the paper.

2 Power-Efficient MAC Protocols
In this section, we provide an overview of existing power-

efficient MAC protocols. We classify them into a small
number of representative categories and identify the com-
mon set of features they all share. This classification mo-
tivates the component-based design of MLA for promoting
code reuse. Typically, existing MAC protocols for wireless
sensor networks fall into one of four categories: channel
polling, scheduled contention, time division multiple access
(TDMA), or hybrid [5].

Nodes equipped with channel polling protocols spend the
majority of their lifetime in a sleep state, periodically polling

the radio channel to check for activity. If radio activity is
detected, the radio is turned on to receive a packet. Oth-
erwise, the radio goes back to sleep until the next polling
interval. Sender nodes prefix their data packets with extrane-
ous bytes called a “preamble”, to ensure that the destination
node detects radio activity and wakes up before the payload
is sent. B-MAC [6], one of the first channel polling proto-
cols, accompanies each data packet with a preamble at least
as long at the receiver’s polling interval. This policy ensures
that the receiver performs channel polling at least once while
the preamble is being sent. X-MAC improves on B-MAC’s
energy efficiency and latency cost by embedding target ad-
dress information into its preamble. When a node overhears
a preamble packet, it checks to see if the preamble is ad-
dressed to itself. If so, it sends an acknowledgment (ACK)
to the sender, which ends the preamble early and triggers the
sending of the data packet. Otherwise, the node goes back to
sleep until the next polling interval.

B-MAC and X-MAC have been incorporated into TinyOS
2.0.1’s CC2420 radio stack. Because the CC2420 is a packet
radio, these protocols have been implemented to construct
preambles by repeating the data packet inside a tight loop.
In general, the channel polling approach achieves good en-
ergy efficiency for applications with low data rates. For ap-
plications which send data more frequently, however, their
energy efficiency may decrease due to the cost of sending
long preambles.

Scheduled contention protocols such as S-MAC [7] and T-
MAC [8] establish periodic intervals where all neighboring
nodes wake up simultaneously to exchange packets. Once
awake, nodes which want to transmit data contend for chan-
nel access through a process known as CSMA/CA. This
approach eliminates the long preambles used by channel
polling protocols, since the receiver is guaranteed to wake
up in sync with the sender. The downside is that nodes must
incur some amount of overhead in order to maintain these
synchronized wakeup times.

TDMA protocols like the GTS portion of 802.15.4 [9] and
DRAND [10] divide time into slots and allocate these slots
to all nodes in a neighborhood. Nodes may transmit with-
out contention in slots allocated to them, but cannot transmit
at any other time. Because each node has exclusive access
to the radio channel during the slots that have been assigned
to them, collisions tend to be rare, and the overall number
of packets lost is reduced. However, TDMA protocols often
exhibit lower throughput than channel polling and scheduled
contention protocols, since nodes may only send during their
designated slots. Like scheduled contention, TDMA proto-
cols require time synchronization between all nodes within
communication range of one another. Unlike scheduled con-
tention, TDMA protocols tend to be sensitive to changes in
multi-hop network topologies, and must generate new slot
allocations whenever these changes occur.

The various advantages and shortcomings of each of
these three approaches has motivated the creation of hybrid
protocols, such as SCP [5], Z-MAC [11], and Funneling
MAC [12]. SCP combines scheduled contention and channel
polling by synchronizing the time that nodes wake up to sam-
ple the radio channel. This synchronization allows sender
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nodes to send data with very short preambles. Z-MAC em-
ploys a TDMA-style slot allocation for all nodes, but allows
nodes to contend for access to other nodes’ slots using chan-
nel polling. This approach combines TDMA’s low channel
contention with channel polling’s high throughput. Finally,
nodes equipped with Funneling MAC contend for channel
access in the majority of the network via CSMA/CA, while
using TDMA in regions close to sink nodes, where nodes
experience high contention. Funneling MAC alleviates con-
tention in the most active areas of the network, without re-
quiring other nodes to create and maintain TDMA schedules.

From the various approaches presented above, a set of
common techniques can be seen to emerge. MLA identi-
fies these techniques — such as periodic channel polling and
time synchronization — and encapsulates them inside a set
of reusable, optimized components. Through the use of these
components, MLA is able to simplify the implementation of
existing MAC protocols on new platforms as well as facili-
tate the development of completely new MAC protocols.

3 Design of the MLA
Creating a low-level yet hardware-independent

component-based architecture poses three significant
design challenges. First, the architecture must present a
clean interface to upper layers, exposing as few hardware
details as possible. Second, the radio stack must export
needed low-level functionality using a set of platform-
independent interfaces. Third, functionality common across
MAC protocols must be identified and implemented inside
a set of optimized, reusable components. In this section, we
discuss how we have met these challenges and present the
interfaces and components that we identify as necessary for
an effective component-based MAC architecture.

Though MLA’s architectural design is not inherently tied
to the TinyOS operating system, we use TinyOS terminology
and naming conventions throughout this section. TinyOS’s
component-based design offers a well-known vocabulary for
discussing interactions among the components in MLA. We
express the interfaces described in this section using nesC
syntax [13] for analogous reasons.

For the purposes of discussion, we assume the use of
packet radios (e.g., the CC2420 radio used on TelosB and
MicaZ motes). We choose to focus on packet radios, since
industry standards like 802.15.4 reflect a shift away from bit
radios (e.g., the CC1000 radio used on Mica2 motes). This
decision does not generally affect MLA’s design, with the
exception of how preamble packets are sent and received by
the MAC layer. We defer a more detailed discussion of this
artifact to Section 3.3.3.

3.1 Overview of the Architecture
We define two types of components for use in MLA.

High-level, hardware-independent components are aimed at
supporting flexibility by allowing different MAC protocol
features to be composed together in a platform indepen-
dent manner. Low-level, hardware-dependent components
provide abstract, platform independent interfaces to features
otherwise specific to a particular radio or microprocessor
platform. Though the implementation of these hardware-
dependent components is inherently platform specific, they
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Figure 1. The application developer’s view of MLA

export interfaces which support the development of fully
platform independent high-level components. In this way,
porting the set of protocols developed in MLA to a new plat-
form is confined to providing new implementations of these
low-level components alone.

Figure 1 provides an overview of how these components
can be used to build sophisticated MAC protocols within
MLA. Various components are composed together inside of a
more general MacC configuration, using a set of unified inter-
faces provided by the radio, and exposing a set of (partially)
unified interfaces to the upper layers. The following sections
elaborate on these various interfaces, as well as provide de-
tailed descriptions of the components that provide them.

3.2 Interfaces with Upper Layers
The interfaces which MLA provides to upper layers are

driven by two specific design goals. First, the MAC proto-
cols’s runtime behavior should be as transparent as possible
to the user. Application developer effort is best spent de-
veloping applications which treat packet I/O as a black box;
the fact that packet transmission may be delayed for power-
savings purposes or due to radio contention should not affect
the application’s core behavior. Second, the application de-
veloper should not need to be aware of the MAC protocol’s
internal composition. Developers should be able to treat the
MAC protocol as a single coherent entity, and hence be able
to insert, replace, or remove a MAC protocol with as little
effort as possible.

We achieve both of these goals by exposing all MAC-
level interfaces to the application through two distinct com-
ponents, as shown in Figure 1. First, each MAC protocol de-
fines a MacC configuration that composes any resuable MLA
components and any protocol specific components together.
In order to make its operation as transparent to the user as
possible, the MacC component uses a fixed set of low-level in-
terfaces (described later in Section 3.4) and produces corre-
sponding application-level packet I/O (Send/Receive) and
power control interfaces (SplitControl).

Upper layers call the start() and stop() commands of
the SplitControl interface in order to enable/disable the
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operation of the MAC protocol. Calling stop() shuts down
the entire MAC protocol and puts the radio into an inactive
power state. Calling start() turns the MAC protocol on,
alternating between various radio power states according to
the specification of the protocol.

The Send and Receive interfaces are used to relay pack-
ets between upper level components and the underlying radio
stack. The MAC protocol’s constituent components intercept
commands called through these interfaces and apply MAC-
specific transformations to them (e.g., adding a timestamp or
buffering a packet until the appropriate time) without notify-
ing any upper layer components.

Because MacC is exposed to upper layers as a single com-
ponent with a fixed set of interfaces, developers can swap
out different MAC protocols very easily. In the trivial case,
MacC simply wires all interfaces directly through to the un-
derlying radio stack, providing no true MAC functionality
at all. More commonly, MacC integrates the power man-
agement features provided by reusable components in MLA
with any protocol-specific components it requires.

Some MAC protocols need to export a small number of
MAC-specific interfaces, e.g., to allow applications to con-
trol the length of B-MAC’s sleep intervals or set the frame
length of a TDMA based protocol. These interfaces are
gathered into a MacControlC component, which provides a
single place for developers to expose protocol-specific con-
trol interfaces to the application layer. Like MacC, each
MAC protocol implementation offers different definitions of
MacControlC. Though the set of interfaces exported by each
MacControlC varies from protocol to protocol, its internal
composition (i.e., which internal components the interfaces
actually come from) is never exposed to the application.

3.3 Hardware-Independent Components
Though MLA presents a simple interface to the upper lay-

ers, different MAC protocols often exhibit a complex assort-
ment of features. Implementing these features from scratch
for each protocol can be difficult and time-consuming. MLA
reduces this effort by identifying features that many MAC
protocols share, and encapsulating them inside a set of opti-
mized, reusable components.

Tables 1 and 2 list the various hardware-independent and
-dependent components defined in MLA respectively. In this
section we describe the hardware-independent components.
In Section 3.4 we discuss the hardare-dependent ones.

Channel 

Polling

Scheduled

Contention
TDMA

Channel Poller X X

LPL Listener X X

Preamble Sender X

Time Synchronization X X

Slot Handlers X

Low Level Dispatcher X

Table 1. The various hardware-independent MLA compo-
nents along with the types of protocols that use them

3.3.1 Channel Poller
Channel-polling MAC protocols achieve low duty cy-

cles by performing low-power listening (LPL), which sam-

Channel 

Polling

Scheduled

Contention
TDMA

AsyncIOAdapter X X X

Alarm X X X

Local Time X X

Radio Core X X X

Table 2. The various hardware-dependent MLA compo-
nents along with the types of protocols that use them

ples the radio channel for activity at fixed intervals. The
ChannelPollerC component facilitates these checks by in-
voking the radio stack’s CCA routines at a specified inter-
val. Once the radio stack has completed the CCA check, the
ChannelPollerC fires an activityDetected event. The
detected parameter is set to TRUE or FALSE depending on
whether the radio channel is occupied or free, respectively.

3.3.2 LPL Listener
The ChannelPollerC does not provide a complete LPL

scheme in and of itself, since it does not adjust the ra-
dio’s power state based on channel activity. MLA pro-
vides two components that implement common LPL poli-
cies. FixedSleepLplListenerC sleeps for a fixed inter-
val with the ChannelPollerC active. When radio activity
is detected, FixedSleepLplListenerC activates the radio
and disables the ChannelPollerC. After the radio becomes
free, FixedSleepLplListenerC starts a timeout alarm. If
no more radio activity is detected before the alarm fires, then
the radio is powered down and the ChannelPollerC is re-
enabled. This component encapsulates the LPL policy used
by B-MAC and X-MAC.

The PeriodicLplListenerC component instead keeps
the ChannelPollerC component active at all times, and im-
mediately moves the radio into its sleep state when the chan-
nel is free. This policy guarantees that CCA checks occur at
regular intervals, which scheduled contention and some hy-
brid protocols like SCP mandate. Consequently, the length
of time that a radio will sleep between two CCA checks is
reduced by the amount of time that the radio is active. In
contrast, FixedSleepLplListenerC guarantees that the ra-
dio will sleep for a fixed interval, but may delay the next
CCA check to do so.

These components’ duty cycle can be controlled using the
LowPowerListening interface listed below. This interface
is derived from a similar, but radio-specific, interface used
within the TinyOS 2.0.1 release of the cc2420 radio stack.
LowPowerListening allows the user to control the radio’s
sleep cycle by either explicitly setting the sleep interval (e.g.,
100 ms), or by providing a target duty cycle (e.g., 5%).

interface LowPowerListening {
async command void setLocalSleepInterval(t_ms);
async command uint16_t getLocalSleepInterval();
async command void setLocalDutyCycle(t_ms);
async command uint16_t getLocalDutyCycle();
async command uint16_t dutyCycleToSleepInterval(t_ms);
async command uint16_t sleepIntervalToDutyCycle(t_ms);

}
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3.3.3 Preamble Sender
For a sender node to ensure that the recipient nodes

are awake when messages are sent, channel polling proto-
cols prefix data with a stream of preamble packets. The
PreambleSenderC component performs this procedure, pro-
viding the PreambleSender interface shown below. The
sendPreamble command and preambleDone event form a
split-phase operation for sending preambles. Unlike conven-
tional data-packet sending functionality, sendPreamble re-
quests a time interval (t ms) in addition to a packet. Back-to-
back copies of the packet are sent during this interval, and the
preambleDone event is only fired at the end of this stream.

interface PreambleSender {
async command error_t sendPreamble(msg, len, t_ms);
async event void preambleDone(msg, err);
async event resend_result_t resendPreamble(msg);

}

To save power and reduce latency, some MAC proto-
cols (e.g, X-MAC) may interrupt the preamble stream be-
fore the end of the specified interval. To support this be-
havior, the PreambleSenderC fires the resendPreamble
event after each copy of the packet is sent. This event
queries the MAC protocol to decide if the next preamble
packet is subject to backoffs (RESEND WITH CCA), not sub-
ject to backoffs (RESEND WITHOUT CCA), or simply should
not be sent at all (DO NOT RESEND). PreambleSenderC will
repeatedly send the specified packet until resendPreamble
returns DO NOT RESEND or until the specified interval ends,
whichever comes first. Power management schemes which
do not need this behavior can implement a trivial event-
handler that always returns either RESEND WITH CCA or
RESEND WITHOUT CCA. For TinyOS based implementations
of this component, this process is very efficient due to the
function inlining features of the nesC compiler.

This component is designed with packet radios in mind,
and operates by sending packets in a tight loop. This strategy
is sub-optimal on byte radios, which can send streams of un-
interrupted bytes. This limitation could be lifted by creating
a second PreambleSenderC implementation optimized for
byte radios. Such a change would be transparent to the other
components, because all low-level preamble sending logic is
encapsulated entirely within PreambleSenderC.

3.3.4 Time Synchronization
All TDMA protocols, as well as some scheduled con-

tention protocols, require some form of time synchroniza-
tion. Sometimes the method used by a particular MAC
protocol is completely protocol specific, e.g., piggybacking
protocol-specific timestamp information onto data packets.
Other times, a more general approach can be used. We there-
fore provide two different mechanisms for defining time syn-
chronization components within MLA.

First, we provide BeaconedTimeSyncC, which exchanges
synchronization packets at regular intervals and adjusts the
internal timers of both sender and receiver nodes accord-
ingly. This time synchronization scheme is common among
TDMA and scheduled contention protocols (e.g., 802.15.4
and S-MAC [7]).

For the definition of protocol-specific time synchroniza-
tion components, we propose a general design pattern that
their implementations should follow. A component should
be created that contains pass-through filters for a radio’s
sending and receiving interfaces. This component adds
timestamps to outgoing packets and adjusts the node’s in-
ternal clock based on timestamps extracted from incoming
packets. We follow this pattern in our implementation of
SCP’s time synchronization, as discussed in Section 4.

Note that the fine grained timing information required for
proper development of time synchronization components is
encapsulated within the hardware-dependent LocalTime and
Alarm components discussed in Section 3.4. These com-
ponents, while implemented in a platform specific manner,
provide a standard set of timing related interfaces for use by
platform independent components. Without them, it would
be impossible to develop time-synchronization protocols in
a platform independent manner.

Because MLA provides low-latency hooks to radio hard-
ware, the time synchronization schemes for most MAC pro-
tocols can reasonably be implemented in software. For MAC
protocols that require stricter time synchronization bounds,
some radio hardware offer internal support for applying
timestamps to packets immediately before they are sent.
Supporting hardware timestamps in a platform-independent
manner is non-trivial, since different radio hardware may
use different timestamping formats. For this reason, MLA
does not currently support the use of such hardware-specific
timestamping. We will consider ways to wrap this function-
ality in a hardware-independent fashion in the future.

3.3.5 Slot Handlers
TDMA protocols divide time into periodic frames, and

subdivide these frames evenly into slots. Each slot in the
frame is assigned an operation. Though some of these op-
erations are protocol-specific (e.g., sending control packets),
many operations are common to various TDMA protocols:
e.g., sending packets with or without contention, performing
CCA checks, and going to sleep.

This commonality presents an opportunity for component
reuse using the following scheme. Each MAC protocol im-
plementation contains a set of slot handlers, each of which
encapsulates the logic for one operation. Slot handlers for
common operations, such as sending packets, are included
in MLA, whereas protocol-specific ones must be provided by
the respective protocol implementation. Each protocol also
provides a slot scheduler component. This component hooks
into a periodic Alarm (discussed in Section 3.4.6) which fires
at the beginning of each new slot. The slot scheduler dele-
gates these events to the appropriate slot handler, based on
the operation assigned to the upcoming slot.

As an example, consider the GTS portion of 802.15.4.
802.15.4 assigns one of three actions to each slot: time syn-
chronization, contention-based sending, and contention-free
sending. Thus, 802.15.4 can be implemented in MLA by
providing a slot handler for each of these three slot types,
and a slot scheduler that invokes the appropriate handler at
the beginning of each slot.

MLA currently provides two generic slot handlers.
TDMASlotHandlerC implements contention-free packet
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sending by disabling CCA and setting backoff intervals
to 0 before sending a packet. It also adds a guard
time before transmitting packets in order to accommodate
for clock drift and processing jitter. CSMASlotHandlerC
provides contention-based packet sending, by using the
ChannelMonitor interface described in Section 3.4.2 to ver-
ify that the channel is free before sending the packet. These
generic components encapsulate operations which are used
by many MAC protocols.

3.4 Hardware-Dependent Components
Any non-trivial MAC protocol requires special radio layer

support not required by ordinary application code: timely
access to hardware resources, the ability to change the ra-
dio’s power level, etc. Monolithic implementations of these
protocols achieve the necessary level of support by adding
protocol-specific hooks into low-level radio code, or by in-
terleaving the MAC code directly into the radio stack. These
approaches generally result in poor portability, and create
“forks” of the low-level radio code which become out-of-
sync with the original implementations. For example, prior
to the release of TinyOS 2.0.1, two versions of each of
the cc1000 and cc2420 radio stacks were included in the
TinyOS distribution: one with support for B-MAC-style low
power listening, and one without [14]. Enhancements and
bugfixes to the baseline cc2420 stack were not consistently
applied to the LPL-enabled stack, resulting in a confusing
and increasingly-diverging codebase.

MLA avoids these pitfalls by identifying the key low-level
capabilities required by MAC protocols, and providing rich
hardware-independent interfaces that expose them. Since the
implementation of these interfaces is highly platform spe-
cific, different implementations must exist for each radio and
microprocessor platform that supports them. We expect that
the effort to adapt a new radio stack to support these low-
level interfaces should be low, since these interfaces gener-
ally wrap existing functionality in the radio stack.

Following the components introduced in Table 2,
we first present the set of hardware-independent in-
terfaces that MLA defines for exposure by the core
radio stack: RadioPowerControl, ChannelMonitor,
CcaControl, Resend. We then provide details of the in-
terfaces provided by the AsyncIOAdaptor, Alarm, and Lo-
calTime components respectively.

3.4.1 Radio Power Control
The ability to control the power state of the radio is the

most fundamental need of any power managing MAC proto-
col. In [3], we proposed the RadioPowerControl interface
to allow a MAC protocol to switch the radio between two dis-
tinct power states: active and sleep. MLA adopts the same
interface for controlling the power state of the radio.

interface RadioPowerControl {
async command void start();
async event void startDone(error);
async command void stop();
async event void stopDone(error);

}

The RadioPowerControl interface is simple by design.
Many radios provide multiple low-power states with varying

degrees of latency and power consumption when switching
between them. We note, however, that most existing MAC
protocols only utilize one of these low-power states. The
implementation of the RadioPowerControl interface must
therefore choose the most appropriate one. This interface can
be extended to expose multiple power states if future MAC
protocols require them.

Many applications expect some degree of explicit control
over the radio’s power state. Rather than providing the appli-
cation with direct control through the RadioPowerControl
interface, MLA exposes a standard interface for enabling or
disabling the entire MAC layer. When the MAC layer is dis-
abled, all of its internal components are also disabled, and
the radio is powered down. Conversely, whenever the MAC
layer is enabled, its internal components are also enabled,
and the MAC protocol is responsible for managing the ra-
dio’s power state. This policy, which we use throughout the
MAC layer implementations described in Section 4, greatly
simplifies management of the radio’s power state.

3.4.2 Channel Monitor
The ChannelPollerC component described in Section

3.3.1 assists the MAC layer with periodic CCA checks.
However, it is reliant on radio stack support to actually per-
form these checks. The mechanism for doing so varies sig-
nificantly from radio to radio. For example, the CC2420
radio features a simple hardware CCA pin, whereas CCA
checks must be emulated on the CC1000 radio by taking
RSSI samples [6]. Likewise, the type of filtering applied to
these raw CCA checks (e.g., how many times to sample the
CC2420’s CCA pin, and what percentage of these samples
must be positive) is radio-specific.

MLA adapts the ChannelMonitor interface described in
[3] as seen below:

interface ChannelMonitor {
async command void check();
async event void free();
async event void busy();
async command void setCheckLength(t_ms);
async command uint16_t getCheckLength();

}

This interface provides a simple, platform-independent
wrapper around complex radio-specific CCA procedures.
After the MAC layer signals the check command, the ra-
dio performs a CCA check in a split-phase fashion. It then
fires a free or busy event according to the results of its
CCA check. We have augmented this interface to support
setCheckLength and getCheckLength commands. These
commands allow the MAC layer to customize the maximum
duration of time that a CCA check can last. This degree
of control is important in many TDMA protocols, which re-
quire deterministic packet processing time in order to main-
tain tight clock synchronization.

Implementing an effective CCA check routine inside the
radio stack can be challenging. While many of these rou-
tines are generally already present in some form in many
existing radio stacks, they tend to use radio-specific inter-
faces and are not portable accross different CPU platforms.
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In Section 4.6 we discuss how this challenge can be over-
come so that augmenting an existing radio stack to provide
platform-independent ChannelMonitor support simply in-
volves wrapping the radio specific CCA check routine with
this interface.

3.4.3 CCA Control
MAC protocols with tight timing constraints, such as

TDMA protocols, require strict bounds on packet latencies.
However, packet backoff intervals can contribute an unpre-
dictable amount of latency if backoff decisions are left en-
tirely to the discretion of the radio stack. Specifically, the
radio may apply an initial backoff; perform a CCA check
to see if the shared medium is free; and apply an additional
backoff if contention is detected. To achieve the timing re-
quirements that some MAC protocols require, they must be
able to set these backoff intervals appropriately, or even dis-
able them altogether.

The CcaControl interface (similar to the MacControl
interface provided in [6]) allows a MAC protocol to con-
trol the radio layer’s CCA checks and subsequent back-
off behavior. Before each packet is sent, the radio layer
fires a getInitialBackoff event to allow the upper layer
to specify the packet’s initial backoff time. Likewise, the
getCongestionBackoff event is fired when a transmission
must back off due to channel contention. This event not only
allows upper layers to change the default congestion back off
time, but also indicates to the MAC protocol that a packet
has experienced contention, allowing it to cancel the pend-
ing transmission if the protocol requires. Finally, the getCca
command allows contention-free protocols to turn off CCA
checks entirely, keeping packet latency to a minimum. All
three of these events pass along the corresponding default
values defined by the radio, so that the MAC layer can selec-
tively leave them unchanged.

interface CcaControl {
async event bool getCca(msg, default);
async event uint16_t getInitialBackoff(msg, default);
async event uint16_t getCongestionBackoff(msg, default);

}

3.4.4 Low-Cost Packet Resending
MAC protocols often send multiple copies of packets in

tight loops, e.g., to create a long preamble out of shorter
packets. In many of these situations, the cost of resending
a packet should be as small as possible; e.g., the packets in
a preamble should have minimal gaps between them. Some
radio hardware, such as the CC2420, specifically offer sup-
port for this activity: they can quickly resend the last packet,
skipping time-consuming activities like loading the hardware
packet buffer. Our Resend interface exposes this capability
in a hardware-independent fashion. The resend command
resends the last packet sent over the radio using the fastest
retransmission path supported by the radio hardware. In the
absence of native radio support, packet resending can be em-
ulated using a simple one-packet buffer.

3.4.5 Low-Latency I/O
In order to achieve maximum power efficiency, many

MAC protocols expect to send packets with as short a de-
lay as possible. In particular, TDMA-based protocols and
some scheduled contention-based protocols stamp outgoing
packets with time synchronization information. To preserve
the accuracy of these timestamps, the MAC layer must be
able to send and process clock synchronization information
in a very time-sensitive fashion.

This low latency can be achieved by exposing radio hard-
ware events to the MAC layer with as thin a layer as possible.
In general, existing radio stacks do not follow this approach.
Instead, asynchronous hardware interrupts are converted into
synchronous tasks or threads, whose execution can be de-
ferred for an indeterminate length of time. This policy is sen-
sible at the application layer: executing I/O-handling code
within the context of a hardware interrupt is potentially dan-
gerous, and can prevent the radio from responding in a timely
fashion. However, this trade-off is not acceptable at the MAC
layer: when hardware interrupts fire in the middle of a long-
running computation, the corresponding tasks or threads pro-
duced to handle them often face arbitrary delays.

Radio Core

Low Power MAC

AsyncIOAdapter

AsyncReceive

Interface to 
Upper Layers

Receive Send

AsyncSend

Figure 2. Asynchronous to synchronous I/O adaptation

MLA therefore exposes the radio’s send and receive op-
erations through AsyncReceive and AsyncSend interfaces,
as shown in Figure 2. These interfaces are similar to the cor-
responding synchronous Receive and Send interfaces used
in TinyOS, but are invoked or reachable directly from inter-
rupt handlers (i.e., asynchronous context) rather than tasks
or threads (i.e., synchronous context).

For the reasons listed above, MLA does not expose these
radio events directly to the upper layers. All I/O events
that the MAC layer does not consume are passed through
an AsyncIOAdapter, a component which converts asyn-
chronous I/O events into their synchronous counterparts by
posting tasks or scheduling a thread. Monolithic radio
stacks generally use a similar adapter internally; we simply
move this logic outside of the radio stack so that both our
hardware-independent and hardware-dependent components
can interface with the radio in a timely fashion. This subtle,
but important, change allows components developed above
the core radio stack to perform operations on incoming and
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outgoing packets directly within asynchronous code signaled
from radio hardware events.

In a threaded operating system, the components defined
by MLA would all be invoked within the asynchronous event
handlers of the radio device driver. MLA’s operation is there-
fore independent of any higher-level threading functional-
ity offered by the OS. For example, any threads that send a
packet would make blocking I/O calls to the radio driver us-
ing the OS’s application-layer networking APIs. Only once
the I/O operation had completed would the driver schedule
the thread to run again. Receiving a packet would trigger a
similar series of operations in the reverse direction.

3.4.6 Alarms
Many MAC protocols are timing-sensitive, requiring cer-

tain events to be triggered at precise intervals. This can
be achieved by hooking into the periodic interrupts gener-
ated by low-level hardware timers. However, existing radio
stacks do not generally allow direct access to this hardware
in a platform-independent way. Like radio I/O events, timer
events are converted to tasks or threads. Again, while this
policy discourages application code from running within the
context of a hardware interrupt, it often imposes a long delay
before timer events can be handled. This delay can be crit-
ical at the MAC layer, which may require sub-millisecond
precision to perform activities like time synchronization.

TinyOS 2.0 includes an Alarm interface which provides
the needed hardware-independent abstraction that we seek.
This interface is reproduced below for the reader’s conve-
nience. The start command instructs the alarm to trigger
an interrupt after a specified time interval elapses. This in-
terrupt is exposed to the higher layers as a fired event. The
stop command cancels the previous start command with-
out firing the fired event, and isRunning checks to see if
some alarm is pending. Finally, getNow provides some no-
tion of absolute time (e.g., the number of milliseconds since
the sensor was booted).

interface Alarm {
async command uint16_t getNow();
async command void start(time);
async command void stop();
async command bool isRunning();
async event void fired();

}

Apart from a hardware-independent alarm interface, we
also require a hardware-independent mechanism for wiring
hardware alarms into our MAC layer. We propose that each
platform implement generic AlarmMilliC, Alarm32khzC,
and AlarmMicroC components that provide Alarm interfaces
with millisecond-, 32 KHz-, and microsecond-resolution, re-
spectively. Because not all platforms provide alarms with
exactly these resolutions, these components may need to in-
ternally transform the available hardware alarms into the re-
quired form.

3.4.7 Local Time
Many time-synchronization protocols exchange timing

information in some form (e.g., how long has elapsed since
the last time a synchronization message was received). This
information is generally derived from a hardware counter,

which automatically increments at small intervals (e.g., once
a millisecond). Unfortunately, these counters are not suitable
for long-lived applications, since they will quickly overflow.
In the common case of a 16-bit counter which increments
every 1 ms, the counter will overflow in just over 2 days.
Although these overflow events are often exposed to the ap-
plication layer, this forces the application to count and ac-
commodate for these overflows each time they occur.

interface LocalTime<local_time_t> {
async command local_time_t getNow();
async command local_time_t add(t1, t2);
async command local_time_t sub(t1, t2);
async command bool lessThan(t1, t2);
async command bool greaterThan(t1, t2);
async command bool equal(t1, t2);

}

To handle these overflow cases, we introduce a series of
components (LocalTime32khz32C, LocalTimeMilli16C,
etc.) which wrap hardware counters of the corresponding
width and frequency, using the LocalTime interface shown
above. This component also tracks and counts hardware
counter overflows. When the getNow command is invoked,
the component returns a timestamp in a local time t struc-
ture, which is twice the counter’s native width and is ad-
justed according to the number of times the counter has over-
flowed. We also provide convenience commands for adding,
subtracting, and comparing these timestamps.

4 Implementation
We have implemented MLA in the TinyOS 2.0 operat-

ing system [14]. This implementation is available in the
tinyos-2.x-contrib section of TinyOS’s CVS repository
[15]. Wherever feasible, components were implemented by
porting portions of the existing TinyOS 2.0.1 code base, in-
cluding the monolithic implementations of B-MAC and X-
MAC in the cc2420 radio stack. We removed the monolithic
power-management code from this stack and augmented it to
export the low-level interfaces described in Section 3.4.

Additionally, we have built five MAC protocols using
MLA: two channel polling, one TDMA, and two hybrid.
Specifically, we implemented B-MAC, X-MAC, SCP, a pure
TDMA protocol, and a hybrid protocol called SS-TDMA
(“SS” stands for “slot-stealing”) that combines TDMA with
CSMA/CA. These protocols have been thoroughly tested for
our augmented CC2420 radio stack on MSP30-based TelosB
motes, but should be deployable “as-is” on other radio stacks
that provide the low-level interfaces specified by MLA.

In this section, we discuss the composition and imple-
mentation of the five MAC protocols within MLA, focusing
specifically on component re-use throughout the system. We
also highlight some of the system-related challenges that we
faced during the implementation process.

All of our implementations contain a protocol-specific
component that is used to enable and disable the MAC pro-
tocol as a whole upon request. Due to space limitations we
omit these components, and focus on the details of imple-
menting the key logic of each protocol. For clarity, we also
omit discussion of the AsyncIOAdapter that sits directly on
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Figure 3. Composition of the B-MAC protocol; unshaded
boxes represent reusable components, and shaded boxes
represent protocol-specific components

top of all five MAC layer implementations. We refer the
reader back to Section 3.4.5 for details on this component.

4.1 B-MAC
B-MAC, shown in Figure 3, is the simplest MAC pro-

tocol implemented in MLA. It employs a B-MAC spe-
cific BmacSenderP component for intercepting outgoing
packets from upper layers. It buffers these packets, in-
vokes PreambleSenderC’s sendPreamble command, sends
the buffered packet, and turns off the radio using the
RadioPowerControl interface. To simplify implementa-
tion, BmacSenderP uses a copy of the buffered data packet
to serve as the preamble packet. The number of pream-
ble packets to send is obtained from ChannelPollerC’s
LowPowerListening interface, since B-MAC sends pream-
bles for the entire duration of LPL sleep interval.

B-MAC includes a small BmacFilterP component which
emulates two aspects of the monolithic cc2420 stack’s be-
havior. First, it counts the number of consecutive over-
heard packets which are destined for other nodes. When
this count reaches a certain threshold, BmacFilterP starts
FixedSleepLplListenerC’s timeout alarm. This optimiza-
tion allows nodes that overhear a transmission to go back to
sleep early, without waiting for the preamble to end. Second,
it intercepts incoming packets and holds them in a queue un-
til no radio activity is detected (i.e., until it has received the
final packet containing data at the end of a senders preamble
stream). These behaviors are not part of the original B-MAC
specification [6]; the first is taken from X-MAC, and the sec-
ond is unique to the monolithic cc2420 stack. Nevertheless,
we implement both behaviors for consistency with the exist-
ing monolithic stack.

4.2 X-MAC
X-MAC extends B-MAC by adding optimizations to

end the preamble stream as soon as possible. As a re-
sult, X-MAC’s composition closely mirrors that of B-MAC,
with two distinct differences. As seen in Figure 4, we
first replace BmacSenderP with XmacSenderP, which sends
preambles in accordance with X-MAC’s early-ACK opti-
mization. XmacSenderP is identical in implementation to
BmacSenderP, except that it responds to resendPreamble
events with RESEND WITH CCA before the recipient ACKs a
preamble packet, and DO NOT RESEND thereafter. With this

SenderC

Radio Core

ListenerC

Channel
PollerC

Channel
Monitor

AsyncReceive

Async
Receive

RadioPower
Control

LowPowerListening

MacCLow
Pow

er

Listening Lo
w
Pow

er

Li
st

en
in

g

C
ha

nn
el

Pol
le

r

AsyncSend

Async
Send

MacControlC

LowPowerListening

FixedSleepLpl
ListenerC

XmacFilterP

Async
Receive

AsyncReceive

RadioPower
Control

XmacSenderP

Preamble
SenderC

AsyncSend

AsyncSend

RadioPower
Control RadioPower

Control

Figure 4. Composition of the X-MAC protocol
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optimization, the sender node will terminate the preamble as
soon as the recipient ACKs one packet, allowing both the
sender and receiver to go back to sleep early.

Second, X-MAC does not queue incoming packets, since
the sender will end the preamble as soon as one ACK is re-
ceived. X-MAC’s introduces an XmacFilterP component,
which is analogous to the BmacFilterP component except
that it excludes this queue.

4.3 SCP
Like X-MAC, SCP reuses several MLA components used

by B-MAC. SCP also introduces new components to embed
and extract timestamps for incoming and outgoing packets.
As shown in Figure 5, the ScpSyncSenderP component ap-
pends each outgoing packet with a 2-byte counter represent-
ing the time remaining on ChannelPollerC’s internal alarm
(i.e., how long until the node performs its next CCA check).
ScpSyncReceiverP reads these timestamps from incoming
packets and adjusts the local ChannelPollerC’s alarm ac-
cordingly. This adjustment ensures that all nodes wake for
CCA checks simultaneously. The ScpSyncSenderP period-
ically sends explicit time synchronization packets if no other
data is sent during some interval; the application may cus-
tomize this interval using the SyncInterval interface ex-
ported through the MacControlC component.
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SCP also introduces a ScpSenderP component to buffer
outgoing packets. In contrast to BmacSenderP and
XmacSenderP, which begin sending preambles as soon as
they are prompted to send a packet, ScpSenderP waits until
just before its next CCA check (i.e., just before all the nodes
are scheduled to wake up). This change allows the sending
and receiving nodes to synchronize their radio activity, and
allows SCP to use a short preamble (9 ms on CC2420 ra-
dios). ScpSenderP also implements the packet pipelining
optimization described in [5], which allows the application
to send multiple packets within one LPL interval.

Another fundamental difference is that ScpSenderP con-
structs its preamble from explicit preamble packets contain-
ing alternating 1s and 0s, rather than reusing the buffered
data packet directly. Preamble packets arrive so rapidly that
ScpSyncReceiverP cannot afford to do any processing on
them, or else it will overrun its interrupt handler. This change
allows ScpSyncReceiverP to immediately identify and dis-
card incoming preamble packets with minimal processing.
Note that preamble packets contain no data useful to the up-
per layers: they exist simply to occupy the channel while the
recipient node is listening.

Unlike the previous two protocols, SCP contains a small
portion of radio-dependent code. This code enumerates a
handful of radio-specific constants, such as the amount of
time it takes to wake up the radio. It is impossible to
completely remove this radio-dependent portion, since SCP
achieves its high energy efficiency by adjusting the length
of its preamble according to these radio-specific properties.
However, the CC2420-specific portion of SCP contains only
8 lines which declare constants derived from experimental
data. The effort required to add support for additional radios
should be minimal.

While our implementation in MLA implements most fea-
tures of the SCP protocol, we have not yet implemented its
overhearing avoidance feature described in [5]. Our architec-
ture could support this optimization in the future by adding a
component analogous to XmacFilterP, with additional logic
to prevent interference with SCP’s separate packet pipelining
optimization.

4.4 Pure TDMA
Pure TDMA, shown in Figure 6, is a TDMA protocol

designed for a single-hop network in which nodes commu-
nicate to a single base-station. This protocol is similar to
the GTS portion of 802.15.4. The PureTDMASchedulerC
component implements a slot scheduler for a TDMA frame
that contains both active and sleep periods. The length of
each period can be configured by the application using the
FrameConfiguration interface.

The first slot in the active period is reserved for the
BeaconedTimeSyncC component to exchange time synchro-
nization information. The remainder of the slots in the active
period are assigned to nodes for transmitting packets without
contention using the TDMASlotHandlerC slot handler. Ac-
cess to the radio is arbitrated between these handlers using
the LowLevelDispatcherC component. The scheduler also
turns off the radio in the first slot of the sleep period and
wakes it up in the last slot of the active period.

Radio Core

PureTDMA 
SchedulerC

AsyncReceive

AsyncReceive

FrameConfiguration

MacC

AsyncSend

AsyncSend
RadioPowerControl

MacControlC

FrameConfiguration

Beaconed
TimeSyncC

LowLevel 
Dispatcher

TDMASlot
SenderC

AsyncReceive

AsyncSendAsyncSend

Async
Send

AsyncSend

Async
Receive

AsyncSend

RadioPower
Control

Async
Receive

Figure 6. Composition of the pure TDMA protocol

Radio Core

SS-TDMA 
SchedulerC

AsyncReceive

AsyncReceive

FrameConfiguration

MacC

AsyncSend

AsyncSend
RadioPowerControl

MacControlC

FrameConfiguration

Beaconed
TimeSyncC

LowLevel 
Dispatcher

TDMASlot
SenderC

Async
Receive

AsyncSendAsyncSend

Async
Send

Async
Send

Async
Receive

AsyncSend

RadioPower
Control

Async
Receive

CSMASlot
SenderC

Async
Send

Async
Send

Figure 7. Composition of the SS-TDMA protocol

4.5 SS-TDMA
SS-TDMA, shown in Figure 7, is a hybrid protocol which

combines TDMA and CSMA/CA. SS-TDMA is an exten-
sion of the Pure TDMA protocol which includes an opti-
mization originally introduced by Z-MAC [11] to allow the
MAC layer to reuse idle slots. Like Pure TDMA, SS-TDMA
divides a frame into periods of activity and sleep. A node
scheduled to transmit during one of the slots in the active
period is said to “own” that slot. Slot owners are given pref-
erence to transmit, and send data using a short initial back-
off. If a slot owner does not have any data to transmit, other
nodes may contend for its use after some additional delay.

SS-TDMA is implemented as follows. Like in Pure
TDMA, the first slot in each frame’s active period is re-
served for the BeaconedTimeSyncC component to exchange
time synchronization information. For all other slots in the
active period, the PureTDMASchedulerC is used to deter-
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mine which node is currently scheduled to transmit. When-
ever a node has a packet to send, the PureTDMASchedulerC
first buffers the packet, and then invokes one of two slot
handler components in order to send it. During slots that
the node owns, the TDMASlotSenderC component sends the
packet immediately without a CCA check or backoff. For
all other slots, the CSMASlotSenderC component uses the
ChannelMonitor interface to perform a CCA check and de-
termine if the current slot’s owner is transmitting. If not, then
the node performs a short backoff followed by another CCA
check. This second CCA check reduces collisions among
multiple nodes that try to steal the same slot simultaneously.
If this second CCA check determines that the radio is still
free, then CSMASlotSenderC transmits the buffered packet.

4.6 Lessons Learned
Because the MAC layer operates in an asynchronous con-

text close to the radio layer, implementing the components
described in this process is an inherently complex process,
rife with potential concurrency and timing errors. We dis-
cuss here several of the most notable challenges we faced
while implementing MLA and the five MAC protocols de-
scribed in this section.

Implementing the ChannelMonitor interface in the
CC2420 radio layer required some subtle adjustments. Be-
cause hardware CCA checks on the CC2420 radio are instan-
taneous and only consider the last 8 samples from the radio,
the CCA pin must be queried in a loop that executes at least
as long as the gap between packets (up to 8 ms, according to
our measurements). To perform this check, we initially ex-
tracted the getCca task from the CC2420DutyCycleP com-
ponent found in the cc2420 stack. 1 The results were poor;
according to our oscilloscope measurements, our CCA check
loop would last under 5 ms, resulting in a number of false
negatives and an alarming number of dropped packets, par-
ticularly in conjunction with X-MAC.

After inspecting the code, we discovered that the loop
in this task executed for a fixed number of iterations deter-
mined by compile-time constants: e.g., the monolithic X-
MAC implementation used 500 iterations on MSP430-based
platforms and 400 on others. This policy is inherently non-
portable, since the amount of time required to execute each
iteration will vary from CPU to CPU. Even the small changes
we made to the loop’s contents would drastically affect the
length of the CCA check interval. We eventually developed a
cross-platform solution using our LocalTime interface based
around a 32 KHz hardware counter. For example, to achieve
a check time of 8 ms, we terminate the loop after the counter
increases by 256 (8 ms x 32 KHz). This approach guarantees
that the loop will execute for the same MAC-protocol speci-
fied length on any platform, regardless of the CPU used.

Additionally, our implementations of ScpSyncSenderC
and ScpSyncReceiverC did not initially treat preamble
packets as special cases. This had three unanticipated ef-
fects. The sender required extra time to apply timestamps
to the outgoing preamble packets, increasing the gap be-
tween packets and hence creating the possibility of packet

1We did not wish to use the entire component, since parts were
fairly specific to the built-in B-MAC and X-MAC implementations.

gaps larger than the receiver’s CCA check. When the re-
ceiver did receive a packet, it would always attempt to ad-
just its timer using the embedded timestamp. Because the
preamble packets are sent almost immediately before the
sender’s CCA check — as short as 1 ms prior — their times-
tamps are correspondingly short. The recipient would ad-
just its timer to this very short interval, often causing it to
fire almost immediately after each preamble packet was pro-
cessed. Most seriously, since the receiver node would pro-
cess the timestamps on all incoming packets directly within
the radio hardware’s interrupt handler, its incoming packet
buffer would often overflow, and the data packet would be
lost. As noted above, we avoided these side effects by short-
circuiting preamble packets through ScpSyncSenderP with-
out applying timestamps, and dropping them as soon as pos-
sible in ScpSyncReceiverP.

These implementation details underscore the need for a
platform-independent MAC layer architecture. The errors
we made highlight the inherent complexity of low-level, tim-
ing critical code, and were exacerbated by the relative inef-
fectiveness of traditional debugging tools like GDB in such
critical sections of code. It is paramount that capable de-
velopers be able to produce definitive, well-tested imple-
mentations of components required by MLA, which can be
reused many times by less-experienced developers on dif-
ferent platforms. Though the potential for unexpected plat-
form/MAC layer interactions still exists in our architecture,
we expect that they will be far less common than the bugs
produced by grafting a monolithic MAC protocol into a new
radio stack, since this involves essentially reimplementing
the MAC layer from scratch. Moreover, fixes to radio layer
bugs are automatically “inherited” by all protocols which
use MLA, whereas they must be merged manually into each
monolithic MAC layer implementation.

5 Evaluation
In this section, we provide an empirical performance eval-

uation on TelosB motes. We measure the amount of code
reuse across all five MAC protocols implemented on MLA,
and compare the code size, throughput, latency, and radio
duty cycle of our new implementations of B-MAC and X-
MAC against the same protocols implemented in the TinyOS
2.0.1 cc2420 radio stack. We include benchmark results for
a version of the TinyOS 2.0.1 cc2420 stack augmented to
use our portable CCA check, thereby demonstrating the ef-
fects of this change independently from our architecture. We
also present the performance results of SCP, Pure TDMA,
and SS-TDMA, to validate MLA’s ability to support TDMA
and hybrid protocols2.

5.1 Code Reuse and Footprint
A primary goal of MLA is to significantly reduce the ef-

fort required to implement a new MAC protocol. To quan-
tify the reduction in developer effort, we measure the amount
of component reuse across different MAC protocols imple-
mented in MLA. Table 5.1 lists the MLA components de-

2It is not possible to make a fair comparison of B-MAC, X-
MAC, and SCP with their original monolithic implementations pre-
sented in [6], [16], and [5], respectively, since their implementa-
tions were based on TinyOS 1.0 and different hardware platforms.
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Figure 8. The proportion of reusable code in each MAC
protocol

scribed in Section 3.3 and indicates their use in our im-
plementations of B-MAC, X-MAC, SCP, Pure TDMA, and
SS-TDMA. We also note the number of components spe-
cific to each protocol as discussed in Section 4. In all five
MAC layers, the generic components outnumber the newly-
implemented components.

B-MAC X-MAC SCP Pure TDMA SS-TDMA

Channel Poller X X X

Fixed Sleep LPL Listener X X

Periodic LPL Listener X

Preamble Sender X X X

Time Synchronization X X X

TDMA Slot Handler X X

CSMA Slot Handler X

Low Level Dispatcher X X

AsyncIOAdapter X X X X X

Alarm X X X X X

Local Time X X X

Radio Core X X X X X

Reused Components 6 6 8 7 8

Other Components 3 3 4 2 2

Figure 8 summarizes the number of lines of code in the
MLA components and protocol-specific components in each
protocol3. The contribution of these reusable components to
the overall codebase ranged from 51% to 73%, indicating a
significant savings in developer effort.

Table 3 examines the impact of using MLA on binary
code footprint. We list the ROM and RAM size of our
throughput benchmark application (discussed in Section 5.2)
when compiled for the TelosB motes, as reported by the
TinyOS toolchain. MLA has comparable RAM usage to the
monolithic stack, but consumes about 2 KB more ROM for
both B-MAC and X-MAC. Our radio stack’s new CCA check
routine, which uses the LocalTime interface to obtain accu-
rate hardware counter information, accounts for these two
kilobytes. Rolling back our new CCA check to the original
code makes the code size in ROM close to the monolithic
stacks. However, as noted in Section 4.6, the original CCA
routines are inherently non-portable across CPU platforms.
We therefore opted to continue using our enhanced CCA rou-
tine despite the code size increase. Additionally, ROM is
generally not a scarce resource: applications are more likely

3This figure does not include the augmentations to the cc2420
radio stack described in Section 3.4, since these lines of code are
woven into the stack and hence difficult to count accurately.

to be constrained by RAM, where we perform comparably,
and developer effort, which MLA reduces significantly over
the monolithic approach through code reuse.

ROM RAM

B-MAC (UPMA) 20136 927

B-MAC (UPMA w/orig CCA) 18338 921

B-MAC (monolithic) 17586 922

X-MAC (UPMA) 19854 876

X-MAC (UPMA w/orig CCA) 18000 864

X-MAC (monolithic) 17408 866

SCP (UPMA) 21372 1056

SCP (UPMA w/orig CCA) 19534 1050

Pure TDMA (UPMA) 20304 918

Pure TDMA (UPMA w/orig CCA) 18494 910

SS-TDMA (UPMA) 20912 932

SS-TDMA (UPMA w/orig CCA) 18974 926

Table 3. The ROM and RAM footprint of various MAC
implementations in bytes

5.2 Throughput
To measure the throughput of the MAC protocols, we de-

ployed each protocol on one recipient node, and on 1–10
sender nodes arranged in a 1 m-diameter circle around the re-
cipient. The sender nodes sent packets with 28-byte payloads
addressed to the recipient in a tight loop, as fast as permit-
ted by the MAC layer. The recipient counted the number of
packets received successfully over the course of 60 seconds.
This experimental setup emulates the throughput experiment
presented in [6]. In the case of SCP, each node waited 15 ad-
ditional seconds before the beginning of each run, to allow
enough time for the nodes’ clocks to synchronize. All nodes
were configured with a sleep interval of 100 ms. Both Pure
TDMA and SS-TDMA were configured with a slot size of
10 ms, and 16 slots per frame: including 1 synchronization
slot, 10 active slots, and 5 sleep slots.

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10

# of sending nodes

T
h

r
o

u
g

h
p

u
t 

(
k
b

it
s
/

s
)

B-MAC (MLA)

B-MAC (mono., orig.
CCA)

B-MAC (mono., new
CCA)

X-MAC (MLA)

X-MAC (mono., orig.
CCA)

X-MAC (mono., new
CCA)

SCP (MLA)

Pure TDMA (MLA)

SS-TDMA (MLA)

Figure 9. The throughput of various MAC implementa-
tions

The results are plotted in Figure 9. All three B-MAC im-
plementations exhibit the lowest throughput of all protocols.
For both B-MAC and X-MAC, the average throughput of
the monolithic implementations is not significantly affected
by the CCA routine used. The throughput achieved by the
MLA-based B-MAC and X-MAC implementations are also
comparable to their monolithic counterparts. These results
demonstrate that the component-based architecture of MLA
has negligible impact on MAC throughput.
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Since no monolithic implementations currently exist for
SCP in TinyOS 2.0, it is impossible to provide a fair com-
parison with its MLA implementation. Instead, we compare
its MLA implementation to the rest of the protocols and ver-
ify that the results obtained are consistent with the expected
operation of SCP. SCP’s throughput is an average of 81%
higher than MLA’s B-MAC implementation. SCP is able
to achieve higher throughput than B-MAC for two reasons.
First, SCP performs an extra back-off between preamble and
payload which B-MAC does not perform. This additional
back-off interval reduces the number of collisions under high
contention. Moreover, SCP includes optimizations for han-
dling bursty traffic that allow nodes to transmit more than
one packet per LPL interval.

Both TDMA protocols perform better than B-MAC and
worse than X-MAC. Pure TDMA has a linear increase in
throughput as the number of nodes increases, since exactly
one send slot is allocated to each sender node. SS-TDMA
achieved higher throughput than Pure TDMA since it al-
lows unallocated slots to be stolen for sending. SS-TDMA’s
throughput increases as more nodes are added, since multi-
ple nodes may be able to share the same stolen slots. Adding
more nodes also shrinks the performance gap with Pure
TDMA, since there are fewer unallocated slots. SS-TDMA’s
throughput levels off after more than 4 senders, due to in-
creased contention for stolen slots.

5.3 Latency
We evaluated the latencies of B-MAC, X-MAC, and SCP

on a multi-hop network. We placed 6 nodes in a line, spaced
1 m apart. The first mote injected a packet into the net-
work every 3 seconds. Each subsequent mote forwarded the
packet to its next neighbor. When a packet reached the end
of the line, the last node reversed the packet’s direction, and
the nodes forwarded the packet back to the first node. We
recorded each packet’s round-trip time at each of the first
five nodes. We computed the average latency and its stan-
dard deviation over 50 round trips.
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Figure 10. The average packet latency of contention-
based MAC implementations

The results are presented in Figure 10. SCP serves as a
useful baseline, since we expect the average latency to in-
crease by 100 ms at each hop4. Our experimental results fit

4Though SCP includes optimizations for reducing multi-hop la-

this prediction well. On rare occasion, a node would falsely
detect activity on the radio, and hold onto the packet for an
extra 100 ms before forwarding it. This adds a small average
delay above the expected 100 ms at each hop.

Also as expected, B-MAC and X-MAC have linearly-
increasing average latencies, with X-MAC having a much
smaller slope. Our implementations of B-MAC and X-MAC
perform comparably with the monolithic implementations.
Combined with the throughput measurements presented in
the previous section, these results demonstrate that the per-
formance impact of MLA’s component-based architecture on
MAC protocols is negligible.
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Figure 11. The average packet latency of TDMA-based
MAC implementations

Since Pure TDMA and SS-TDMA are designed for
single-hop networks, we evaluated their latency in a sep-
arate single-hop network. For these protocols, we repeat
the throughput experiments performed for B-MAC, X-MAC,
and SCP, and record the average latency of each packet trans-
mitted. Again, we use a single sink node and vary the num-
ber of sender nodes from one to ten.

Pure TDMA has an average packet latency of 163.0 ms,
regardless of the number of senders. This is because each
node attempts to send a new packet immediately after the
previous packet is sent. Because each node is only allowed
to send one packet per slot, it must wait 160 ms for the next
frame before it can transmit again. In contrast, SS-TDMA
has an average latency of 28.6 ms. Unlike Pure TDMA, SS-
TDMA’s latency increases as the number of nodes increases.
This is because nodes try to steal unallocated slots in order
to transmit the packet more quickly. As the number of nodes
increases, so does the contention for those slots.

5.4 Duty Cycle
To measure the duty cycle of the various MAC layer im-

plementations, we augmented the radio stacks to count the
time that various hardware components were active. Specifi-
cally, we used a 32 KHz hardware counter to record the time
spent executing each of the three stages involved in turning
on the CC2420 radio: enabling the voltage regulator, turn-
ing on the oscillator, and finally powering the radio into re-
ceive mode. We collected this data during a separate run of
the latency benchmark application, which emulates a typical
low-to-medium load application. We do not consider Pure
TDMA or SS-TDMA in this experiment, as they have fixed
duty cycles by design.

Figure 12 shows the average duty cycle of the six nodes.
Our B-MAC and X-MAC implementations had 17% and

tency, they only take effect when a single node produces multiple
packets within one LPL interval.
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Figure 12. The average duty cycle of various MAC im-
plementations

18% higher duty cycles than their respective monolithic
counterparts. When the monolithic stack is augmented with
the portable CCA routine, the difference in duty cycle be-
tween the two stacks becomes insignificant. Specifically,
when using the same CCA routine, there is a 4% difference
between the B-MAC implementations and a 3% difference
between the X-MAC implementations. In the case of B-
MAC, the MLA implementation actually outperformed that
of the monolithic stack. These results indicate that the dif-
ferences in the duty cycles are caused by our particular im-
plementation of the CCA routine instead of the overall MLA
architecture. We expect that the difference between the two
CCA routines could be reduced by further tuning the portable
CCA check’s length and sensitivity.

The duty cycle is highly dependent on the senstivity of the
CCA check routine. Tuning the duration of this CCA check
allows the developer to achieve a desired tradeoff between
performance and the duty cycle. As described in Section
3.4.2, MLA’s ChannelMonitor interface allows developers
to tune the duration (in ms) of the CCA check in a platform-
independent fashion, using the underlying LocalTime in-
terface. In contrast, platform-dependent hand-tuning of the
CCA check, as is done inside of the monolithic cc2420
stack, can potentially offer better energy efficiency at the
cost of extensive re-tuning for each new sensor platform.
In the future, we will consider ways for developers to op-
tionally associate a MAC protocol implementation with a
platform-dependent CCA routine within MLA. This capa-
bility would allow developers to achieve optimal energy ef-
ficiency on specific sensor platforms, while still permitting
the MAC protocol to fall back on (potentially less-efficient)
platform-independent tuning on other platforms.

Our implementation of SCP exhibits a 11% lower duty
cycle than our B-MAC implementation. This difference is
due to the fact that SCP can turn the sender’s radio off af-
ter sending a short preamble and a single payload packet.
However, because we have not yet implemented SCP’s over-
hearing avoidance optimization, SCP still pays the penalty of
keeping the radio on for the entire polling interval if it over-
hears a preamble. This prevents our implementation of SCP
from achieving a duty cycle comparable to X-MAC.

6 Conclusion
We have developed MLA, a component-based archi-

tecture for the MAC layer. MLA consists of high-level,
hardware independent components as well as low-level,
hardware-dependent components. We have implemented
MLA on the TinyOS 2.0.1 operating system, and evaluated
its flexibility through the implementation of five representa-
tive MAC protocols that span the protocol design space. Em-
pirical results show that our architecture can achieve up to
73% code reuse, while achieving comparative performance
and memory footprint to monolithic implementations of the
same protocols. These results demonstrate the reusability,
flexibility, and efficiency of our component-based architec-
ture in supporting a diverse MAC protocols for use in wire-
less sensor networks.
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