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Abstract— Many mission-critical applications require spatiotemporal
data services for mobile users or objects. Examples include distributed
object tracking and fire monitoring by firefighters. To support such
applications, wireless sensor networks must satisfy a set of stringent
spatiotemporal constraints despite having low network duty cycles and
scarce resources. We have developed two new wake-up and topology
maintenance protocols, Directional Tree Maintenance (DTM) and Omni-
directional Tree Creation (OTC), to support spatiotemporal services in
mobile environments. A key feature of our protocols is that they provide
robust spatiotemporal performance while maintaining low overhead and
energy consumption. Our simulations showed that both DTM and OTC
can successfully deliver over 85% of query results to a mobile user within
desired spatiotemporal constraints, even when the sleep schedule is as
long as 15s, the user changes direction every minute, and the location
error is as high as 10m. The benefits of our protocols have been validated
through theoretical analysis and empirical results on a testbed of Mica2
motes.

I. INTRODUCTION

Wireless sensor networks (WSNs) are envisioned as an enabling
technology for a broad class of mission-critical applications in mobile
environments. Such applications often involve mobile entities moving
through a WSN that provides continuous data services to the mobile
entities. The mission-criticality of these services imposes fundamental
spatiotemporal constraints on the WSNs, which require the sensor
data to be delivered at the right time and also at the right location.
As motivating examples, we now describe two important applications
that impose stringent spatiotemporal constraints.
Spatiotemporal query: Users of many mission-critical applications
need to continuously gather real-time information from their vicinities
as they move through the environment. For example, a fireman
fighting a wildfire may require a periodic update of a temperature
map of the area within one mile of his current location, to remain
alert to the surrounding fire conditions. Query results are subject to
a spatial constraint, that, all and only the sensors around the current
position of the moving fireman must contribute to the query. At the
same time, fresh sensor data must be collected and aggregated before
each query deadline, which constitutes the temporal constraint. The
fireman may be endangered by a quickly evolving wild fire if any
one constraint is violated, e.g., the query results are delivered too
late or are aggregated from sensors at the wrong locations.
Object tracking: Many WSNs are deployed in unmanned environ-
ments to detect and track moving objects such as intruders. When
a moving object is present, the sensors in its vicinity form a group
and track the object collectively. The tracking results from sensors
in the current group are delivered to the group leader that aggregates
the data and then transmits it to a base station. The network may
lose track of a moving object if the sensors around the current object
position do not respond or if their sensor data is not delivered to the
group leader on time.

As shown in the above examples, a common requirement of
many mission-critical applications is the need to meet the stringent

spatiotemporal constraints associated with mobile entities. Meeting
these constraints is especially challenging in WSNs due to their severe
power and resource limitations. First, sensor networks usually need
to operate under very low duty cycles in order to maintain a long
lifetime. For instance, for a Mica2 mote to remain operational for 450
days, the duty cycle needs to be lower than 1% [1]. This corresponds
to an active duration of 150 milliseconds in every 15 seconds,
resulting in a wake-up delay as high as 14.85 seconds. Empirical
results on a surveleillance system based on Mica2 motes reported
in [2] show that long wake-up delays can result in poor tracking
performance. Therefore, we need wake-up protocols to forewarn
sleeping nodes before the mobile entity reaches their vicinity. Second,
the topology of the woken sensors must be dynamically configured
and maintained in a timely fashion to adapt to entity mobility and
to facilitate data aggregation and delivery. For instance, to support a
spatiotemporal query, a routing tree needs to be maintained in order
to continuously aggregate and deliver query results to the user as it
moves. Similarly, for object tracking, group members must send their
sensing results to the current group leader as the group moves with
the object. Finally, the storage cost and network contention caused by
frequent topology reconfigurations, induced by entity mobility, must
be minimized, since sensors typically have very limited memory and
bandwidth.

In this paper, we present two novel protocols, DTM and OTC, for
wake-up and topology maintenance in mission-critical applications
over mobile environments. Our protocols enable existing object track-
ing and query services to achieve desired spatiotemporal guarantees.
The Directional Tree Maintenance (DTM) protocol minimizes the
communication overhead, while the Omni-directional Tree Creation
(OTC) protocol is robust against unpredictable movement patterns.
To evaluate these protocols, we provide both analysis and extensive
simulation results under a wide range of realistic settings. We also
present preliminary results obtained from the implementation of our
protocols on a physical testbed composed of Mica2 motes. Our
simulation results show that both DTM and OTC can successfully
deliver over 85% of the query results obtained from the network to
a user querying its surrounding area with 150m radius twice every
second, even when the wake-up delay is as high as about 15s, the
user changes its motion pattern about every 60s, and the location
error is as large as 10m.

The rest of the paper is organized as follows. We present related
work in section II and then present our protocols in section III.
Simulation results are discussed in section IV, followed by a brief
description of the implementation of our protocols on a Mica2 mote
testbed, in section V. We finally conclude in section VI.

II. RELATED WORK

Several general power efficient MAC protocols [3]–[7] exist that
maintain node sleep schedule and wake up nodes dynamically. Unlike
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these protocols, our protocols are specially designed to maintain
desirable network topology for applications with spatiotemporal con-
traints, by waking up the right nodes at the right time. However, our
protocols can be implemented on top of such MAC-layer solutions.

A number of promising signal processing algorithms and mid-
dleware have been developed for object tracking in WSNs. Some
of the earlier solutions [8]–[10] do not employ wake-up protocols
to handle sleeping nodes. As a result, they may suffer from poor
tracking performance when nodes sleep most of the time and cannot
contribute to the tracking process. For example, He et al. [2] observed
that the sleeping schedule severely affects the tracking performance
of their surveillance system when an object moves fast. Our work is
complementary to these existing approaches in that our protocols can
be used to wake up nodes and maintain desired network topology
so that node duty cycles have no negative impact on the tracking
performance.

Several recent projects have studied wake-up protocols for object
tracking [11]–[13]. Gui et al. propose a wake-up mechanism to
achieve specified quality of surveillance for moving objects [13].
A selective sensor activation scheme is proposed in [12] to achieve
tradeoff between energy and quality of tracking. DCTC [11] is an
object tracking protocol that maintains a tree around the predicted
route of a moving target. All the above protocols are best-effort
solutions that are not designed to meet the spatiotemporal constraints
associated with object tracking. As a result, they may not be able
to maintain the desired tracking performance in the face of fast
objects and/or network low duty cycles. The ability to meet stringent
spatiotemporal constraints differentiate our protocols from earlier
work. Furthermore, the performance of the above protocols was
verified only in simulation environments.

A protocol that bears some similarity to our protocols is mobicast
[14], a spatiotemporal multicast protocol that disseminates data to
a changing area just in time. However, Mobicast does not deal with
sensor sleep schedule nor does it maintain a topology associated with
entity mobility, which is needed for efficient data aggregation and
fusion.

III. PROTOCOL DESIGN AND ANALYSIS

In this section, we present the two new protocols, DTM and
OTC, and show how they address the limitations of an earlier
spatiotemporal query protocol called DTC .

A. Problem Formulation

We first present the protocol requirements and spatiotemporal
constraints in the context of spatiotemporal query applications. As
discussed in Section I, object tracking applications share similar
constraints as spatiotemporal query applications.

A spatiotemporal query application involves a user who period-
ically queries the surrounding sensors (e.g., through a PDA) when
he travels through a sensor field. A query is specified by the query
period Tp, the data freshness Tf , and the query area A(p) defined
relative to the user location p. Tp is the period at which the user
expects to receive query results from the network. Tf specifies the
maximum age of the query results, i.e., a result reported by a senor
is acceptable only if it is no more than Tf seconds old. The query
area specifies which nodes should contribute to the query result. For
simplicity, in the rest of the paper, we assume the query area to be
a circle with radius Rq centered around the user. Our design can be
easily extended to other types of query areas.

Protocols supporting spatiotemporal queries need to be able to (1)
wake up all nodes in a query area so that it can deliver the query

result to the user before the end of the corresponding query period;
(2) create and maintain a routing tree rooted at the mobile entity to
support result delivery and in-network aggregation.

B. Design Considerations

This section outlines general issues related to wake-up protocol
design. Wake-up protocols can be of two types: greedy and just-in-
time. Greedy wake-up protocols wake up all required nodes much
ahead of time by disseminating a wake-up message ahead of the user
in an as-soon-as-possible fashion. However, this method requires the
nodes to maintain state information for an extended period of time
that results in high storage cost, which is not acceptable due to sensor
memory limitations. This drawback promotes the use of the second
approach to node wake-up, where nodes are alerted just-in-time for
them to respond to the query at the right time. Just-in-time wake-up
protocols employ a hold and forward strategy where the forwarding
is timed, in order to reduce the storage cost. We incorporate the just-
in-time approach in our protocols.

Some wake-up protocols [11], [15] rely on the motion profile
of the mobile entity to predict its future locations. Two methods
of generating a motion profile are motion planning and motion
prediction. Autonomous robots usually generate motion profiles based
on motion planning and control their future movement accordingly. In
such cases, the motion planner can provide the motion profiles to the
protocol. Alternatively, a motion profile can be generated based on
the entity’s movement history. As a simple example, a motion profile
can be generated as follows. Assume p1 and p2 are two recent entity
positions at time instances t1 and t2, respectively. In object tracking,
this information can be provided by the localization service of the
tracking sensors. In a spatiotemporal query, the user can obtain this
information through a GPS and provide it to the network. The future
velocity of the user can then be estimated as −→v =

−−−→p1p2
t1−t2

. This simple
technique is used in our simulations. Other more complex techniques
[16] can be used to improve the accuracy of the motion prediction.
However, it may be difficult to obtain the motion profile using these
two methods when the user motion is highly random or when the
motion history has a high degree of inaccuracy (e.g., due to GPS
location errors).

Our protocols run on top of a power management protocol, which
maintains the connectivity of the network through a backbone of
active nodes. The power management protocol maintains synchronous
node duty cycles such that nodes periodically wakeup to receive
messages and then go back to sleep. Messages to be sent to sleeping
nodes are buffered by active nodes and are sent during the active
window of the duty cycle. The backbone allows each sleeping node
to be directly connected to an active node and hence bounds the
communication delay between any two nodes to the order of one
duty cycle. Several power management protocols [17]–[19] provide
such a backbone. Our protocols are however not dependent on the
backbone and can work with other protocols that do not provide such
a backbone, with a slight modification in the timing analysis.

C. Directional Tree Creation

As a baseline for our new protocols, we first describe a wake-
up protocol called Directional Tree Creation (DTC), developed in
our earlier work on MobiQuery, a spatiotemporal query middleware
[15]. DTC uses the user motion profile to wake-up nodes along
the predicted user path. The motion profile provides the prospective
user positions called pickup points where the user expects the query
results.
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In DTC, after the user issues a query, the network sends a prefetch
message to the first pickup point. The node receiving the prefetch
message forwards it to the next pickup point. It then floods the query
area and builds a tree spanning all nodes in the query area. A node
in the query area sends its data to its parent at a scheduled time.
The root of the query tree aggregates all results and delivers the final
result to the user, when the user reaches the pickup point. The time
instance when a prefetch message is sent is determined analytically
to ensure that sleeping nodes in each query area are woken up in
time to form a tree and send their results before the query deadline.

Although DTC significantly improves the spatiotemporal perfor-
mance under certain conditions [15], it has the following limitations:
(1) DTC creates a new tree spanning all nodes in a query area
in each query period. As a result, it incurs a high communication
overhead and hence fails to meet more stringent spatiotemporal
constraints (e.g., higher query frequency). (2) DTC requires a motion
profile that predicts the future user path, which may be inaccurate or
unavailable in certain application scenarios. DTM and OTC, address
these limitations of DTC.

D. Directional Tree Maintenance

DTM reduces the communication overhead by maintaining a single
moving tree, that travels along with the user. It depends on neigh-
borhood information as well as knowledge of the user motion profile
to facilitate local decisions. Neighbor information is obtained from
a lower power management protocol. Several power management
[17]–[19] and geo-routing protocols [20] maintain neighborhood
information and hence this information can be easily obtained without
any additional overhead.

DTM comprises two main phases: tree building and tree mainte-
nance. The tree building phase consists of creating an initial spanning
tree in response to a broadcasted Query message from the user
containing the following parameters: (M, Rq, Tp, Tf ), where M is
the user motion profile consisting of the starting and ending locations
and times, Rq is the radius of the query area, Tp is the query period,
and Tf is the data freshness constraint.

Once the initial tree is built, it moves along the predicted user
path. This is achieved by waking up nodes along the predicted path
and growing the tree in the direction of user motion through node
additions and deletions. This process defines the tree maintenance
phase, and is explained below.

Nodes in the existing tree broadcast Join messages to inform nodes
in future query areas about the query. On receiving a Join message,
a node in a future query area joins the tree by first computing the
earliest query period j that it participates in, and then selecting an
active neighbor that is closest to the jth pickup point as its parent.
After joining the tree, the node performs the following actions: (1)
it precomputes its parents for all query periods that it participates in,
(2) it rebroadcasts the Join message at time tjoin, (3) after sending
the result for the current query period, it adjusts its parent for the
next pickup point. A node always selects its parent to be the active
neighbor that is closest to the concerned pickup point. If itself is the
closest to the pickup point and is within the communicatioin range
of the pickup point, it sets the user as its parent. However, if it is not
within the communication range of the pickup point, a network void
exists; the approach to deal with this is discussed in section III-D.2.
When a node is no longer in any future query area, it stops sending
query results and hence automatically drops out of the tree. Nodes
closest to the pickup point form the roots of the forest of trees, collect
the data from their subtrees, and send the data to the user.

When Join message is received

1) Accept if participating in current or future query area.
2) For each query period k that this node is a part of

a) Set active neighbor, closest to the kth pickup point, as
parent.

b) If this node itself is the closest to the kth pickup point,
set user as parent.

3) Calculate tjoin and set timer JoinTimer to fire at tjoin.
4) Calculate time to send result and set timer SendTimer to fire

at the right time.
5) If sleeping node, go back to sleep schedule.

When JoinTimer fires

1) If sleeping node, wake up.
2) Broadcast Join message.
3) If sleeping node, go back to sleep.

When SendTimer fires

1) If sleeping node, wake up.
2) Send query result to parent.
3) Adjust parent for next query period.
4) If sleeping node, go back to sleep.

Fig. 1. DTM Algorithm.

With this method of tree maintenance, at any given point of time,
the tree spans multiple query areas. However, only nodes that are
in the current query area participate in the data aggregation process.
Sleeping nodes only form the leaves of the query tree so that they
can maintain their sleep schedule and only wake up to broadcast
the Join message and send the query result. Note that the tree
maintenance phase is usually robust to Join message loss, since the
same message is broadcasted by a number of nodes, which leads to
redundant messages. Join message retransmission has been avoided in
the protocol, to reduce overhead. In DTM, since each node maintains
neighbor information and also knows the predicted user path, local
computations at each node allow the tree to move in the right direction
with no reconfiguration cost. The DTM algorithm is shown in Figure
1.

1) Forwarding Time Analysis: Future query area nodes are woken
up by forwarding the Join message ahead of the user. The time to
forward this message is critical to the working of DTM. If the nodes
are woken up too late, they fail to participate in the query. While if
they are woken up too early, they incur a high storage cost, as query
related information must be maintained on the nodes for a long time
[15]. Thus, in DTM, a node holds the received Join message until
time tjoin at which time it rebroadcasts the Join message to notify
its neighbors to join the tree. tjoin is calculated as follows.

Let k be the first query period that a node i participates in and
trecv be the latest time by which the nodes in the kth query area
should receive the Join message. A Join message should be sent
out to the nodes in the kth query area before time tjoin, where
tjoin ≤ trecv − Tmsg − Ts. Ts is the wake-up delay caused by the
duty cycle of the sleeping nodes, and Tmsg is the time taken by the
Join message to reach the furthest node to be included in the query
area. For the network communication to be able to catch up with the
user movement, Tmsg must be shorter than the time it takes the user
to travel between two pickup points, which is equal to Tp. Hence, it
is reasonable to assume that Tmsg ≤ Tp.

We now analyze trecv . Once the nodes receive the Join message,
they need to aggregate the partial query results and deliver the
aggregated result to the user, when the user reaches the pickup point
at time instance kTp. Hence, trecv = kTp − Tcollect, where Tcollect

is the time spent in data collection. Due to the freshness requirement,
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When Query message is received

1) If there is a neighbor that is closer to the user, set neighbor
as parent, else set user as parent.

2) Calculate n using (6) and send Setup message.
3) If sleeping node, go back to sleep after nTp seconds.

When Setup message is received

1) Accept if in query area.
2) Set node source as parent.
3) Rebroadcast the Setup message.
4) Set SendTimer to fire at data collection time.

When SendTimer fires

1) Send result to parent.
2) If leaf, broadcast Wakeup message.

When Wakeup message is received

1) Accept if in circle C.
2) Rebroadcast the message.
3) If sleeping node, go back to sleep after nTp seconds.

Fig. 2. OTC Algorithm.

a query result has to be sent to the user within Tf seconds after it
is gathered by a node. Hence Tcollect < Tf . Thus, from the above
discussion, we obtain the following inequality:

tjoin ≤ (k − 1)Tp − Tf − Ts (1)

Therefore, the network will meet its temporal constraints if each
node broadcasts the Join message at a time tjoin that satisfies (1). To
minimize the storage cost, DTM sets tjoin = (k − 1)Tp − Tf − Ts.

2) Handling Network Voids: The above algorithm is designed
considering a highly dense network and does not address the presence
of voids. Network voids can however lead to cycles in the tree, thus
reducing data fidelity. In order to handle such situations, we associate
a property called safe with all nodes. A node is unsafe with respect
to a pickup point if it is a local minima (that is, it is closest to the
pickup point among its neighbors but the pickup point is not within
its communication range) or does not have safe neighbors that are
closer to the root than itself. A previously safe node broadcasts an
unsafe message when it becomes unsafe. Nodes also include this
information in the Join message, by specifying whether they are safe
for each query period that they are a part of.

In this modified method, nodes choose only safe nodes as parents.
If an Unsafe message is received from a parent, nodes adjust their
parent to be a safe neighbor. If the receiving node becomes unsafe
in the process, because it no longer has any safe neighbor closer to
the pick up point, it sends out an Unsafe message, and the process is
repeated. All neighbors are initially considered safe. This information
is updated after receiving a Join message or an Unsafe message.

E. Omni-directional Tree Creation

Both DTM and DTC assumed the availability of an estimated
motion profile. In situations where the user movement pattern is
highly unpredictable, or the motion history information has high
location error, it is not possible to wake up just the right nodes
ahead of time. However, if the maximum user speed is known, we
can wake up all the nodes in a circle C, henceforth called wake-up
area, centered at the current user location, such that nodes in future
query areas encircled by C, are ready to aggregate and provide the
query result to the user, irrespective of the user speed and direction
of motion. This is the approach taken in OTC. The size of the wake-
up area is chosen such that it encloses nodes belonging to a certain
number of query areas n. The constant n, called wake-up horizon,
is dependent on the node duty cycle and is chosen such that nodes

in the nth query area are woken up by the time the user reaches the
query area.

Since the nodes are not aware of the user location ahead of time,
the query result cannot be made available to the user exactly when it
reaches a pickup point. Nodes learn about a pickup point only when
the user reaches the pickup point, and deliver the query result to the
user within a certain delay Td of its passing the pickup point. Td is
set by the user and is included in the information sent to the nodes.

In this algorithm, since the user motion profile is not available, the
user is required to broadcast a Query message at each pickup point.
The Query message contains the parameters Tp, Td, Rq , vmax, and
puser where vmax is the maximum user speed and puser is the user
location. A query tree is built at each query point, in response to
a Query message, by flooding a Setup message in the query area.
The Setup message contains the same information as in the Query
message, the pickup point number and the value of the wake-up
horizon. Nodes in the tree then calculate the time after which the
result needs to be sent to the parent. Once the result is sent, leaf
nodes further broadcast a Wakeup message containing Tp, n, puser ,
and R, where R is the radius of the circle C. The Wakeup message
is flooded in the circle C, waking up all possible future participating
nodes ahead of time. Once woken up, nodes with a sleep schedule go
back to sleep only after nTp seconds. The OTC algorithm is shown
in Figure 2.

1) Analysis of Wake-up Area: The radius of the wake-up area, R,
is choosen such that sleeping nodes in the nth query area are woken
up by the time the user reaches the query area. Thus

R = nvmaxTp + Rq (2)

which is the distance of the furthest node in the nth query period
from the current user location. nvmaxTp in the above equation is the
distance between the nth pickup point and the current pickup point
while Rq is the maximum distance of a node in the nth query area
from the corresponding pickup point.

Let t(d) represent the time taken by a message to travel distance
d. t(d) can be calculated as a product of the maximum number of
hops and the 1-hop-delay as follows

t(d) ≤ α� d

Rc
�τ (3)

where α is the network dilation and τ is the 1-hop broadcast delay.
Network dilation is defined as the upper bound on the ratio between
the actual network distance (the number of hops) between any two
nodes and the minimum network distance � d

Rc
� between them, where

d is the distance between two nodes. Network dilation is shown
to be bounded in sensor networks with sensing coverage [20]. For
networks without sensing coverage, the network dilation can be
measured as shown in [14]. In our simulations, we use the network
dilation bound as given in [20] and measure the 1-hop broadcast
delay by timestamping messages and calculating the delay in message
reception.

The time taken by the user to travel distance R is nTp, while
the time taken by a message to travel this distance is bounded by
t(nTpvmax + Rq) + Ts + ε where ε is the additional time taken
by a node to send out a Wakeup message. Since a node sends out
a message only after sending the query result, ε ≤ Td. Since the
message should reach the nodes before the user gets to the pickup
point,

nTp ≥ t(nTpvmax + Rq) + Ts + Td (4)
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Fig. 3. Comparison of protocols under Accurate Motion Profile.

Applying (3) in (4), we see that the timing contraints of the query
will be met, if

nTp ≥ α(
nTpvmax + Rq

Rc
+ 1)τ + Ts + Td (5)

In our protocol we use the minimum n that satisfies this inequality,
denoted as n∗. Thus,

n∗ =
α(Rq + Rc)τ + (Ts + Td)Rc

Tp(Rc − ατvmax)
(6)

The radius of the wake-up area is thus obtained by replacing n∗

from the above equation in (2).

IV. SIMULATIONS

In this section, we present the simulation results on ns2. In the
simulations, Coverage Configuration Protocol (CCP) [17] based on
IEEE 802.11 Power Saving Mode (PSM) with the extension from [18]
is used as the power management protocol. CCP maintains coverage
and network connectivity through the backbone of active nodes. The
duration of the active window of the sleeping nodes is set to 100ms,
the radius of each query area is set to 150m, the node bandwidth is set
to 2 Mbps, and the communication and sensing range of the network
nodes are set to 105m and 50m, respectively. The results in this
section are the averages over 3 runs with different network topologies.
We use the following metrics in our performance evaluation: (1) Data
fidelity, defined as the ratio of the number of nodes that contribute
to a query result to the total number of nodes in a query area. (2)
Success ratio, defined as the ratio of the number of queries that meet
deadlines and have data fidelity above a threshold, to the total number
of queries. The success ratio indicates the overall quality of service
received by the user.

A. Performance with Accurate Motion Profile

In this subsection, we evaluate the performance of our protocols
when the user’s motion profile accurately describes the future path
of the user. We set the threshold for data fidelity to 90%, in the
success ratio metric. The performance with inaccurate motion profile
is studied in Section IV-B. We compare our protocols against a

baseline protocol: No-prefetching (NP). In NP, the user broadcasts
a query to the network at the beginning of each query period and
receives the query results before the current query deadline. In each
simulation, 200 nodes are randomly distributed in a 450m × 450m
region and the user starts from a corner of the region and moves in
a random direction with a speed randomly chosen between 3m/s and
5m/s, which corresponds to the speed of a walking or jogging human
being. The user changes its direction and speed every 50 seconds.
The motion profile that specifies the complete user path is provided
to each protocol at the beginning of the simulation. Each simulation
lasts for 400 seconds.

Effect of Sleep Periods: Figure 3(a) shows the average success
ratios of all protocols with different sleep periods, when the query
period is 0.5s. Freshness requirement in all simulations is 0.5s. The
success ratio of NP remains below 10% in all settings, which clearly
indicates that the prefetching mechanism used by other protocols is
crucial in networks with low duty cycles. The performance of DTC
drops quickly when sleep period increases. Due to its high com-
munication overhead, more packets are dropped when the effective
network bandwith becomes lower as the sleep period increases. In
sharp contrast, DTM achieves a success ratio of nearly 100% in
all settings. OTC maintains a success ratio of above 90% in most
settings. Its performance degrades slightly when the sleep period
becomes shorter. OTC wakes up sleeping nodes before a tree is
created. As the sleep period becomes shorter, more traffic (i.e.,
overhead packets of 802.11 PSM and CCP) is produced by the active
nodes in the network, resulting in higher network contention during
tree creation. In contrast, the performance of DTM is not affected by
the sleep period since it requires much lower bandwidth.

Effect of User Speed: Figure 3(b) shows the performance of
the different protocols when the user moves at different speeds.
Four speed ranges: 3m/s ∼ 5m/s, 6m/s ∼ 10m/s, 16m/s ∼ 20m/s
and 36m/s ∼ 40m/s are used, which correspond to the speeds for
walking or jogging, running, driving at moderate speed and driving
at high speed, respectively. Although DTC delivers above 90% of the
query results under all user speeds when the sleep period is 9s, its
performance degrades significantly when the sleep period is 15s. This
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is because DTC fails to wake up many sleeping nodes in time due to
the network congestion caused by its high communication overhead.
On the other hand, the success ratio of both DTM and OTC remains
above 90% under all settings. This result shows that both protocols
adapt successfully to different ranges of user speed by waking up
sleeping nodes in advance, with moderate communication overhead.

Overhead: We define the overhead as the total number of messages
(except query messages and query results) sent by a protocol,
normalized by the total number of query results received by the
user. Figure 3(c) shows the different protocol overheads when the
sleep period is 9s. As seen in the figure, DTM incurs much lower
communication overhead than the other protocols. This is due to the
low overhead of query tree maintainance in DTM. OTC, on the other
hand, incurs the highest overhead among the three protocols since it
wakes up a large number of nodes due to lack of knowledge of the
user motion profile. Even though OTC has a higher communication
overhead, it is offset by its better performance in comparison to DTC,
as seen in Figure 3(a).

Energy Consumption: We used the energy model of Cabletron
Roamabout 802.11 network card, measured in [18]. In accordance
with this model, the power consumption of transmit, receive, idle and
sleeping modes were set to 1400mW, 1000mW, 830mW and 130mW
respectively. Figure 3(d) shows the per node energy expenditure for
the different protocols, normalized by the total number of query
results received by the user, when the sleep period is 9s. As seen
in the figure, OTC has the highest energy expenditure among the
protocols. This is expected, since in OTC, a large number of nodes
are woken up due to the lack of a user motion profile. DTM has
slightly more energy expenditure than DTC for a query period of
1s and similar energy expenditure for a query period of 0.5s. The
advantage of DTM however lies in its high success ratio and low
overhead, as seen in figures 3 (a) and 3(c).

B. Performance under Inaccurate Motion Prediction

In this section, we study the performance of the proposed protocols
when the motion profile is unknown. As simulation results in Section
IV-A show, NP and DTC cannot provide satisfactory performance
even when the user path is known. Hence we focus on the per-
formance of OTC and DTM in this section. The accuracy of the
motion prediction is inherently affected by the location error and the
motion pattern of the user. We evaluate these effects in the rest of
this subsection. In this section, we set the threshold of data fidelity
to 80% for the success ratio metric.

Effect of Location Error: Figure 4 shows the performance of
DTM and OTC under different location errors. As expected, location
error has minimal impact on OTC, since OTC does not make use
of the user motion profile, and always wakes up nodes in a large
area around the user that covers all possible user locations during the
next few query periods. DTM, on the other hand, performs very well
for location errors less than 15m (typical GPS location error is 10m-
15m), and is able to deliver 80% of the query results successfully.
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These results show that the design of DTM is robust to moderate
location errors.

Effect of Motion Changes: Next, we evaluate the performance of
the protocols under different number of changes in the user’s velocity.
In these simulations, the user moves in a straight line at a constant
speed until it makes a turn and chooses a new speed. Figure 5 shows
the performance of the protocols when the number of turns increases
from 4 to 12 within a simulation time of 500s. The location error
for all the simulation runs is fixed at 10m.

As expected, the performance of OTC is not affected by the user
motion changes. DTM performs slightly worse than OTC, because
when the user makes a turn, the partial query tree that resides around
the original predicted path becomes invalid and new nodes have to
be woken up in order to form a query tree around the new predicted
path. Consequently, some sleeping nodes along the new path may not
be woken up early enough to respond to the query. However, DTM
still maintains a success ratio over 80% in all settings.

V. IMPLEMENTATION ON MOTES

We implemented MobiQuery, on Mica2 motes using both DTC
and DTM. MobiQuery was used to provide a moving user with
a temperature map of a specified region around the user. The
experimental setup consisted of 18 motes arranged on a table in a
6x3 grid. Due to the small area, logical multihop was used to obtain a
more realistic scenario. The clocks on the motes were synchronized
at the start, and a backbone of active nodes was setup, with non-
backbone nodes following a synchronized sleep schedule. The user
was emulated by an Acroname PPRK robot carrying a Stargate that
collected query results from the network and transmitted them to a
laptop for display. The robot was preprogrammed to move across the
sensor network along a predetermined path. The precomputed robot
path was fed to both DTC and DTM.

Experiments were conducted for Tp = 3s, Tf = 1s, sleep
schedules of 3s, 6s and 9s with an active window of 1s, and without
sleep schedule. The protocol performance was evaluated in terms
of data fidelity. Due to the small sensornet deployed, only 5 query
periods were set up. The results were obtained from the motes at the
right time, in accordance with the design.

Figure 6 shows the data fidelity obtained at each query period,
averaged over 5 runs, for DTC and DTM. As is shown in the two
graphs, after an initial expected warmup interval, in which some
sleeping nodes have not yet been alerted about the query, both
algorithms reach a stable state with high data fidelity. Due to the
limited data points neither the difference in the performance of the
two algorithms nor the stable working phase of the algorithms is
clearly visible in the figures. However, it can be observed that after
the warmup interval, DTM immediately achieves 100% data fidelity
while DTC slowly achieves good data fidelity. The slow increase in
data fidelity under DTC is due to contention caused by overlapping
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query tree setup as well as data collection.

VI. CONCLUSION

We have presented two novel wake-up and topology maintenance
protocols, DTM and OTC. They can be integrated with mission-
critical applications such as object-tracking and spatiotemporal query.
The simulation results show that DTM can maintain satisfactory
performance with minimum communication overhead even when
stringent spatiotemporal contraints are imposed by the application.
OTC also achieves very good performance and is more robust to lo-
cation error and user motion changes but it has higher communication
overhead and energy consumption. In the future, we plan to compare
our protocols to existing protocols as well as evaluate our protocols
on a larger testbed under more realistic settings.
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