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Abstract—Measuring the performance of hearing aids in the
real-world is challenging because it depends on both the subject’s
auditory abilities and the auditory context in which they use
their hearing aids. The auditory context includes characteristics
of the listening activity, social context, and acoustic environment.
Ecological momentary assessment is the state-of-the-art method
for evaluating the performance of hearing aids in the real-world.
It may be used to assess the auditory context and its perfor-
mance in that context. However, such techniques a introduces
a significant data collection burden on study participants. A
potential avenue for reducing the data collection burden is to
use audio data collected in-situ to characterize the auditory
context automatically. This paper presents our initial attempt at
answering this challenge. Our results indicate that it is possible
to predict the noise level and listening activity with an accuracy
of 68% and 70%, respectively. Additionally, we show that a 4.6%
reduction in the mean squared error of predicting the listening
effort may also be achieved by using the audio data (without
including subjective self-reports).

I. INTRODUCTION

Twenty percent of Americans will be 65 years or older by
2030 [1] out of which between 35% and 50% will report
having presbycusis [2], an age-related hearing impairment that
is primarily treated with hearing aids (HA). Regular use of
HAs has been shown to improve communication and avoid
the negative effects of hearing loss that include an increased
risk of social isolation and depression [3], [4]. Unfortunately,
many subjects that would benefit from HAs do not use them
regularly, as they are often unsatisfied with the performance
that their HA provides in the real world. Therefore, there is a
critical need to develop clinical tools that can effectively assess
the satisfaction of subjects with the performance of HAs in situ
to improve the HA technology.

Measuring the performance of HAs poses significant chal-
lenges since it depends on the subject’s auditory context.
The auditory context includes characteristics of the listening
activity, listening partners, and acoustic environment. Labora-
tory assessments such as speech recognition tests have been
used extensively to evaluate the performance of HAs. During
a speech recognition test, a subject is placed in a sound
booth and presented segments of speech under different noise
conditions. As it is difficult to recreate real world listening
conditions in the sound booth, laboratory-based assessments
usually fail to be representative of the listening contexts that
subjects encounter during their daily life. An alternative to
using laboratory experiments is to rely on interviews and

questionnaires to assess the performance of HAs. Unfortu-
nately, the accuracy of data collected using survey methods is
negatively affected by memory biases as subjects are asked to
remember the circumstances in which HAs performed poorly
long after they occurred. Thus, neither laboratory-based tests
nor self-reports are effective in describing the auditory contexts
observed by subjects in the real world as clearly demonstrated
in several recent studies [5]–[7].

An alternative methodology is Ecological Momentary As-
sessment (EMA) that can jointly characterize the auditory
context as well as the HA performance in that context. EMA
has the advantage of reducing recall bias and capturing a
rich description of auditory contexts that includes the type
of listening activity, social context, or the acoustic features
of the environment. We have developed a novel mobile
phone application called AudioSense that allows audiologists
to evaluate the performance of HAs in the real-world [18].
Two hypotheses guided the design of AudioSense: (1) The
satisfaction of subjects with their HAs in the real world is best
quantified by measuring it repeatedly, in the moment, and in
situ. (2) The real-world performance of HAs is intrinsically
linked to the auditory context in which the HA is used. An
AudioSense assessment combines subjective that that charac-
terizes a subject’s perception of the auditory context and HA
performance as well as objective audio data.

The goal of this paper is to explore how the audio the
data gathered by AudioSense may be used. We are interested
in this problem for two reasons. First, collecting data using
AudioSense introduces a significant burden on study partic-
ipants. Part of this burden may be alleviated by having the
application automatically infer characteristics of the auditory
context without requiring user input. Specifically, we are
interested in whether it is possible to predict the noise level and
listening activity reported by subjects. Second, audiologists
are interested in understanding the impact that the acoustic
environment has on the subject’s performance for a given
HA. We will focus on exploring the impact that the noise
level and listening activity have on the self-reported listening
effort. Audiologists have extensively studied this relationship
in laboratory conditions. Laboratory experiments clearly show
that the listening effort required to understand speech sharply
increase with a reduction in SNR. However, little is known
about the relationship between listening effort and SNR in the
real-world.



We start by considering the problem of predicting the
perceived noise level poses. This poses unique challenges since
the noise level reported by a subject does not only depend on
the acoustic environment but also on the HA used and their
subjective perception. Our results indicate that classification
algorithms that use only signal-to-noise ratio (SNR) estimates
achieve low accuracy. When the SNR features are augmented
with other audio features, the classification accuracy increased
to 68%. Similarly, the listening activity may be predicted with
an accuracy of 70%.

Next, we will evaluate the impact that noise level and
listening activity have on the listening effort reported by
subjects. Our results show that when we use the subjective
noise level and listening activity, we achieve an 18% reduction
in the mean squared error (MSE) compared to a baseline model
that do not include this information. It is possible to build a
model for predicting the listening effort from objective audio
data using a hierarchical model. The low-level of the model
uses the previously developed classifiers to predict the noise
level and listening activity from audio data. The predictions of
the higher-level classifier are then used to train a classifier the
predicts the listening effort. Our results show that using this
approach we achieve a reduction of 4.8% in MSE compared
to the baseline model. In other words, using the audio data,
we can recover about 21.9% of the information contained in
the subjective reports.

II. RELATED WORK

Hearing loss is typically evaluated with laboratory tests
like Pure Tone Average (PTA), Quick Speech-In-Noise
(QuickSIN), and Acceptable Noise Level (ANL) [8], [9]. How-
ever, studies have shown that HA performance measured in
the lab is a poor predictor of the real-world HA performance.
[7], [11]. More recently, Ecological Momentary Assessment
(EMA) [12] has been proposed as a methodology for assessing
HAs. EMA is an attractive alternative to the memory-bias
prone retrospective self-report based evaluations. Computer
scientists have developed several EMA systems which make
use of embedded sensors in mobile devices to collect data
in real-time [13]–[16]. The use of computer-based EMA in
Audiology is still in its infancy with a few studies evaluating
HAs [17], [18] and tinnitus [19]–[21]. The AudioSense system
[18] is more customizable than the existing systems in terms
of delivery schedules, adaptive assessments, and collecting
multiple dimensions of objective data like audio and GPS.
We have shown that using data gathered by AudioSense it is
possible to characterize the auditory lifestyle of HA users and
predict whether they will be successful users of HA technology
[22], [23].

Despite these advances, to the best of our knowledge, no
work exists that utilizes audio data to predict a subject’s
perception of noise level and listening effort. Individual works
do exist that use acoustic signals to predict individual activ-
ities [24] and background environmental information such as
signal-to-noise ratio [25]. The use of audio data to automat-
ically characterize the properties of the auditory context and

Variable Statistics
Gender Distribution 51% Female

Age (years) Range: 64 - 88
Median: 72.5

Hearing Loss Onset (years) Range: 1 - 54
Median: 8

Duration of HA use (years) Range: 0-40
Median: 6

TABLE I: Demographic Details of Participants

Condition HA use DM/DNR usage
1 Entry level Off
2 Entry level On
3 Premium Off
4 Premium On

TABLE II: Study conditions

linking the auditory context to subjective assessment of HA
performance has several potential benefits: (1) it can poten-
tially reduce the burden of evaluation on study participants by
reducing the number of question that they are asked and (2) it
is possible to construct intelligent sampling policies in contexts
that may be of interests to audiologists (e.g., low SNR, when
conversation are present).

III. FIELD STUDY

The participants for the study are recruited in three ways:
(i) through the pool of potential participants maintained by
the Department of Communication Sciences & Disorders, (ii)
through word of mouth from participants of other studies, and
(iii) through hearing screenings performed within associated
clinics. We only recruit participants older than 64 years of
age that have mild-to-moderate hearing loss. Furthermore, we
ensure that subjects admit in the study have hearing loss that is
symmetric, bilateral, and has an adult-onset. The demographic
details are given in Table I.

During the study, each subject participated in four data
collection conditions that involved two different HAs each
having two possible configurations. We used two types of HAs:
entry-level and premium-level. Both the HAs had advanced
processing modes like directional microphones (DN) and
digital noise reduction (DNR) which could be switched on or
off. The details of each condition are summarized in Table
II. Every participant started with a training session where
the participants became acclimatized with reporting data via
the mobile phone application. The order of the subsequent
conditions was randomized. Each week long data collection
session was preceded by a month-long washout period during
which they wore a new HA (from Table II) to (i) familiarize
themselves with the HA, and (ii) to minimize reporting fatigue.
Once a data collection condition was over the participants
began the washout period for the next session. The study was
single-blinded: participants did not know which HA they used.

The mobile phone application was used to collect the HA
performance from the user via the delivery of assessments
in conjunction with surrounding environmental audio. The
assessments were delivered in one of two ways: (i) participant-
initiated: the participant initiated the assessment to report



the performance, or (ii) timer-initiated: we used a semi-
randomized timer to schedule assessment delivery. The semi-
randomized timer had a fixed component to ensure that two
assessments were separated by a minimum time and a random
component. Additionally, clinicians configured the start and
end times when assessments were delivered during the day.
The audio data used in this work was recorded on a sound
recorder that subjects carried around their necks. We have
opted to use this setup due to concerns that the sound recorded
from the phone might not always be representative when a
subject does not carry the phone with them. Additional details
on AudioSense may be found in [18], [22].

Subjective Data: The mobile phone collects several sub-
jective measures that assess the performance of the HA and
the context in which the HA is used. Participants were asked
to evaluate the HA performance in the last 5 — 10 minutes
before the delivery of the survey. The context in which the
HA is used is characterized using multiple metrics. However,
in this paper, we will focuse on the reported noise level and
activity type as audiology studies have indicated that these
factors may affect a subject’s satisfaction with their HA.

Objective Data: The audio data used in this work was
recording on a sound recorder that subjects carried around
their necks. We have opted to use this setup due to concerns
that the sound recorded from the phone might not always
be representative when a subject does not carry the phone
with them. For each survey, we have identified a five-minute
audio clip recorded prior to the delivery of a survey. The
audio data was recorded at 16KHz. The data is divided into
a 10-millisecond frame from which low-level features were
extracted. The low-level features include the following time-
and frequency-domain features: Zero-Crossing Rate, Pitch,
Spectral Entropy, and Mel-Frequency Cepstral Coefficients.
The low-level features were then used to compute high-level
features by using the following summary statistics: min, max,
mean, median, standard deviation, skewness, and kurtosis. We
have also included three additional high-level features which
measure the signal-to-noise ratio in the captured sound clip
using different algorithms.

Data Included: The data analyzed includes only the condi-
tions when the HA were used, excluding data from the training
and the unaided conditions. Additionally, as part of every
survey (including those delivered during aided conditions), the
subject is asked to confirm that they are using their HAs. The
surveys in which participants indicated that they did not use
a HA are excluded from the analysis.

IV. EMPIRICAL STUDY AND ANALYSIS

The goal of the study is to evaluate whether it is possible
to use audio data to predict information about the auditory
context and the performance of the HA. Specifically, we will
answer the following questions:
• Can the noise level be predicted from audio features?
• Can the listening activity be predicted from audio fea-

tures?
• Can the listening effort be predicted from audio features?

Our approach to answering the three questions involves
the following steps. First, we will empirically characterize
the distribution of noise levels and speech activities in the
collected dataset. We will highlight the challenges associated
with constructing predictors for these subjective measures.
Next, we will construct models that will be used to predict
these features. We have experimented with a number of
classifiers including support vector machines, decision trees,
random forests, and extremely randomized trees. The classi-
fiers provided similar performance and, due to the space con-
straints, we results obtained using extremely randomized trees
[26]. Extremely randomized trees are an ensemble method
that has been successfully applied to both classification and
regression problems. The hyper-parameters of the classifiers
are optimized over a manually refined using grid search.

The dataset that we consider includes data from 58 subjects
within 4 conditions. From this initial dataset, we have removed
all the subject-condition pairs that did not include at least 20
surveys. The results that are reported are obtained using 8-
fold cross validation. The folds are generated such that an
approximatively equal number of samples for each subject-
condition are included in each fold. Due to the significant
imbalance in the dataset (some subjects provided significantly
more reports than others), we weighted as sample such that
each subject-condition pair has an equal weight.

A. Predicting the Noise Level

New algorithms and technologies for HAs are primarily
evaluated in the laboratory using carefully controlled exper-
iments. A common setup is to present speech under different
SNR conditions. Laboratory experiments show that the SNR
is correlated with the listening effort required for correctly
understanding speech. In our study, the subjects report the
noise level as a proxy for SNR. It is important to realize the
noise level does not depend only on the actual noise level in
the environment (which can be assessed using audio data) but
also on the behavior of the HA and the subjective preferences
of the subject.

Figure 1 plots the number of reports pertaining to each noise
level as reported by a subject. A few trends are clear: (1) The
subjects spend most of their time in quiet or somewhat quiet
conditions. (2) There is a significant variation between subjects
are exposed to different noise levels. These trends make the
problem of classifying the perceived noise level particularly
difficult due to the imbalance between classes and the high
variation between subjects.

The starting point for predicting the noise level is to use off-
the-shelf algorithms that have been designed for assessing the
SNR. NIST SNR evaluates the SNR by computing the RMS
power histogram of the audio signal. The method estimates
the noise power by fitting a raised cosine to the histogram.
The noise power is then subtracted from the composite signal
power histogram to obtain the clean signal power. WADA
SNR [25] estimates the clean signal by modeling it as a
Gamma distribution. The Gamma distribution has been shown
to be a good approximation of amplitude distribution of speech
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Fig. 1: Noise level per subject

[27], [28]. The noise is assumed to be Gaussian. VAD SNR
[29] applies the same SNR estimation only to those segments
where the presence of speech is detected. Figure 2 plots
the distribution of estimated SNR for of the noise levels.
All three estimator show a similar trend: as the noise level
increases the median and interquartile range of the estimated
SNRs decreases. However, it may be hard to discriminate the
noise level when the estimated value is in the range 10 – 20
because of the significant overlap between the estimated SNR
distributions for different noise levels.
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Fig. 2: Estimated SNR

We have built two classifiers that address the challenge of
the imbalanced data by reducing the levels of the noise variable
in different ways. The NZ3 classifier has three classes: quiet,
somewhat quiet, and merged class including somewhat noisy
and noisy. Similarly, the NZ2 classifier has two classes: quiet
and non-quiet which includes the remainder of the data. We
have fit the model using only the data from the SNR estimators
and the SNR estimators in conjunction with the other audio
features. Figure 3 plots the accuracy and F1-score for the NZ2
and NZ3 estimators when using SNR and audio features. The
figure indicates that NZ2 has higher accuracy and F1-score
than NZ3. This indicates that is relatively easy to identify
quiet conditions with accuracy as high as 78%. The figure also
indicates that including audio features increase the accuracy
by about 10% for both classifiers over the case when only the
SNR features are used.
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Fig. 3: Predicting NZ2 and NZ3 from SNR and audio data.

B. Predicting the Listening Activity

The degree to which an HA benefits a subject may also
depend on the type of listening activity in which they engage.
Figure 4 plots the distribution of activities in which the
subjects engage in. Subjects spent about 18% of the time
listening passively. The most prevalent activities were listening
to media (35%) and speaking to fewer than three people (25%).
The figure also highlights a wide range of variations between
subjects. A challenge to building a classifier is that several
activities have similar auditory characteristics. For example,
the two conversation classes (Conv <= 3 and Conv > 3)
and Phone involve people talking. Accordingly, to simplify
and improve the accuracy of the classification, we collapse
these listening activities in a single class. The classifier is
trained using the audio and SNR features.
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Fig. 4: Distribution of listening activites

Figure 5 shows the confusion matrix for the classifier.
Overall, the classifier is reasonably accurate having mean
accuracy and F1-score of 70% and 0.71, respectively. The most
common misclassification is between speech and media. This
is expected since speech is usually present when subjects are
watching TV or listening to media.

C. Predicting the Listening Effort

Listening effort is a sensitive measure of the performance of
the HA, particularly in speech. Figure 6a plots the relationship
between the noise level and listening effort. In order to account
for the differences in how subjects may rate and the impact
of HAs, we group samples according to their subject and
condition. For each one of those samples, we subtract the mean
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Fig. 5: Confusion matrix for listening activity

of the group. This scaling allows us to interpret positive values
as requiring more effort than the average. Conversely, negative
values indicate they require less effort than the average. In
quiet, the subjects require a less listening effort to hear well.
This is clear from the slightly below zero median and the
narrow interquartile range in quiet. In contrast, the lower
quartile of the listening effort is about zero in somewhat noisy
environments. This indicates that subjects require significantly
higher listening effort to cope with higher noise. Our results
are consistent with survey results that show that a significant
fraction of subjects is unsatisfied with the performance of
their HAs in noise. Figure 6a plots the relationship between
the listening activity and listening effort. A subject requires
higher effort to listen to speech than media or non-speech
sounds. This seems to point towards these conditions being
less demanding for HA technology. However, unlike with the
noise levels, the difference in the satisfaction scores between
various listening activities is less pronounced.

The open research question that we consider here is whether
audio measures are predictive of their listening effort. While
such a relationship has been studied before in the laboratory,
this is the first time it is evaluated using a large-scale dataset
collected in situ. In order to evaluate this question, we will
build a hierarchical classifier. The bottom-level consists of the
classifiers that we have described in the previous sections to
predict the noise level and the listening activity from audio
features. The top-level consists of a classifier that combines
the predicted noise level and listening activity with information
about the identity of the subject and the HA they are using to
predict their satisfaction. The baseline is a classifier that uses
the subjective values of the noise level and listening activity
as reported by the user.

Figure 7 plot the predictions satisfaction based on different
subsets of features: subject identifier p, condition identifier c,
the subjective noise level and activity (nz and ac) and their
objective counterparts (onz and oac). The results obtained
using subjective and objective data are colored in red and blue,
respectively. The baseline performance is the classifier that
use only the subject and condition identifiers. This classifier
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Fig. 6: The impact of noise level and listening activity on
listening effort
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essentially predicts that mean of satisfaction of that subject for
the considered HA. The performance of the classifiers may be
improved by considering additional subjective measures. For
example, the MSE is reduced from 493 when only subject and
condition are available to 385 when all the subjective features
are used. This is a reduction of 21.9% in MSE. Using objective
data is not as effective in improving the prediction accuracy.
The classifier that uses a combination of predicted noise level
and activity type performs the best achieving an MSE of 518.
This is an improvement of 4.8% over the baseline.



V. CONCLUSIONS

Effective tools for assessing the performance of HAs are
essential to developing novel HA algorithms and technology.
A key challenge to building such tools is the need to reduce
the data collection burden on the subject. In this paper, we
make an initial attempt at evaluating the potential of reducing
the burden of data collection on the user. Our results show that
audio features may be used to predict the perceived noise level
with an accuracy of 68%. This is remarkable given that the
noise level reported by a subject depends on both the subject’s
hearing abilities and the performance of the HA. Additionally,
we also show that it is possible to predict the listening activity
with an accuracy of 70%. This suggests that some aspects
of the auditory context could be automatically inferred from
audio data without involving the user. More importantly, we
show that the listening effort depends on both noise level and
listening activity. Using subjective information regarding the
noise level and the listening activity, the predicted MSE can
be reduced by as much as 20% over a baseline model that
includes information about the subject and HA. In contrast,
a hierarchical classifier to predict the listening effort from
audio data can reduce the MSE by a mere 4%. The significant
gap between the prediction made using audio data, and those
made using the subject’s self-reports suggests that there may
be significant room for developing novel machine learning
models to tackle this problem.
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