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ABSTRACT
The robust operation of many sensor network applications
depends on deploying relays to ensure wireless coverage. Ra-
dio mapping aims to predict network coverage based on a
small number of link measurements. This problem is par-
ticularly challenging in complex indoor environments where
walls significantly affect radio signal propagation. Neverthe-
less, we show that it is feasible to accurately predict coverage
through a two-step process: a propagation model is used to
predict signal strength at a recipient node, which is then
mapped to a coverage prediction. Through an in-depth em-
pirical study, we show that complex models do not necessar-
ily produce accurate estimates of signal strength: there is an
important tradeoff between model accuracy and the number
of parameters that must be estimated from limited training
data. We find that the best performance is achieved by a
family of models which classify walls based on their atten-
uation into a small number of classes and develop an algo-
rithm to perform this classification automatically. Based on
these insights, we build a novel Radio Mapping Tool (RMT)
for predicting radio converge in indoor environments. Ex-
perimental results demonstrate RMT’s effectiveness in two
buildings: RMT reduces the number of locations where cov-
erage is erroneously predicted to exist by as much as 39%
and 54% compared to the classic log-normal radio propaga-
tion model.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication; C.4 [Performance of Systems]: Modeling
techniques

General Terms
Measurement, Performance

Keywords
Coverage, Wireless propagation models, Wireless Sensor Net-

works

1. INTRODUCTION
Sensor network applications involving mobile entities com-

monly require the deployment of wireless networks that cover
a physical region. Examples of such applications include el-
derly care [22] and patient tracking and monitoring [5]. Our
interest in this topic is motivated by a medical application
which involves the collection of pulse and oxygenation read-
ings from patients in general hospital units. Unlike patients
in the intensive care units, the patients in general hospital
units are often ambulatory. To support patient mobility,
our system [4] requires enough relay nodes so that there is
always at least one link from the patient to some relay. Dur-
ing the deployment of the system at Barnes Jewish Hospital,
we became acutely aware of the lack of tools which would
enable system managers to effectively assess the coverage
of a deployed network. More specifically, we are interested
in determining the reception coverage of a relay: i.e., the
set of points (x, y) where a node would be able to transmit
a packet to at least one relay with a PRR above a user-
specified threshold1.
The current best practice for assessing network coverage

is to exhaustively measure link quality at numerous loca-
tions with deployed relays. This process is labor intensive
and leads to significant deployment costs. Worse, physi-
cal changes (e.g., reconfiguring cubicles) or changes in the
radio properties (e.g., switching radio frequency due to in-
terference) may invalidate these measurements, leading to
significant maintenance costs.
What is needed is a tool which can assess the coverage of

a wireless network without an exhaustive survey. The key
to assessing wireless coverage lies in effectively modeling ra-
dio propagation in the deployment environment, including
obstacles that can attenuate the radio signal. Within the
802.11 networking community, there are a handful of tools
which use ray tracing techniques to model signal propaga-
tion [6]. These tools require precise characterizations of the
location and radio properties of objects that can significantly
affect radio propagation, such as walls, bookshelves, or filing
cabinets. In many indoor environments, such as office en-
vironments, these obstacles are numerous; for example, our

1The techniques proposed in this paper are also applicable
to the network’s transmission coverage: i.e., the set of points
that can receive transmissions from at least one relay. We
focus on reception coverage in this paper, since our target
application entails data collection. Henceforth, we use the
term “coverage” to mean “reception coverage”.
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1977m2 indoor testbed contains 239 walls. Measuring each
wall directly would impose an excessive burden on the user.
A less labor-intensive approach is to collect a set of link

quality measurements from the environment. This training
data can then be fit to some radio propagation models in
order to estimate the value of each parameter. Indeed, this
approach has proven effective in outdoor environments [16].
However, our empirical study shows that this approach is un-
suitable for complex indoor environments. This occurs be-
cause obstacles, antenna orientation, and distance between
sender and receiver affect signal propagation to different de-
grees indoors and outdoors. While complex models may
be constructed to account for all these factors, there is an
important tradeoff between model complexity and measure-
ment effort: as radio models are made more complex, more
data is necessary to accurately fit the additional parame-
ters. Thus, in this paper, we consider the problem of how
to effectively predict radio coverage in complex indoor envi-
ronments from a small set of training data.
An empirical study in two office buildings shows that the

best tradeoff between model realism and model complexity
lies in automatically classifying obstacles into groups with
similar attenuation. Using this knowledge, we divide the
problem into two parts. We first predict the receive signal
strength (RSS) at the relay from any point on the floor plan.
Then, based on the RSS predictions and an RSS threshold
for predicting good-quality links, we determine each relay’s
coverage.
This paper makes the following key contributions. First,

we present an in-depth empirical study that characterizes
the accuracy of RSS predictions based on several propa-
gation models. The study shows the relative importance
of modeling various aspects of wireless propagation such as
antenna orientation, wall attenuation, and distance between
sender and receiver. More importantly, the study shows that
complex models do not necessarily produce accurate esti-
mates of signal strength: the best performance is achieved
by a family of models which classify walls based on atten-
uation into a small number of groups. We also propose an
automatic process for selecting the best such model for the
provided amount of training data, reducing errors by up to
9.7% compared to the classical log-normal radio propaga-
tion model [2]. Next, we develop a practical Radio Mapping
Tool (RMT) which predicts the coverage of one or more
relays. As a key component of RMT, we develop a novel
automated wall classification algorithm to be used with the
chosen radio model. We then characterize the accuracy of
this tool in two different buildings with differing construc-
tion properties. We find that the combination of our chosen
radio model with our wall classification scheme reduces the
false positive rate (i.e., predicted coverage where the ground
truth indicates otherwise) by as much as 54% compared to
the log-normal model, based on a sampling density of only
0.01 samples/m2.
The remainder of the paper is organized as follows. In Sec-

tion 2, we discuss existing studies on characterizing wireless
signal propagation. In Section 3, we overview several estab-
lished radio models and discuss their applicability to indoor
environments. In Section 4, we discuss methods to classify
walls, including a computationally efficient algorithm that
automatically performs this classification. The RSS predic-
tion accuracy of different propagation models is assessed in
Section 5. In Section 6, we present a radio mapping tool

built based on the insights gained from our empirical study.
Section 7 evaluates the efficacy of our radio mapping tool
through a case study. We then conclude in Section 8.

2. RELATED WORK
A key challenge in modeling radio properties is that

low-power wireless links have complex, often probabilistic
properties [7, 13, 15, 19, 20, 24]. The classical log-normal
model [21, 25] models a node’s transmission strength and
signal decay over distance. As we show in Sections 5 and 7,
the log-normal model is overly simplistic, resulting in signif-
icant prediction errors.
A deficiency of the log-normal model is that it does not

capture the non-isotropic antenna pattern observed even
with “omnidirectional” antennas [16, 19, 23]. [23] demon-
strates that these non-regular radiation patterns can have a
significant effect on routing performance in an outdoor wire-
less sensor network. [16] shows a similar effect for two out-
door Wi-Fi mesh networks. Both studies propose a sector-
ization approach that divides each node’s signal into sectors,
then attempts to independently model the signal properties
of each sector. Our own study finds that, while the non-
isotropy of antenna patterns also impacts radio propagation
indoors, this effect is less significant then the attenuation
caused by obstacles.

[16] expands the sectorization model to explicitly model
non-isotropic antenna patterns. Exhaustive link data is col-
lected at various points around each feature to individually
estimate its attenuation. Our own study shows that model-
ing obstacle attenuation can also significantly improve cover-
age prediction indoors. However, our work differs from [16]
in two key ways. First, as discussed above, we do not model
antenna patterns; the impact of obstacles are more impor-
tant in an indoor environment, and modeling non-isotropy
introduces a large number of parameters that are difficult to
estimate from a small number of samples. Second, [16] di-
rectly measures architectural features, which is impractical
and labor-intensive in typical indoor environments such as
offices, assisted living facilities, and hospitals. A novel fea-
ture of our work is that we leverage the fact that the walls in
any given building can be classified into relatively few classes
of similar attenuation, greatly reducing the amount of data
needed to adequately estimate their attenuation. Moreover,
we propose an algorithm which automatically classifies walls
using a small set of training data, without requiring archi-
tectural knowledge or direct measurements of each wall.
At the other end of the complexity spectrum, researchers

have proposed site-specific techniques involving ray trac-
ing [14,17]. [6] presents a tool for predicting signal strength
of 802.11 access points at different locations. A fundamental
limitation of these techniques is that they rely on the user to
provide locations and attenuation coefficients for each par-
tition or obstacle. Tables which provide the attenuation
of different wall types [18] can alleviate this burden some-
what, though this still requires knowledge of the building’s
construction materials and may not capture the effect of
objects like metal bookshelves that can alter a wall’s atten-
uation. In contrast, our approach automatically estimates
the attenuation of walls from training data.
Also closely related to our work are two recent papers

which look at sensing coverage. [11] proposes a framework
which uses Gaussian processes to model sensing and com-
munication costs. A disadvantage of Gaussian processes
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is that they cannot effectively model discontinuities such
as those observed when a signal passes through walls. In
contrast, our approach explicitly models wall attenuation,
which our study in Section 5.5 shows to be significant. [9]
proposes a method for determining a sensor’s sensing radio
range through hierarchical sampling. This approach is com-
plementary to our own, since it deals with efficient sampling
strategies for refining coverage boundaries; our work focuses
on processing the collected samples to predict coverage.

3. RADIO PROPAGATION MODELS
Propagation models optimized for different wireless tech-

nologies and environments have been proposed in litera-
ture [1, 8, 10]. We assume that nodes operate on a fixed
frequency and transmission power. The models presented in
this section focus on three characteristics which may signifi-
cantly affect signal propagation in indoor environments: (1)
the distance between the sender and receiver, (2) antenna
orientation, and (3) the impact of walls. We note that the
models considered in this section do not model multi-path
propagation. While multi-path propagation may be modeled
through ray-tracing techniques, such approaches are usually
computationally demanding and require a precise charac-
terization of the environment such as the materials of walls.
Since our goal is to develop an interactive radio mapping tool
that requires minimum knowledge about the environment,
we opted to ignore these effects. Moreover, we show that
the simple models proposed in this section may accurately
predict coverage.
By their nature, these models’ parameters are estimated

from an (ideally small) set of training data. The need for
training data represents an important trade-off that we will
revisit throughout this paper: while an overly simplistic ra-
dio model may not provide an accurate estimate of commu-
nication coverage, adding more complexity will not necessar-
ily improve the model’s performance. As more parameters
are added, more training data is needed to adequately es-
timate them — conversely, for a fixed training data size,
the estimates for each parameter may degrade as more are
added.
Thus, the challenge in creating a realistic radio model lies

not only in identifying what factors can affect signal propa-
gation, but also which of these factors are the most impor-
tant to capture. Our goal is to identify the model with the
best trade-off between prediction accuracy and the number
of samples needed to estimate its parameters. This model
will ultimately be used in our Radio Mapping Tool to gen-
erate signal strength predictions. The models presented in
this section will be evaluated empirically in Section 5.

Log-Normal Shadowing: Under the log-normal model, sig-
nal strength decays exponentially as a function of distance.
Let d(s, r) be the distance between the sender node s and
the receiver node r. The receive signal strength Pr(s, r) at
r from a sender s is given by: [2]

Pr(s, r) = α− 10β log10 d(s, r) + σ (1)

Here, α represents the transmission power at a reference
distance of 1m and β represents the pass loss exponent.
σ models shadowing (i.e., the random signal variations be-
tween sender and receiver) and is usually considered to be a
normally distributed random variable.
Prior empirical studies have shown that this model may

accurately predict the receive signal strength of low-power

Log-Normal Sector-Based Per-Wall Wall-Class
2 NS ∗ n+ 1 |W |+ 2 |C|+ 2

Table 1: Parameters per model

radios in outdoor environments [13] and in indoor environ-
ments where nodes have line-of-sight [13,25]. However, this
model does not account for the impact of walls, which com-
monly have major impacts on the coverage of sensor net-
works deployed indoors.

Sector-Based: Prior literature has extended the basic log-
normal model to capture the fact that many low-power ra-
dios have non-isotropic radiation patterns [24]. That is,
even when nodes are positioned at equal distances from the
sender, they may observe significantly different receive sig-
nal strengths.
The receive signal strengths depend on the relative orien-

tation of the sender and receiver. However, to simplify the
problem, the relative position of the sender and receiver is
commonly kept constant during data collection. In this case,
non-isotropic behavior is accounted for by parametrizing α
by the angle θ between the line connecting s and r and a
fixed frame of reference:

Pr(s, r) = α(s, θ)− 10β log10 d(s, r) + σ (2)

α(θ) may be a non-linear function [24]. As a result, non-
linear optimization techniques would be necessary for fitting
the model. To simplify fitting, the impact of antenna orien-
tation may be captured by discretizing θ into a number of
sectors. This enables us to use linear fitting to estimate all
model parameters.

Per-Wall Attenuation: In indoor environments, walls may
significantly attenuate wireless links. Hence, incorporating
walls into the radio propagation model can improve its signal
strength predictions.
An intuitive way of modeling wall attenuation is to assume

that each wall wi ∈ W in the environment attenuates the
signal by a constant factor γwi . If we let Is,r be the set of
all walls which intersect a virtual line between s and r, then
the signal strength at r is:

Pr(s, r) = α− 10β log10 d(s, r) +
∑

w∈Is,r

γw (3)

This model may also be modified to incorporate non-
isotropic radio range by treating α as a function of θ as
previously discussed.
Several measurements should be taken through each wall

to accurately estimate γ. This may be a significant bur-
den in some environments; for example, one building in our
environment contained 128 walls in 1020m2 of floor space.

Wall-Class Attenuation: A pragmatic alternative to the
per-wall scheme is to group walls into a few classes, reflecting
the fact that only a few types of walls are used in construc-
tion. For example, the building shown in Figure 2 mainly
uses two kinds of walls: cinder block and drywall. Given a
set of classes C, a mapping Π : W → C, and an attenuation
coefficient Γci for each class ci ∈ C, the signal strength at a
node r is:

Pr(s, r) = α− 10β log10 d(s, r) +
∑

w∈Is,r

ΓΠ(wi) (4)

Table 1 summarizes the number of parameters used by
each model. As later highlighted by the empirical results
presented in Section 5, one of the key challenges of Radio
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Mapping is selecting a model which achieves the best predic-
tion accuracy given a number of measurements. Models with
small number of parameters have the advantage of requir-
ing a small number of measurements for determining their
parameters. Moreover, when only a limited number of pa-
rameters are available, it is imperative to focus on the factors
which have the most significant impact on signal propaga-
tion.
The log-normal model has only two parameters which

need to be evaluated. In contrast, the sector-based model
has as many as NS ∗ n + 1 parameters, where NS and n
are the number of sectors and relays, respectively. The two
buildings used in our experiments contained 64 nodes and
28 nodes, respectively. Due to the multiplication between
number of sectors and number of relays, such environments
will generate models with numerous parameters. Similarly,
the per-wall model accounts for the attenuation of walls; as
a result, one expects it to be more accurate. The number of
parameters used by this model is |W | + 2. |W | may be as
high as 100 in typical office buildings, resulting in a model
with a significant number of parameters. Therefore, we ex-
pect the per-wall model to require copious measurements as
training data. Moreover, obtaining good statistics for the
attenuation of a wall potentially requires multiple measure-
ments per wall. We hypothesize here (and show in Section
5) that models with numerous parameters require a signifi-
cant amount of training data, making them impractical for
our Radio Mapping Tool.
In contrast with the previously discussed models, the wall

class model requires |C| parameters. In our experience, typ-
ical values for |C| are between 1– 5 wall classes, significantly
reducing the number of model parameters. Such a model is
particularly attractive for our Radio Mapping Tool since it
would require only a small number of measurements. How-
ever, it also creates a new problem: a mapping Π from walls
to classes needs to be constructed. In the next section, we
will present an efficient algorithm for constructing this map-
ping.

4. AUTOMATIC WALL CLASSIFICATION
One way to construct this wall classification is to manu-

ally classify walls based on their construction material. Lin-
ear regression may then be used to fit the remainder of the
model’s parameters as described above. However, manual
wall classification is labor-intensive and requires architec-
tural information that may not be readily available to ap-
plication developers or network managers.
Hence, we propose to classify each wall automatically. The

problem of automatically classifying walls into classes may
be addressed in the Expectation Maximization (EM) frame-
work. The EM framework is best suited for finding the max-
imum likelihood estimate when the model depends on latent
variables, which in our case are the wall classes. We propose
the novel application of the EM framework to automatically
classifying walls.
The input to the classification algorithm is based on link

statistics collected by the user when located at a small
number of measurement locations. Multiple packets are
broadcast at each measurement location and the relay nodes
record their RSS. For each link formed between a relay and a
node positioned at a measurement location, we provide the
median RSS as vector y and the Euclidean distance between
the link’s endpoints as vector d. The set of walls and wall

[α, β,Γ,Π] = compute-parameters(y, d, W, C):
1: improvement = true;
2: for each wall w ∈W :
3: Π(w) = rand(C);
4: while (improvement):
5: improvement = false;
6: [α, β,Γ] = regress(y, [d; Π]);
7 : for each wall w ∈W in random order:
8: Πnew = Π and cold = Π(w);
9: for each class c ∈ C:
10: Πnew(w) = c;
11: ŷ = α(s)− 10β log10 d(s, r) +

∑
w∈Is,r

ΓΠnew(w);

12: SSE(c) =
∑|y|

i=1(y(i)− ŷ(i));
13: cbest = argmincSSE(c);
14: if (cold �= cbest):
15: Π(w) = cbest;
16: improvement = true;
17: break;

Figure 1: Wall classification algorithm

classes are provided as W and C, respectively.
Figure 1 presents the pseudocode of this algorithm. Ini-

tially, each wall is assigned to a random class. The algo-
rithm then proceeds in two stages, repeating until changes
in wall classification stop improving the sum of squared er-
rors (SSE) between the predicted signal strengths (ŷ) and
the actual signal strengths (y). In the first stage (line 6),
the algorithm uses linear regression to fit the parameters α
and β, as well as the attenuation coefficient Γ for each wall
class. The second stage (lines 7–16) aims to improve the
mapping of walls to classes with these values of α, β, and
Γ fixed. This is done by considering each wall w in random
order, computing the SSE when w is assigned to each class
in C. If reassigning w results in a smaller SSE, then w’s
classification is updated accordingly and the algorithm goes
back to executing the first stage with an improved wall clas-
sification. Otherwise, the algorithm considers the next wall.
The algorithm terminates when no wall may be assigned to
a new class that reduces the SSE. The values of the param-
eters α, β, and Γ are then returned along with the mapping
Π of walls to classes.
This algorithm has two noteworthy features. First, it

is much less computationally expensive that an exhaus-
tive search. The wall-reassignment stage considers at most
|C| × |W | potential assignments at each iteration. Thus, in
practice, this algorithm can be executed in under two min-
utes on a modern laptop PC even when predicting coverage
of relays spanning an entire building (tens of relay locations
and about a hundred measurement locations).
Second, the algorithm is guaranteed to converge. This is

because the algorithm reduces the squared error at each step
until it terminates. There is no guarantee on the optimality
of the solution, since it may get stuck in a local minimum.
Because of the random initial assignment of walls to classes
and the random ordering in which walls are reclassified, the
algorithm may return different values each time it is run.
Accordingly, we may further improve the squared error by
repeating the algorithm several times and returning the pa-
rameters which resulted in the lowest squared error.

5. EMPIRICAL MODEL COMPARISON
In this section, we present an empirical study which aims

to address three questions at the core of our Radio Map-
ping technique: (1) which factors affect signal propagation
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Jolley Hall

Bryan Hall

Figure 2: Test buildings

in an indoor environment, (2) how model accuracy affects
the number of samples needed for parameter fitting, and
(3) the robustness of different propagation models in indoor
environments. In answering these questions, we provide
guidelines for developing a practical radio mapping tech-
nique which can be used in complex indoor environments.

5.1 Experimental Setup
Our experiments were carried out in two indoor office

buildings (see Figure 2; triangles represent relays and cir-
cles represent test positions) using TelosB motes. These
two buildings serve as good test cases because they were
constructed in different years with different materials: for
example, the walls in Bryan Hall contain steel rebars that
attenuate wireless signals, while the walls in Jolley Hall do
not. The motes are equipped with CC2420 low-power ra-
dio chips, which provide an RSS indicator reading for each
decoded packet. All nodes in our experiment were set to
802.15.4 channel 26, which does not overlap with the build-
ings’ 802.11g network.
The experimental setup is motivated by our interest in

supporting robust data collection from mobile users. Ac-
cordingly, we aim to ensure that at least one relay node is
capable of receiving data from a user standing in any lo-
cation. A total of 28 and 45 motes were deployed close to
the ceilings of Jolley and Bryan Halls, respectively, repre-
senting the locations where relays have been deployed. We
used these nodes to record the link quality at when a test
node is placed at numerous locations in the two buildings
(104 locations in Jolley and 64 locations in Bryan). At each
measurement location, a sender node broadcasted packets at
the eight power levels available on the CC2420 radios. The
Jolley dataset was collected with the sender placed 1.5m off
the ground on a tripod, while the Bryan dataset used plas-

tic cups 15 cm off the ground. The relays recorded the RSS
reading and sequence number of each successfully decoded
packet, which was relayed to a central database through a
wired back channel. Each data set was collected during the
night over two consecutive days.
To compensate for errors in the CC2420’s raw RSS read-

ings, we calibrated the RSS data in a similar fashion as [3],
using a calibration curve provided by the authors. After
calibration, the collected data is divided into training and
testing sets. To account for uneven spatial distribution in
our measurements, we construct the training and testing
sets as follows. A number of points are generated uniformly
over the 2D floor plan, and the links with senders closest
to these points are selected as part of the training set. The
testing set is generated from the remaining links in a similar
fashion. We vary the size of the training set by varying the
number of randomly generated points, with densitys ranging
from 0.01 to 0.11 samples/m2 in increments of 0.01.
Unless mentioned otherwise, the presented results are av-

erages of 10 randomly generated training sets. We evaluate
the performance of various models based on the 80th per-
centile of the absolute error between predicted and actual
RSS values.

5.2 Effect of Walls
First, we evaluate the effectiveness of including walls in

our radio propagation models by comparing the performance
of models which incorporate topological information against
the log-normal model. Figure 3 presents the error for these
models, including three approaches that include wall atten-
uation: treating each wall as an independent variable (per-
wall attenuation), assuming that walls are of the same con-
struction material (1 wall class), and manually labeling the
type of each wall based on architectural knowledge (man-
ual classification). The 1-wall class and manual classifica-
tion models consistently outperform the log-normal model in
both environments, with 4.7%–8.4% lower error regardless
of the amount of training data available.
The overall reductions in error are modest. However, we

note that not all links are equally important for overall cover-
age predictions. Rather, the most important links are those
close to the coverage boundary, which have an RSS in the
transitional region. As discussed in detail in Section 6, the
transitional region in our testbed occurs the RSS range of
[−87, −80] dBm. In this region, we have found that the
models which model wall attenuation can significantly out-
perform models which do not. This effect is illustrated in
Figure 3(c), which plots error as a function of predicted RSS
for the Jolley dataset with a density of 0.1. Within the tran-
sitional region, the models which incorporate walls outper-
form the log-normal model by as much as 22.2%.
We also observed that adding more training data only

slightly improves most of the models’ performance. The
per-wall attenuation model is the exception, improving by
as much as 30% when more training data is provided. This
is because the per-wall attenuation model has about 100 pa-
rameters that require large amounts of data to accurately es-
timate, whereas the other models have few parameters that
can be fit well using relatively little data. We observe that
the per-wall attenuation model may outperform the other
wall models when given enough training data.
Summary: The number of parameters in a model must be
tuned to match the amount of available training data.
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Figure 3: Comparison of propagation models

5.3 Automatic Wall Classification
The previous experiment showed the benefits of using wall

information and the pitfalls of using models with numerous
parameters for limited training data. In this section, we con-
sider models which automatically classify walls into a small
number of classes. By constraining the number of classes, we
hypothesize that we can improve prediction accuracy with-
out requiring large training sets.
Figure 4 compares the estimation accuracy of the auto-

matic wall-classification model with 1–3 classes of walls. For
comparison, we also include the per-wall model and the man-
ual wall classification model. When little training data is
available, using fewer wall classes improves the predicted
accuracy for both data sets. At a density of 0.01, the 1-
class model outperforms all other models, with 10.5% and
6.3% lower error in the two dataset than the 3-class model.
In contrast, at a density of 0.10, the 3-class model achieves
the lowest error, at 4.6% and 6.18% lower than the 1-class
model. Both data sets indicate that additional wall classes
are beneficial when more training data is available.
Summary: Classifying walls into a few classes achieves the
lowest error when the training data set is small; but as the
amount of training data increases, more classes should be
employed.
We also note that the automatic wall classification scheme

achieves lower error than the manual wall-classification
scheme. In fact, on the Bryan data set, the automatic wall
classification scheme has 6.2% lower error than the manual
wall-classification scheme at the maximum sampling density.
This is explained by the fact that the attenuation of a wall
is partly determined by the additional shelving or furniture
present in an office or in the room. Besides being more
labor-intensive, a manual classification based purely on con-
struction material would not capture this information.
Summary: Automatic wall classification model achieves
higher prediction accuracy without requiring the user to man-
ually classify the walls.

5.4 Boosting
Looking at the predictions from individual relays, we ob-

served that the “best” model often depends on the location
— the model with the lowest error in one room would not
necessarily have the lowest error in another. Thus, we pro-
pose an approach we call boosting, which reduces error by
combining different models’ predictions. Intuitively, boost-
ing divides the map into regions (i.e., rooms or hallways)
and finds the most accurate model on a per-region basis.
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Figure 5: Sectorization Model

Formally, boosting combines the RSS predictions and
training errors of multiple models as follows. For each region
R and model M , we compute the average (μR,M ) and stan-
dard deviation (σR,M ) training error. We then select the
model Mbest which minimizes μR,M + 2σR,M (i.e., the 95%-
percentile of a normal distribution N (μR,M , σR,M )). For
regions which have no samples, the 1-class model is selected
as a conservative choice, since it generally achieves good pre-
diction accuracy with a small number of measurements.
As shown in Figure 4, the boosting procedure reduces the

prediction error by as much as 8.8% over the log-normal
model for the Jolley dataset, and as much as 9.7% for the
Bryan dataset. More strikingly, its performance is consis-
tently good across training sets of different sizes.
Summary: The boosting procedure combines results from
multiple models to achieve consistently good performance,
independent of training data size.

5.5 Impact of Sectorization
In the preceding models, we have ignored the effect of

non-uniform radiation patterns. We will now explore the
sectorization technique (Equation 3) that aims to improve
the accuracy of the radio propagation model by modeling
this effect when the automatic wall classification is used.
Figure 5 shows the prediction errors for models which con-

sider both obstacles and directionality. In this figure, the
number of wall classes is fixed at 2, and an increasing num-
ber of sectors are used. For comparison, we also include
the results of the (nonsectorized) boost procedure described
above.
We note that at densities lower than 0.06 samples/m2,
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Figure 4: Automatic wall classification

adding more sectors increases the prediction error; the sec-
torization models outperform the boost approach only at
densities > 0.08 samples/m2. This phenomenon is caused
by the greatly increased number of parameters needed for
sectorization. Rather than solving for a single parameter α,
it now necessary to solve for up to 112 values for Jolley Hall
and up to 256 values for Bryan Hall2. We emphasize that
the lower densities are the most useful for radio mapping,
since they represent less data that must be sampled.
Finally, we wish to explore how much decay, walls, and

directionality actually contribute to wireless coverage. Fig-
ures 6(a) and 6(b) plot the impact of distance and walls for
a representative wall class model. As the predicted RSS de-
creases, both distance and walls contribute more in absolute
terms to the attenuation; this makes intuitive sense, since
high-RSS links tend to be shorter and pass through fewer
walls. This effect is even more striking when considering
the relative contribution. For links with high RSS, the im-
pact of walls may be as low as 5%. For the critical links close
to the coverage boundary, walls contribute to up to 25% of
the overall signal loss.
To evaluate the impact of directionality on RSS, we ori-

ented the sender in each of the four compass directions and
sent a number of packets to a fixed receiver. Figure 6(c)
presents the difference in RSS relative to when the sender
is pointed North. We observe differences in the 25th, 50th,
and 75th percentiles of about 2.5 dBm, 5 dBm, and 8.5
dBm, which are consistent with those observed in [24]. For
links in the critical transitional region, the impact of atten-
uation through obstacles has twice the impact of direction-
ality. Thus, we choose models which ignore the impact of
directionality; it is more effective to use the limited training
data to better fit the wall classification parameters, which
are fewer and have a greater impact on signal strength near
the coverage boundary.
Summary: Antenna orientation has a smaller impact than
wall attenuation for links on the boundaries of coverage re-
gions. Moreover, sectorization techniques are suitable only
when large training data sets are available.

6. RADIO MAPPING TOOL
In this section, we present our Radio Mapping Tool

(RMT) for assessing network coverage. RMT is particularly

2In fact, at 5 sectors there would be more unknowns than
experimental points.
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Figure 8: Selecting the RSS threshold

beneficial for applications which require a network to cover
an entire physical area. The main use case of RMT is to
evaluate the coverage of an already deployed network; this
can be done by computing the union of the regions covered
individually by each relay. RMT may also be used to as-
sist during the initial network deployment: an overly dense
network of relays is temporarily deployed to measure net-
work coverage, and only those necessary to cover the area
are permanently installed.
RMT has several salient features. (1) In contrast to ray-

tracing techniques, RMT does not require the user to spec-
ify the attenuation coefficients or construction materials of
walls. Wall locations may be extracted from readily avail-
able floor plans. (2) Based on our insights from the previ-
ous sections, RMT uses the wall classification models, which
have been shown to provide accurate predictions even when
few measurements are used for training. RMT combines
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Figure 6: Impact of distance, wall attenuation, and antenna orientation

these results through the Boost procedure. (3) RMT uses
the computationally efficient algorithm presented in Sec-
tion 4 to classify each wall into a small number of classes
and determine the model parameters.
As input from the user, RMT requires the physical loca-

tions of the relays whose coverage is being predicted, the
locations of walls, a set of training data, and a PRR thresh-
old (PRRt) that determines “good” and “bad” links. RMT
includes a TinyOS application to be deployed on a single
“beacon” mote, which broadcasts beacon packets at each of
the 8 power levels supported by the CC2420 at places where
the user wishes to collect link quality data. By design, the
user does not need to collect data exhaustively; our case
study in Section 7 used as few as 0.01 samples/m2. A cor-
responding TinyOS application on the relay nodes records
the RSS and sequence number of all successfully decoded
packets, which RMT uses to compute the PRR and average
RSS of each link.
RMT has four main components, as shown in Figure 7:

a Parameter Estimator, an RSS Mapper, an RSS-to-PRR
Mapper, and a Coverage Mapper. The Parameter Estima-
tor uses the computationally efficient algorithm described
in Section 4 to estimate the model’s parameters. RMT fits
models with 1–4 different wall types and merges their pre-
diction using the Boosting procedure previously discussed.
Based on the determined parameters, the RSS Mapper con-
structs a map of signal strength predictions on a dense 2D
grid overlaid on the floor plan. A map is individually com-
puted for each relay using the automatic wall classification
model.
The RSS-to-PRR Mapper determines an RSS threshold

which accurately separates the “good links” (with PRR
≥ PRRt) from the “bad links” (with PRR < PRRt). To
do so, we leverage the correlation between RSS and PRR
previously observed in [20]. Any RSS threshold will neces-
sarily have some false negative rate (i.e., links incorrectly
predicted as poor-quality) and false positive rate (i.e., links
incorrectly predicted as good-quality). An example of this
phenomenon is shown in Fig. 8, where the PRR threshold
has been set to 80% and the false positive and false negative
rates have been calculated for each possible RSS threshold.
In this example, an RSS threshold of −85 dBm offers the
best tradeoff: the false positive rate is 9% and false negative
rate is 15%. RMT allows the user to specify the maximum
acceptable false negative and false positive rates; the RSS-
to-PRR mapper then automatically locates the minimum
RSS which satisfies both of these criteria in the training
data, or reports an error when no such RSS threshold ex-

ists. We note that from the perspective of coverage predic-
tion, it is desirable to have a low false positive rate, and it
should arguably be configured conservatively. Nevertheless,
an overly conservative threshold could result in overdeploy-
ment, which increases the monetary cost of the deployment
and may increase channel contention. We note that the
RSS-to-PRR Mapper is designed under the assumption that
the noise levels observed during the measurements are rep-
resentative of normal network operations. This could be
improved with a better model of background noise, such as
the one proposed in [12].
Finally, the Coverage Mapper uses this threshold to con-

vert the RSS map into a binary coverage decision at each
grid point; Figure 9 shows a sample output. By precomput-
ing as much data as possible (e.g., the walls between each
relay and grid location), RMT can train the models and
make predictions within minutes.

7. EMPIRICAL EVALUATION OF RMT
In this section, we analyze the performance of the RMT

on the data sets previously collected for our empirical study.
We begin by assessing RMT’s performance through a case
study which highlights RMT’s accuracy and the intuitive
nature of the outputted radio maps.
We characterize the accuracy of RMT’s coverage predic-

tions by its resulting false positive and false negative rates.
In contrast to the previous section, the false positive and
false negative rates discussed here refer to the prediction
coverage rather than the RSS threshold. In this context,
a false postive occurs when RMT predicts coverage where
there is none; similarly, a false negative occurs when RMT
predicts no coverage but ground truth data indicates other-
wise.

7.1 Representative Example
The case-study is designed to emulate the use of RMT to

predict the coverage of one relay in Jolley Hall. In order
to illustrate the efficacy of our automatic wall-classification
model, we present results with the normal RMT (which uses
the automatic wall classification model with Boost) as well
as with a version of RMT that has been modified to use
the basic log-normal model. To highlight RMT’s accuracy
when using only a small amount of training data, we choose
a sampling density of 0.02 samples/m2. The data is divided
into training and testing sets through the same sampling
strategy described in Section 5. For the purposes of this
study, we define a “good link” to have a PRR higher than
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Figure 9: Example predictions using Radio Mapping Tool

80%. Using the RSS threshold selection technique previously
discussed, a RSS threshold of −85 dBm was selected.
Figure 9(a) plots the RSS predictions when the log-normal

model is used. Since the log-normal model does not account
for wall attenuation, the contour graph consists of concentric
circles. RMT also plotted the −85 dBm line that delineates
the relay’s coverage area. It is worth highlighting the small
number of samples which was used for training, shown as red
dots. Moreover, we have only a few measurements in each
room; other radio mapping techniques require every wall
to be independently measured. Figure 9(c) shows the RSS
predictions made by RMT using Boost. The predictions
clearly indicate the strong impact of walls; the finger-like
projections are caused by signals passing through different
numbers of walls.
Figure 9(b) shows the coverage map for the log-normal

model. Here, the white circles represent training data, the
black circles indicate correct predictions, and the stars and
triangles denote false positives and false negatives, respec-
tively. Figure 9(d) plots the corresponding coverage map
predicted when using Boost.
The log-normal model has 20 false positives, which are

particularly disconcerting since they indicate coverage in re-
gions where there is actually none. In contrast, RMT re-
duces the number of false positives from 20 to 4. This is
particularly clear toward the top of the predicted coverage
area, where the coverage area stops at the intersection with
a wall. We note that most of these 4 false positive locations
are close to the predicted coverage border. We expect that
the coverage prediction could be further improved by tar-
geted sampling near the border. This highlights the use of

RMT as an interactive tool to guide the user about where
to collect additional coverage measurements.
Due to the log-normal model being overly optimistic, it

predicts 1 false negative compared to 5 for the wall-based
model. We note that some false negatives should be ex-
pected, since a threshold of -85 dBm leads to a 15% false
negative rate when mapping RSS to PRR.

7.2 Detailed Empirical Results
Next, we statistically analyze RMT’s overall performance

on both buildings’ data sets. For this analysis, we fix the
PRR threshold to 80% and set the RSS false positive rate
threshold to 10% for both data sets. This resulted in an RSS
threshold of -85 dBm and -87 dBm for Jolley and Bryan,
respectively. Additionally, we varied the sampling density
and observed the impact on RMT’s performance.
Figure 10 plots the false negative and false positive rates

for RMT when using the log-normal and Boost-based mod-
els. First, consider the results from the Jolley dataset. As
seen in the case study, the log-normal model suffers from
numerous false postives, with a false positive rate of 38%–
46%. In contrast, RMT using the Boost procedure has a
false positive rate between 23%–27%, representing a reduc-
tion in the false positive rate by up to 39% at a density of
0.01.
Again, the log-normal model achieves the lowest false posi-

tive rate (6.8%) by incurring a high false negative rate. The
false negative rate for RMT was 10%–12%, which is com-
parable with the 10% false positive rate imposed on the
RSS threshold. As previously noted, a moderate increase
in false negatives may be acceptable, since it would result in
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Figure 10: Coverage prediction accuracy

a slightly denser network.
The results from the Bryan data set paint a similar pic-

ture. Using the Boost procedure gives RMT a signifi-
cantly lower false positive rate than the log-normal model.
When the sampling rate is 0.01 samples/m2, the Boost-
based method reduced the false positive rate by as much as
54% (from 16.21% down to 7.42%). At the same sampling
density, the Boost-based method has false negative rate of
16%, compared to a false negative rate of 0% for the log-
normal model. Again, the false negative of zero occurs be-
cause the log-normal model significantly overestimates cov-
erage area.
We conclude that our Boost-based approach may reduce

false positive rates by as much as 54%, and achieved a false
negative rate comparable to the user-specified constraints on
the RSS threshold. Moreover, despite the two different radio
propagation characteristics, RMT with Boost achieved con-
sistently good performance across two different buildings.

8. CONCLUSION
Radio mapping is a challenging problem for real indoor

environments due to signal attenuation through walls, com-
plex signal propagation behavior, and the need to reduce the
number of sampling measurements. This paper addresses
this important challenge by developing a practical and ef-
fective radio mapping approach for indoor environments.
We first perform an in-depth empirical analysis of several

signal propagation models in an office building. Our anal-
ysis shows the importance of balancing the accuracy of the
model against the number of model parameters that need
be estimated based on limited measurement. Our empirical
results identify the wall-classification model family as the
most practical and effective for indoor environments.
We then propose a practical algorithm to predict the RSS

between different locations based on a small number of mea-
surements. A key novelty of our algorithm lies in its ability

to automatically classify walls into a small number of classes
with different degrees of signal attenuation, and to automat-
ically select the best number of wall classes on a per-region
basis. Empirical results show that our automatic wall classi-
fication scheme results in more accurate RSS prediction than
a manual classification based on architectural knowledge.
We have developed a practical Radio Mapping Tool to

predict the radio coverage of relay placements. RMT has
several salient features. (1) It requires minimal informa-
tion about the indoor environment. The only knowledge
about the environment that RMT needs are the wall loca-
tions, which may be extracted from existing floor plans. (2)
RMT can accurately predict radio coverage based on a small
number of measurements, which can significantly reduce the
cost of network deployment and maintenance. (3) RMT fea-
tures computationally efficient algorithms that allow users
to quickly assess and adjust the coverage of a potential relay
placement.
An empirical evaluation in two office buildings shows that

RMT achieves as much as 54% fewer false positives com-
pared to the log-normal model based on a sampling den-
sity of only 0.01 samples/m2. Our results demonstrate that
RMT is a practical tool which can be used to facilitate the
efficient deployment and robust operation of wireless sensor
networks for indoor environments.
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