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Abstract

Recent years have seen the emergence of wireless sensor
network systems that must support high data rate and real-
time queries of physical environments. This paper proposes
Real-Time Query Scheduling (RTQS), a novel approach to
conflict-free transmission scheduling for real-time queries
in wireless sensor networks. First, we show that there is
an inherent trade-off between prioritization and throughput
in conflict-free query scheduling. We then present three new
real-time scheduling algorithms. The non-preemptive query
scheduling algorithm achieves high throughput while intro-
ducing priority inversions. The preemptive query schedul-
ing algorithm eliminates priority inversion at the cost of
reduced throughput. The slack stealing query scheduling
algorithm combines the benefits of preemptive and non-
preemptive scheduling by improving the throughput while
meeting query deadlines. Furthermore, we provide schedu-
lability analysis for each scheduling algorithm. The anal-
ysis and advantages of our scheduling algorithms are vali-
dated through NS2 simulations.

1 Introduction

Recent years have seen the emergence of wireless sensor
networks (WSNs) that must support real-time data collec-
tion at high data rates. Representative examples include pa-
tient monitoring [13], emergency response [17], and struc-
tural health monitoring [15] and control. Such systems pose
significant challenges. First, the system must handle vari-
ous types of traffic with different deadlines. For example,
during an earthquake, the acceleration sensors mounted on
a building must be sampled and their data delivered to the
base station in a timely fashion to detect any structural dam-
age. Such traffic should have higher priority than tempera-
ture data collected for climate control. Thus, a real-time
communication protocol should provide effective prioriti-
zation between different traffic classes while meeting their
respective deadlines. Second, the system must support high

throughput since it may generate high volumes of traffic.
For example, structural health monitoring require a large
number of acceleration sensors to be sampled at high rates
generating high network loads. Furthermore, the system
must deliver data to base stations or users within their dead-
lines. Therefore, it is important for the system to achieve
predictable and bounded end-to-end latencies.

Many WSN applications use query services to period-
ically collect data from sensors to a base station. In this
paper, we propose Real-Time Query Scheduling (RTQS),
a transmission scheduling approach for real-time queries in
WSNs. To meet this challenge, we present a set of new real-
time query scheduling algorithms and associated schedula-
bility analysis, which bridge the gap between WSNs and
real-time scheduling theories. Our scheduling algorithms
exploit the unique characteristics of WSN queries including
many-to-one communication, in-network aggregation and
periodic timing properties.

This paper makes four contributions: First, we show
through analysis and experiments that query scheduling has
an inherent tradeoff between prioritization and throughput.
Second, we developed three scheduling algorithms: (1)
The nonpreemptive query scheduling algorithm achieves
high throughput at the cost of some priority inversions.
(2) The preemptive query scheduling algorithm achieves
good prioritization by eliminating priority inversions. (3)
The slack stealing scheduling algorithm combines the ad-
vantages of preemptive and non-preemptive scheduling al-
gorithms by improving the throughput while meeting all
query deadlines. Third, we derive latency upper bounds for
each scheduling algorithm. This enables us to guarantee
that the admitted queries meet their deadlines. Our anal-
ysis enables query services to handle overload conditions.
through online admission and rate control. Finally, we pro-
vide simulations that demonstrate the advantages of RTQS
over contention-based and TDMA-based protocols in term
of both real-time performance and throughput.

The paper is organized as follows. Section 2 compares
our approach to existing work. Section 3 describes the
query and network models. Section 4 details the design



and analysis of RTQS. Section 5 provides simulation re-
sults. Section 6 concludes the paper.

2 Related Work

Real-time communication protocols can be catego-
rized into contention-based and TDMA-based protocols.
Contention-based protocols support real-time communica-
tion through probabilistic differentiation. This is usually
achieved by adapting the parameters of the CSMA/CA
mechanism such as the contention window and/or initial
back-off [8][14]. Rate and admission control [9][1] have
also been proposed for contention-based protocols to han-
dle overload conditions. However, contention-based ap-
proaches have two inherent drawbacks that make them un-
suitable for high data rate and real-time applications. First,
packet latencies are highly variable due to the random back-
off mechanisms. Second, their maximum throughput is low
due to channel contention under heavy load.

TDMA protocols can provide predictable packet laten-
cies and achieve higher throughput than contention-based
protocols under heavy load. The IEEE 802.15.4 standard
for WSNs has a reservation mechanism for providing pre-
dictable delays in single hop networks. A more flexible
slot reservation mechanism is proposed in [10] where slots
are allocated based on delay or bandwidth requirements.
Two recent papers proposed real-time communication pro-
tocols for robots [7][12]. Both protocols assume that at
least one robot has complete knowledge of the robots’ po-
sitions and/or network topology. While the protocols may
work well for small teams of robots, they are not suitable
for queries in large-scale WSNs. Implicit EDF [4] provides
prioritization in a single-hop cell. The protocol supports
multi-hop communication by assigning different frequen-
cies to cells with potential conflicts. However, the proto-
col does not provide prioritization for transmitting packets
across cells. In contrast, RTQS provides prioritization even
in large multi-hop networks without requiring multiple fre-
quencies.

Two recent protocols that support real-time flows in
WSNs have been proposed. In [17] a scheduling based
solution is proposed to support voice streaming over real-
time flows. The real-time chains protocol [3] extends
a contention-based scheme called Black Burst to support
packet prioritization. However, these protocols only support
real-time flows involving only one or a few data sources. In
contrast, RTQS is optimized for real-time queries that col-
lect sensor data from many sources.

In earlier work we proposed DCQS [6], a TDMA pro-
tocol that achieves high throughput by exploiting explicit
query information provided by the query service. How-
ever, DCQS does not support query prioritization or real-
time communication, which is the focus of this paper.

3 System Models

In this section, we characterize the query services for
which RTQS is designed and describe our network model.

3.1 Query Model

RTQS assumes a common query model in which source
nodes produce data reports periodically. This model fits
many applications that gather data from the environment
at user specified rates. A query l is characterized by the
following parameters: a set of sources, a function for in-
network aggregation [16], the start time φl, the query pe-
riod Pl, the query deadline Dl, and a static priority. A new
query instance is released in the beginning of each period
to gather data from the WSN. We use Il,u to refer to the uth

instance of query l whose release time is rl,u = φl + u ·Pl.
For brevity, in the remainder of the paper we will refer to a
query instance simply as an instance. The priority of an in-
stance is given by the priority of its query. If two instances
have the same query priority, the instance with the earliest
release time has higher priority. For each query instance
a node i needs Wl[i] slots to transmit its (aggregated) data
report to its parent.

A query service works [16] as follows: a user issues a
query to a sensor network through a base station, which dis-
seminates the query parameters to all nodes. The query ser-
vice maintains a routing tree rooted at the base station. The
query service supports in-network data aggregation. Ac-
cordingly, each non-leaf node waits to receive the data re-
ports from its children, produces a new data report by ag-
gregating its data with the children’s data reports, and then
sends it to its parent. During the lifetime of the application
the user may issue new queries, delete queries, or change
the period or priority of existing queries. RTQS is designed
to support such workload dynamics efficiently.

3.2 Network Model

RTQS models a WSN as an Interference-
Communication (IC) graph. The IC graph, IC(E,V ),
has all nodes as vertices and has two types of directed
edges: communication and interference edges. A com-
munication edge

−→
ab indicates that a packet transmitted by

a may be received by b. A subset of the communication
edges forms the routing tree used for data aggregation.
An interference edge

−→
ab indicates that a’s transmission

interferes with any transmission intended for b even though
a’s transmission may not be correctly received by b. The
IC graph is used to determine if two transmissions can be
scheduled concurrently. We say that two transmissions,

−→
ab

and
−→
cd are conflict-free (

−→
ab ‖

−→
cd) and can be scheduled
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concurrently if (1) a, b, c, and d are distinct and (2)
−→
ad and

−→
cb are not communication/interference edges in E.

The IC graph accounts for link asymmetry and irreg-
ular communication and interference ranges observed in
WSN[19]. The IC graph may be computed and stored in
a distributed fashion: a node needs to know only its in-
coming/outgoing communication and interference edges. In
[19], Zhou et al. present RID, a practical solution for con-
structing the IC graph of a WSN. A node can use RID to de-
termine its adjacent communication and interference edges.

We assume that clocks are synchronized. Clock syn-
chronization [17] is a fundamental service in WSN as many
applications must time-stamp their sensor readings to infer
meaningful information about the observed events.

4 Real-time Query Scheduling

RTQS achieves predictable and differentiated query
latencies through prioritized conflict-free transmission
scheduling. Our approach relies on two components: a
planner and a scheduler. The planner constructs a plan for
executing all the instances of a query. A plan is an ordered
sequence of steps, each comprised of a set of conflict-free
transmissions. RTQS employs the same distributed algo-
rithm as DCQS to construct plans. The scheduler that runs
on every node determines the time slot in which each step
in a plan is executed. To improve the throughput, the sched-
uler may execute steps from multiple query instances in the
same slot as long as they do not conflict with each other.

RTQS works as follows: (1) When a query is submit-
ted, RTQS identifies a plan for its execution. As discussed
in Section 4.1, usually multiple queries be executed using
the same plan. Therefore, RTQS may reuse a previously
constructed plan for the new query. When no plan may be
reused, the planner constructs a new one. (2) RTQS deter-
mines if a query meets its deadline using our schedulability
analysis. The schedulability analysis is performed on the
base station. If the query is schedulable, the parameters of
the query are disseminated; otherwise, the query is rejected.
(3) At run-time the scheduler running on each node executes
all admitted queries in a localized fashion.

In contrast to DCQS which does not support real-time
communication, the key contribution of RTQS is the design
and analysis of three real-time scheduling algorithms. Each
scheduling algorithm achieves a different tradeoff between
query prioritization and throughput. The Nonpreemptive
Query Scheduling (NQS) algorithm achieves high through-
put at the cost of priority inversion, while the Preemptive
Query Scheduling (PQS) algorithm eliminates priority in-
version at the cost of lower throughput. The Slack-stealing
Query Scheduling (SQS) algorithm combines the benefits of
NQS and PQS by improving the throughput while meeting
all deadlines.
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Figure 1. IC graph and associated plan.

4.1 Constructing plans

A plan has two properties: (1) it respects the precedence
constraints introduced by data aggregation: a node is as-
signed to transmit in a later step than any of its children.
(2) Each node is assigned in sufficient steps to transmit its
entire data report. We use Tl[i] to denote the set of transmis-
sions assigned to step i (0 ≤ i < Ll) in the plan of query l,
where Ll is the length of the plan. To facilitate in-network
aggregation, a node waits to receive the data reports from all
its children before transmitting the aggregated data report to
its parent. Therefore, to reduce the query latency, the plan-
ner assigns the transmissions of a node with a larger depth
in the routing tree to an earlier step in the plan. This strat-
egy reduces the query latency because it reduces the time a
node waits for the data reports from all its children.

Fig. 1 shows an IC graph and the plan constructed by the
planner. The solid lines indicate the communication edges
in the routing tree while the dashed lines indicate interfer-
ence edges. Node a is the base-station. The plan in Fig. 1
is constructed assuming that the data report generated by a
node can be transmitted in a single step for each instance.
The planner assigns conflict-free transmissions in each step.
For example, transmissions −→ne and −→po are assigned to step
Tl[1] since they do not conflict with each other. The prece-
dence constraints introduced by aggregation are respected.
For example, nodes p and q are assigned in earlier steps
than their parent o. In [6] we proposed a distributed algo-
rithm for constructing plans based on the IC graph. Upon
the completion of the algorithm each node knows in what
steps it transmits and receives. The details of the algorithm
can be found in [6].

The plan of a query l depends on the IC graph, the set
of source nodes, and the aggregation function. Query in-
stances executed at different times may need different plans
if the IC graph changes. However, to handle dynamics in
channel conditions, RTQS can construct plans that are ro-
bust against certain variations in the IC graph (as discussed
in [6]). This allows instances executed at different times
to be executed according to the same plan. Moreover, note
that queries with the same aggregation function and sources
but with different periods, start times, or priority can be
executed according to the same plan. Furthermore, even
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queries with different aggregation functions may be exe-
cuted according to the same plan. Let Wl[i] be the number
of slots node i needs to transmit its data report to its parent
for an instance of query l. If the planner constructs a plan
for a query l, the same plan can be reused to execute a query
h if Wl[i] = Wh[i] for all nodes i. Examples of queries that
share the same plan are the queries for the maximum tem-
perature and the average humidity in a building. For both
queries a node transmits one data report in a single step (i.e.,
Wmax[i] = Wavg[i] = 1 for all nodes i) if the slot size is
sufficiently large to transmit a packet with two values. For
the max query, the outgoing packet includes the maximum
value of the data reports from itself and its children. For
the average query, the packet includes the sum of the values
and the number of data sources that contributed to the sum.
We say that two queries belong to the same query class if
they may be executed according to the same plan. Since
queries with different temporal properties and aggregation
functions may share a same plan, a WSN may only need to
support a small number of query classes. This allows RTQS
to amortize the cost of constructing a query plan over many
queries and effectively reduces the overhead.

4.2 Overview of Scheduling Algorithms

The scheduler executes a query instance according to
the plan of its query. The scheduler improves the query
throughput by overlapping the transmissions of multiple in-
stances (belonging to one or more queries) such that: (1)
All steps executed in a slot are conflict-free. Two steps of
instances Il,u and Ih,v are conflict free (Il,u.i ‖ Ih,v.j) if
all pairs of transmissions in Tl[Il,u.i] ∪ Th[Ih,v.j] are con-
flict free. (2) The steps of each plan are executed in order:
if step Il,u.i is executed in slot si, step Il,u.j is executed in
slot sj < si then Il,u.j < Il,u.i. This ensures that the prece-
dence constraints required by aggregation are preserved.

The scheduler maintains a record of the start time, pe-
riod, and priority of all admitted queries. Additionally, the
scheduler knows the step numbers in which the host node is
assigned to transmit or receive in each plan and the plan’s
length. RTQS supports both preemptive and nonpreemptive
query scheduling.

We first consider a brute-force approach for construct-
ing a preemptive scheduler: in every slot s, a brute-force
scheduler would consider the released instances in order of
their priority and execute all steps that do not conflict in s.
Unfortunately, the time complexity of this approach is high,
since each pair of steps must be checked for conflicts. Since
the scheduler dynamically determines the steps executed in
a slot, it must have low time complexity.

To reduce the time complexity of the scheduler we in-
troduced the concept of minimum step distance in [6]1. Let

1This is called the minimum inter-release time is [6].

Il,u.i and Ih,v.j be two steps in the plans of any instances
Il,u and Ih,v , respectively. We define the step distance be-
tween Il,u.i and Ih,v.j as |Il,u.i − Ih,v.j|. The minimum
step distance ∆(l, h) is the smallest step distance between
Il,u and Ih,v such that the two steps Il,u.i and Ih,v.j may
be executed concurrently without conflict:

|Il,u.i− Ih,v.j| ≥ ∆(l, h) ⇒ Il,u.i ‖ Ih,v.j

∀Il,u.i < Ll, Ih,v.j < Lh

where, Ll and Lh are the lengths of the plans of queries l
and h, respectively. Therefore, to ensure that no conflict-
ing transmissions are executed in a slot, it is sufficient to
enforce a minimum step distance between any two steps.

The minimum step distance captures the degree of par-
allelism that may be achieved due to spatial reuse in a
multi-hop WSN. For simplicity consider the case when
L = Lq = Lh. In the worst case, when ∆(l, h) = L,
a single instance is executed in the network at a time. If
∆(l, h) = L/2, then two instances can be executed in the
network at the same time. A distributed algorithm for com-
puting ∆(l, h) is presented in [6]. The minimum step dis-
tance ∆(l, h) depends on the IC graph and the plans of l
and h. The number of minimum step distances that a sched-
uler stores is quadratic in the number of plans. Two pairs
of queries (l, h) and (m,n) have the same minimum step
distance if (l, m) and (h, n) have the same plan. Therefore,
in practice the number of minimum step distances that must
be stored the memory cost is small since the planner uses
only few plans.

4.3 Nonpreemptive Query Scheduling

To efficiently enforce the minimum step distance for
NQS, we take advantage of the fact that once an instance
is started, it cannot be preempted. As such, the earliest
time at which an instance Il,u may start (i.e., execute step
Il,u.i = 0) is after the previous instance Ih,v completes step
Ih,v.j = ∆−1 (since |∆−0| ≥ ∆). Since the execution of
Il,u and Ih,v cannot be preempted, if we enforce the min-
imum step distance between the start of the two instances
then their concurrent execution is conflict-free for their re-
maining steps since steps Il,u.i = x and Ih,v.j = x+∆ are
executed in the same slot and |(x + ∆) − x| ≥ ∆. There-
fore, to guarantee that a nonpreemptive scheduler executes
conflict-free transmissions in each slot, it suffices to enforce
a minimum step distance of ∆ between the start times of any
two instances.

NQS maintains two queues: a run queue and a release
queue. The release queue is a priority queue containing all
instances that have been released but are not being executed.
The run queue is a FIFO queue and contains the instances
to be executed in slot s. Although the run queue may
contain multiple instances, a node is involved in transmit-
ting/receiving for at most one instance (otherwise, it would
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be involved in two conflicting transmissions). A node n de-
termines if it transmits/receives in slot s by checking if it is
assigned to transmit/receive in any of the steps to be exe-
cuted in slot s. If a node does not transmit or receive in slot
s, it turns off its radio for the duration of the slot.

NQS enforces a minimum step distance of at least ∆ be-
tween the start times of any two instances by starting an
instance in two cases: (1) when there is no instance being
executed (i.e., run=∅) and (2) when the step distance be-
tween the head of the release queue (i.e., the highest prior-
ity instance that has been released) and the tail of the run
queue (i.e., the last instance that started) is larger ∆. When
an instance starts, it is moved from the release queue to the
run queue.

Consider the example shown in Fig. 3(a) where three
queries, Qhi, Qmed and Qlo are executed according to the
shown workload parameters. Each query is executed ac-
cording to the same plan of length L = 15 and minimum
step distance ∆ = 8. We assign higher priority to queries
with tighter deadlines. The upward arrows indicate the re-
lease time of an instance. Ilo (in the example we drop the
instance count since it is always zero) is released and starts
in slot 0 since no other instance is executing (run=∅). The
first instances of Qmed and Qhi are released in slots 2 and
6, respectively. However, neither may start until slot 8 when
Ilo completes 8 steps (i.e., when Ilo.i = 8 ≥ ∆) resulting
in priority inversions. Ihi then starts at slot 8 since it is the
highest priority instance in release.

4.4 Preemptive Query Scheduling

A drawback of NQS is that it introduces priority inver-
sions. To eliminate prioritization inversion, we devised PQS
which preempts the instances that conflict with the execu-
tion of a higher priority instance. A key feature of PQS
is a new and efficient mechanism for enforcing the mini-
mum step distance that supports preemption. To enforce
the minimum step distance PQS maintains Lq mayConflict
sets. Each mayConflict[x] set contains the instances which
are in the run queue and conflict with any instance exe-
cuting step x in its plan: mayConflict[x] = {Ih,v ∈ run
||x− Ih,v.i| < ∆}.

PQS (see Fig. 2) maintains a run queue and a release
queue which are keyed by the query instance priority. When
a new instance is released, it is added to the release queue.

PQS starts/resumes an instance Il,u (Il,u ∈ release) in
two cases. (1) If the next step Il,u.i of Il,u may be exe-
cuted concurrently with all instances in the run queue with-
out conflict, PQS starts/resumes it. To determine if this is
the case, it suffices for PQS to check if mayConflict[Il,u.i] is
empty. When an instance is started or resumed, it is moved
from the release queue to the run queue. The membership
of Il,u in the mayConflict sets is updated to reflect that Il,u

event: new instance Il,u is released
release = release ∪ {Il,u}

event: start of new slot s
for each Il,u ∈ release

if (may-resume(Il,u) = true) then resume(Il,u)
for each Il,u ∈ run

execute-step(Il,u)

resume(Il,u):
run = run ∪ {Il,u}; release = release − {Il,u}
add Il,u to all mayConflict[x] such that |Il,u.i − x| < ∆

preempt(S):
run = run − S; release = release ∪ S
remove Il,u from all mayConflict

may-resume(Il,u):
if (mayConflict[Il,u.i] = ∅) then return true
if (Il,u has higher priority all instances in mayConflict[Il,u.i])

preempt(mayConflict[Il,u.i]); return true
return false

execute-step(Il,u):
determine if node should send/recv in Il,u.i
Il,u.i = Il,u.i + 1
if Il,u.i = L then run = run − {Il,u}
mayConflict[Il,u.i − ∆]=mayConflict[Il,u.i − ∆ + 1] − {Il,u}
mayConflict[Il,u.i + ∆]=mayConflict[Il,u.i + ∆] ∪ {Il,u}

Figure 2. PQS pseudocode

is executed in the current slot: Il,u is added to all mayCon-
flict[x] sets such that |Il,u.i−x| < ∆ since the execution of
any of those steps would conflict with the execution of step
Il,u.i. (2) Il,u is also started/resumed if it has higher priority
than all the instances in mayConflict[Il,u.i] since otherwise
there will be a priority inversion. For Il,u to be executed
without conflict, all instances in mayConflict[Il,u.i] must
be preempted. When an instance is preempted, it is moved
from the run queue to the release queue and it is removed
from all mayConflict sets. As in case (1), Il,u is added to all
mayConflict[x] sets such that |Il,u.i− x| < ∆.

After an instance executes a step, its membership in the
mayConflict sets must also be updated. Since step Il,u.i is
executed in slot s, in the next slot (when Il,u executes step
Il,u.i + 1) Il,u will not conflict with an instance executing
step Il,u.i − ∆ but will conflict with an instance executing
step Il,u.i+∆. Accordingly, Il,u is removed from mayCon-
flict[Il,u.i−∆] and added to mayConflict[Il,u.i + ∆].

Fig. 3(b) shows the schedule of PQS for the same work-
load used in the example for NQS. Instance Ilo starts in
slot 0 since no other instances have been released (may-
Conflict[0]= ∅). Imed is released in slot 2. Since may-
Conflict[0]= {Ilo} and Imed has higher priority than Ilo,
PQS preempts Ilo. Consequently, Ilo is removed from the
run queue and all mayConflict sets, and it is added to the
release queue. Imed is added to run queue and to all may-
Conflict[x] sets where 0 ≤ x < 8. Ihi is released in slot 6.
Since mayConflict[0] = {Imed} and Ihi has higher priority
then Imed, PQS preempts Imed and starts Ihi. The may-
Conflict sets are updated accordingly. An interesting case
occurs in slot 16, when Ihi executes step 10. At this point,
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Figure 3. Scheduling with different prioritization policies. Workload: Phi=30, Dhi =20,Pmed=65, Dmed =28, Plo=93, Dlo =93.

mayConflict[2] = ∅ since Imed was preempted and Ihi com-
pleted 10 steps (|10− 2| ≥ 8). As a result, Ilo may execute
step 2 in its plan while Ihi executes step 10 without conflict.
Ihi and Ilo are executed concurrently until step 18 because
their step distance exceeds the minimum step distance. In
the beginning of slot 18, mayConflict[4]={Ilo}. Note that
Ihi is not a member of this set since |12 − 4| ≥ 8. Since
the step counter of Imed is 4 and Imed has higher priority
than Ilo, PQS preempts Ilo and resumes Imed. PQS then
updates the conflict sets by removing Ilo from all of them
and adding Imed to mayConflict[x] sets where |x− 4| < 8.
Ilo resumes in slot 26 when mayConflict[4] becomes empty.
The example shows that by eliminating priority inversion
PQS achieves lower latencies for Ihi and Imed than NQS.
However, the query throughput is lower because it allows
less overlap in the execution of instances. This exemplifies
the tradeoff between prioritization and throughput in query
scheduling. In the next section, we will characterize this
tradeoff analytically.

4.5 Analysis of NQS and PQS

In this section we present worst-case response analyses
for PQS and NQS. The worst-case response time of a query
is the maximum query latency of any of its instances. Our
analysis can be used for admission and rate control at the
base station when a query is submitted. In our analysis we
assume that the deadlines are shorter than the periods.

Analysis of NQS. Since NQS is non-preemptive, the re-
sponse time Rl of query l is the sum of its plan’s length L
and the worst-case delay Wl that any instance experiences
before it is started: Rl = Wl +L. Note that for convenience
we use the slot size as the time unit.

To compute Wl, we construct a recurrent equation sim-
ilar to the response time analysis for processor scheduling
[2]. Consider an instance Il. Note that for clarity we drop
the instance index from the instance notation in our analy-
sis. Since NQS is a nonpreemptive scheduling algorithm,
to compute the response time of a query l we must com-
pute the worst-case interference of higher priority instances
and the maximum blocking time of l due to the nonpreemp-

tive execution of lower priority instances. Our analysis is
based on the following two properties. Their proofs are not
included here due to space limit but may be found in [5].

Property 1 An instance is blocked for at most ∆−1 slots.

Property 2 A higher priority instance interferes with a
lower priority instance for at most ∆ slots.

The number of instances of a higher priority query h that
interfere with Il is upper-bounded by dWl

Ph
e. Therefore, the

worst-case delay that Il experiences before it starts is:

Wl = (∆− 1) +
∑

h∈hp(l)

⌈
Wl

Ph

⌉
·∆ (1)

where hp(l) is the set of queries with priority higher than
or equal to l’s priority. Wl can be computed by solving (1)
using a fixed point algorithm similar to that of the response
time analysis [2].

Note that our analysis differs from the classical processor
response time analysis in that multiple transmissions may
occur concurrently without conflict in a WSN due to spa-
tial reuse of the wireless channel. This is captured in our
analysis in that a higher priority instance may delay a lower
priority instance by at most ∆, which is usually smaller than
the execution time of the instance (i.e., the plan’s length L).

Analysis of PQS. A higher priority instance cannot be
blocked by a lower priority instance under PQS2. We ob-
serve that after an instance completes ∆ steps, no newly
released instance will interfere with its execution because
their step distance would be at least ∆, allowing them to
execute concurrently. Therefore, we split Il into two parts:
a preemptable part of length ∆ and nonpreemptable part
of length L − ∆. Higher priority instances may interfere
with Il only during its preemptable part. Thus, the response
time of a query l is the sum of response time of the pre-
emptable part R′

l and the length of the nonpreemptable part:
Rl = L−∆ + R′

l.
2Our analysis assumes that every instance is released in the begin-

ning of a slot, which is the time granularity of our scheduling algorithms.
Strictly speaking, a higher priority instance may still be blocked by at most
one slot. This blocking term can be easily incorporated into our analysis.
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A query h with higher priority than l interferes with l

for at most dR′
l

Ph
e ·Cmax(l, h) slots, where Cmax(l, h) is the

worst-case interference of an instance of h on an instance of
l. Thus, worst-case response time of the preemptable part
of l is:

R′
l = ∆ +

∑
h∈hp(l)

⌈
R′

l

Ph

⌉
· Cmax(l, h) (2)

After finding the worst-case interference, R′
l may be com-

puted by solving (2) using a fixed point algorithm similar
to the one used in the response time analysis [2]. Next, we
determine the worst-case interference.

Theorem 1 An instance Il is interfered by a higher priority
instance Ih for at most Cmax(l, h) = min(2∆, L) slots.

Proof:
We analyze Ih’s interference on Il in the following cases.
(1) If Ih is released no later than Il, then Ih’s interference
on Il is at most ∆, since Il may start when Ih completes ∆
steps.
(2) If Ih is released while Il is executing its nonpreemptable
part, the interference is zero.
(3) If Ih is released while Il is executing its preemptable
part, Ih preempts Il. Let x be the number of steps Il has
completed, when Ih preempts it. We note that x ≤ ∆ since
Il is executing its preemptable part. There are three sub-
cases. (3a) If Ih is not preempted by any higher priority
instance, then Il will be resumed after Ih completes ∆ + x
steps to enforce the minimum step distance between Il and
Ih. Thus, the interference is C = ∆+x. If Ih is preempted
after executing y ≤ ∆ steps we must consider two cases as
illustrated in Fig. 4. Recall that plans start with step 0. (3b)
If x ≥ y, PQS resumes Ih before Il due to the minimum
step distance constraint. In this case, Ih’s interference on Il

is C = ∆ + x. (3c) If x < y, then Il is resumed before Ih

and it may execute up to (x − y) steps until Ih is resumed.
Thus, Ih’s interference on Il is C = ∆ + y.

From all the above cases, Ih’s worst-case interference
on Il is C = ∆+max(x, y). Since x ≤ ∆ and y ≤ ∆, then
Cmax ≤ 2∆. However, when L < 2∆, Ih finishes before
Il reaches 2∆; in this case the interference is only L. Thus,
Ih’s worst-case interference on Il is Cmax = min(2∆, L).

It is important to note that preempting an instance re-
sults in higher interference than the nonpreemptive case. As
shown in the above proof, the interference in the preemptive
case is C = ∆ + max(x, y) compared to ∆ in the nonpre-
emptive case. Therefore, preemption incurs max(x, y) slots
of additional interference compared to the no preemption
case. The additional interference in the preemptive case
results in a lower degree of concurrency and hence lower

query throughput. This shows the inherent trade-off be-
tween prioritization and throughput in conflict-free query
scheduling.

4.6 Slack Stealing Query Scheduling

SQS combines the benefits of NQS and PQS in that it im-
proves query throughput while meeting all deadlines. The
design of SQS is based on the observation that preemption
lowers throughput, and hence it should be used only when
necessary for meeting deadlines. We define the slack of
a query l, Sl, to be the maximum number of slots that an
instance of l allows a lower priority instance to execute be-
fore preempting it. SQS has two components: an admission
algorithm and a scheduling algorithm. The admission al-
gorithm runs on the base station and determines the slack
and schedulability of each query when it is issued. The
scheduling algorithm executes admitted queries based on
their slacks.

SQS Scheduler. SQS may start an instance Ih,v in any
slot in the interval [rh,v, rh,v + Sh], where Sh is the slack
of query h and rh,v is the release time of the vth instance of
h. Since a lower priority instance Il,u is not interfered by
Ih,v if Il,u has completed at least ∆ steps, SQS postpones
the start of the higher priority instance Ih,v if the lower pri-
ority instance Il,u has completed at least ∆− Sh steps. An
advantage of the slack stealing approach is that it oppor-
tunistically avoids preemption and the related throughput
reduction when allowed by query deadlines.

SQS requires a minor modification to PQS. Specifically,
we change how the release of an instance Ih,v is handled.
If mayConflict[0] is empty, Ih,v is released immediately. If
SQS determines that all the instances in mayConflict[0] have
completed at least ∆ − Sh steps, SQS delays Ih,v until the
lower priority instances complete ∆ steps in their plans (i.e.,
when mayConflict[0] becomes empty). All instances whose
release is delayed are maintained in a pending queue. If Ih,v

does not have sufficient slack to allow the lower priority
instances to complete ∆ steps, then SQS (1) preempts all
instances in mayConflict[0], (2) resumes the highest priority
instance in the release or pending queues and (3) moves all
instances from the pending queue to the release queue.

Fig. 3(c) shows the schedule under SQS with the exam-
ple workload. Assume that the admission algorithm of SQS
determined that Qhi and Qmed have slacks Shi = 5 and
Smed = 2, respectively. Ilo is released and starts its exe-
cution in slot 0. Imed is released in slot 2. SQS preempts
Ilo, because even if Imed would be postponed for Smed = 2
slots, Ilo would not complete ∆ = 8 steps. Ihi is released in
slot 6. SQS decides to continue executing Imed because in
4 ≤ Shi slots, Imed will complete executing ∆ = 8 steps,
i.e., SQS avoids preempting Imed by allowing it to steal 4
slots from Ihi. SQS uses preemption in slot 2 but not in slot
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Figure 4. Interference of Ih on Il under PQS.

6. This highlights that SQS can adapt preemption decisions
to improve throughput while meeting all deadlines.

Admission Algorithm. The admission algorithm deter-
mines the schedulability and slacks of queries. It consid-
ers queries in decreasing order of their priorities. For each
query, it performs a binary search in [0,∆] to find the max-
imum slack that allows the query to meet its deadline. Note
that there is no benefit for a lower priority instance to steal
more than ∆ slots from a higher priority instance since they
may be executed in parallel when their step distance is at
least ∆. The admission algorithm tests whether the query
can meet its deadline by computing its worst-case response
time as a function of the slack. If the query is unschedulable
with zero slack, it is rejected; otherwise, it is admitted.

To compute the worst-case response time of a query we
split a query instance into two parts: a preemptable part and
a nonpreemptable part. Under PQS, the preemptable part is
∆ slots. In contrast, under SQS, an instance Il may steal
from a higher priority instance at least ml = minx∈hp(l)Sx

steps. Thus, the length of the preemptable part is at most
∆−ml slots under SQS; the length of the nonpreemptable
part is therefore L− (∆−ml) slots. Hence, the worst-case
response time of query l with slack Sl is:

Rl(Sl) = L− (∆−ml) + R′
l(Sl) (3)

where R′ is the worst-case response of time the preemptable
part.

Theorem 2 Under SQS, an instance Il may be interfered by
a higher priority instance Ih for at most Cmax = min(2∆−
ml, L) slots, where ml = minx∈hp(l) Sx.

The proof of the theorem is not included due to space limit
and can be found in [5].

To compute R′
l we must account for the jitter introduced

by slack stealing, i.e., a higher priority instance Ih may de-
lay its start by at most Sh. Accordingly, R′ is:

R′
l(Sl) = (∆−ml)+Sl+

∑
h∈hp(l)

⌈
R′

l(Sl) + Sh

Ph

⌉
·Cmax(l, h)

where, ∆ − ml is the maximum length (execution time) of
the preemptable part, Sl is the maximum time interval when
Il may be blocked by a lower priority instance due to slack
stealing, and Cmax(l, h) = min(2∆−ml, L) is the worst-
case interference when slack stealing is used.

5 Simulations

We implemented RTQS in NS2. Since we are interested
in supporting high data rate applications such as structural
health monitoring we configured our simulator according to
the 802.11b settings having a bandwidth of 2Mbps. This is
reasonable since several real-world structural health moni-
toring systems use 802.11b interfaces to meet their band-
width requirements. An overview of these deployments
may be found in [15]. At the physical layer a two-ray
propagation model is used. We model interference accord-
ing to the Signal-to-Interference-plus-Noise-Ratio (SINR)
model, according to which a packet is received correctly
if its reception strength divided by the sum of the recep-
tion strengths of all other concurrent packet transmissions
is greater than a threshold (10 dbm in our simulations).

In the beginning of the simulation, the IC graph is con-
structed using the method described in [19]. The node clos-
est to the center of the topology is selected as the base sta-
tion. The base station initiates the construction of the rout-
ing tree by flooding setup requests. A node may receive
multiple setup requests from different nodes. The node se-
lects as its parent the node that has the best link quality
indicator among those with smaller depth than itself. We
determined the slot size as follows. We assume that a node
samples its accelerometer at 100Hz and buffers 50 16-bit
data points before transmitting its data report to its parent.
To reduce the number of transmissions, data merging is em-
ployed: a node waits to receive the data reports from its chil-
dren and merges their readings with its own in a single data
report which it sends to its parent. In our experiments, the
maximum number of descendants of any node is 20, so the
maximum size of a data report containing 16-bit measure-
ments is 2KB. Accordingly, we set the slot size to 8.3ms,
which is large enough to transmit 2KB of data. In our simu-
lations, all queries are executed according to the same plan
as every node sends its data report in a slot.

For comparison we consider three baselines: 802.11e,
DCQS[6] and DRAND[18]. We did not use 802.15.4 as a
baseline, since the standard is designed for low data rate ap-
plications and hence is unsuitable for our target high data
rate applications. 802.11e is a representative contention-
based protocol that supports prioritization in wireless net-
works. In our simulations we use the Enhanced Distributed
Channel Access (EDCA) function of 802.11e since it is
designed for ad hoc networks. EDCA prioritizes packets
using different values for the initial backoff, initial con-
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Figure 5. Response time of baselines, PQS, and NQS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3

Av
g.

 d
at

a 
fid

el
ity

Total query rate (Hz)

PQS(H)
PQS(M)
PQS(L)

(a) PQS data fidelity

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3

Av
g.

 d
at

a 
fid

el
ity

Total query rate (Hz)

NQS(H)
NQS(M)
NQS(L)

(b) NQS data fidelity

Figure 6. Data fidelity of baselines, PQS, and NQS

tention window, and maximum contention window of the
CSMA/CA protocol. We configured these parameters ac-
cording to their defaults in 802.11e. We used the 802.11e
NS2 module from [11]. DRAND is a recently proposed
TDMA protocol. DCQS is a query scheduling algorithm
that constructs TDMA schedules to execute queries. How-
ever, neither DCQS nor DRAND support prioritization or
real-time transmission scheduling.

We use response time and data fidelity to compare the
performance of the protocols. The response time of a query
instance is the time between its release time and completion
time, i.e., when the base station receives the last data report
for that instance. During the simulations, data reports may
be dropped preventing some sources from contributing to
the query result. The data fidelity of a query instance is

the ratio of the number of sources that contributed to the
aggregated data reports received by the base station and the
total number of sources.

In the following we compare the performance of NQS
and PQS with the baselines (see Section 5.1) and evaluate
the RTQS algorithms under different workloads and vali-
date our response time analysis (see Section 5.2).

5.1 Comparison with Baselines

The results presented in this section are the average of
five runs on different topologies. The 90% confidence in-
terval of each data point is also presented. All experiments
are performed in a 750m ×750m area divided into 75m ×
75m grids in which a node is placed at random. We simu-
late three queries with high, medium and low priorities. The
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Figure 7. SQS adapts to different deadlines

query priorities are determined based on their deadlines: the
tighter the deadline, the higher the priority. The ratios of the
query periods QH :QM :QL are 1.0:2.2:4.7. The deadlines
are equal to the periods.

Figs. 5 and 6 show the average response time and data
fidelity of different protocols as the total query rate is in-
creased from 1.43Hz to 2.87Hz. 802.11e EDCA provides
prioritization between queries: when the total query rate
is 1.43Hz, the average response times of QH and QL are
0.34s and 0.74s, respectively (see Fig. 5(a)). However,
802.11e EDCA has poor data fidelity for all queries (fig-
ure not included due to space limit). The poor performance
of 802.11e EDCA is due to high channel contention, which
results in significant packet delays and packet drops. This
shows the disadvantage of contention-based protocols for
high data rate queries.

The TDMA protocols, DCQS and DRAND (see Fig.
5(b)), have significantly higher data fidelity than 802.11e
EDCA. DCQS provides lower response time than DRAND
(see Fig. 5(b)) because it exploits the inter-node depen-
dencies introduced by queries in WSNs. However, neither
protocol provides query prioritization since all queries have
similar response times.

In contrast to DCQS and DRAND, PQS provides query
prioritization as seen in their response times. For instance,
when the total query rate is 2.51Hz, PQS provides an av-
erage response time of 0.38s for QH , which is 75% lower
than the average response time of 1.48s for QL (see Fig.
5(c)). PQS achieves close to 100% fidelity when the total
query rate is lower than 2.51Hz (see Fig. 6(a)). For higher
query rates, the fidelity drops because the offered load ex-
ceeds PQS’s capacity (the schedulability test failed at these
rates). NQS also provides query prioritization (the y-axis
has a log scale), but the differences in response times are
smaller than in PQS due to the priority inversions of non-
preemptive scheduling (see Fig. 5(d)). In contrast to PQS,
NQS has close to 100% data fidelity for all queries when
the total query rate is as high as 2.87Hz. Therefore, NQS
achieves higher throughput than PQS. The comparison of

PQS and NQS shows the tradeoff between prioritization and
throughput predicted by our analysis.

5.2 Comparison of RTQS Algorithms

In this subsection we compare the performance of all
RTQS algorithms and validate their response time analysis.
We consider four queries Q0, Q1, Q2, and Q3 in decreasing
order of priority. The ratios of their periods Q0:Q1:Q2:Q3

is 1.0:1.2:2.2:3.2. In this experiment, we fix the rates of the
queries and vary the deadline of the highest priority query.

Figs. 7(a) - 7(c) show the maximum response times
of NQS, PQS, and SQS, respectively. For clarity, only
Q0’s deadline is plotted since in this experiment the other
queries always meet their deadlines. PQS meets Q0’s dead-
line when it is 0.39s. In contrast, NQS meets its deadline
only when Q0’s deadline is bigger then 0.69s. NQS misses
Q0’s deadline when it is tight due to the priority inversion
under non-preemptive scheduling. This indicates that NQS
is unsuitable for high priority queries with tight deadlines.
Interestingly, under SQS, the response time of Q0 changes
depending on its deadline (Fig. 7(c)). As the deadline be-
comes tighter, the response time of Q0 also decreases and
remains below the deadline. We also see an increase in the
response times of the lower priority queries as Q0’s deadline
is decreased. This is because as Q0’s deadline decreases the
lower priority queries may steal less slack from Q0. This
shows that SQS adapts effectively based on query deadlines.
Moreover, note that SQS provides smaller latencies for the
lower priority instances than PQS. This is because SQS has
a higher throughput than PQS since it uses preemption only
when it is necessary for meeting packet deadlines.

In all experiments, the measured response times of all
RTQS algorithms are lower than the worst-case response
times derived using our analysis. Hence, our analysis is
correct. The difference between the simulation results and
the theoretical bounds are expected because the analysis is
based on worst-case arrival patterns which do not always
occur in simulations.
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6 Conclusions

High data rate real-time queries are important to many
sensor network applications. This paper proposes RTQS, a
novel transmission scheduling approach designed real-time
queries in WSNs. We observe that there exists a tradeoff
between throughput and prioritization under conflict-free
query scheduling. We then present the design and schedula-
bility analysis of three new real-time scheduling algorithms
for prioritized transmission scheduling. NQS achieves high
throughput at the cost of priority inversion, while PQS elim-
inates priority inversion at the cost of query throughput.
SQS combines the advantages of NQS and PQS to achieve
high query throughput while meeting query deadlines. NS2
simulations results demonstrate that both NQS and PQS
achieve significantly better real-time performance than rep-
resentative contention-based and TDMA protocols. More-
over, SQS can maintain desirable real-time performance by
adapting to deadlines.
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