
Building Grid Portal Applications From a Web
Service Component Architecture

D. GANNON, J. ALAMEDA, MEMBER, IEEE, O. CHIPARA, M. CHRISTIE, V. DUKLE, L. FANG,
M. FARRELLEE, G. KANDASWAMY, D. KODEBOYINA, S. KRISHNAN, C. MOAD, M. PIERCE,
B. PLALE, MEMBER, IEEE, A. ROSSI, Y. SIMMHAN, A. SARANGI, A. SLOMINSKI, S. SHIRASUNA,
AND T. THOMAS

Invited Paper

This paper describes an approach to building Grid applications
based on the premise that users who wish to access and run these
applications prefer to do so without becoming experts on Grid tech-
nology. We describe an application architecture based on wrapping
user applications and application workflows as Web services and
Web service resources. These services are visible to the users and
to resource providers through a family of Grid portal components
that can be used to configure, launch, and monitor complex appli-
cations in the scientific language of the end user. The applications
in this model are instantiated by an application factory service. The
layered design of the architecture makes it possible for an expert to

Manuscript received April 1, 2004; revised June 1, 2004. This work was
supported in part by the U.S. Department of Energy and in part by the Na-
tional Science Foundation (NSF).

D. Gannon, M. Christie, V. Dukle, L. Fang, G. Kandaswamy, B. Plale,
Y. Simmhan, A. Sarangi, A. Slominski, S. Shirasuna, and T. Thomas are
with the Department of Computer Science, Indiana University,
Bloomington, IN 40401 USA (e-mail: gannon@cs.indiana.edu;
machrist@cs.indiana.edu; vdukle@cs.indiana.edu; lifang@cs.indiana.edu;
gkandasw@cs.indiana.edu; plale@cs.indiana.edu; ysimmhan@cs.indiana.
edu; asarangi@cs.indiana.edu; aslom@cs.indiana.edu; sshirasu@cs.indiana.
edu; ththomas@cs.indiana.edu).

J. Alameda and A. Rossi are with the National Center for Supercom-
puter Application (NCSA), University of Illinois, Champaign, IL 61820
USA (e-mail: jalameda@ncsa.uiuc.edu; arossi@ncsa.uiuc.edu).

O. Chipara is with the Computer Science and Engineering Depart-
ment, Washington University, St. Louis, MO 63130-4899 USA (e-mail:
ochipara@cse.wustl.edu).

M. Farrellee is with the Department of Computer Sciences, University of
Wisconsin, Madison, WI 53706 USA (e-mail: matt@cs.wisc.edu).

D. Kodeboyina was with the Department of Computer Science, Indiana
University, Bloomington, IN 40401 USA. She is now with the Argonne Na-
tional Laboratory, Argonne, IL 60439 USA.

S. Krishnan is with the University of California, San Diego, San Diego
Supercomputer Center, La Jolla, CA 92093-0505 USA (e-mail: srikrish@cs.
indiana.edu).

C. Moad is with Scientific Data Analysis, Pervasive Technology Labs,
Indiana University, Indianapolis, IN 46202 USA (e-mail: cmoad@indiana.
edu).

M. Pierce is with the Pervasive Technology Labs, Indiana University,
Bloomington, IN 47404 USA (e-mail: mpierce@cs.indiana.edu).

Digital Object Identifier 10.1109/JPROC.2004.842756

configure an application factory service with a custom user inter-
face client that may be dynamical loaded into the portal.

Keywords—Grid application, Grid services, portals, Web ser-
vices.

I. INTRODUCTION

Grid technology is designed to allow users “seamless”
access to applications and services running on remote re-
sources. An example of such an application may be a tool,
accessed through a Web portal, which allows a user to run
weather prediction simulations initialized with current con-
ditions derived from streams of remote instrument data. In
this case the data may have been initially filtered and mined
by a set of service running on some remote host. The data
mining services search the instrument stream for patterns
that indicate bad weather. The occurrence of these patterns
creates events that trigger a set of simulations running on a
collection of large supercomputers which analyze various
storm scenarios (This example is based upon a scenario
from the LEAD project led by K. Droegemeier [9]). Another
example is a tool to generate computer animated movie from
three-dimensional (3-D) models of a complex molecule
undergoing a folding or reaction. In this case, a large-scale
simulation is generating periodic snapshots of the state of
the molecule. These snapshots are farmed out to rendering
engines to compute frames for the animation. A third ex-
ample might include doing data analysis on large text or
image databases that reside in remote locations. In this case,
the user may be looking for features cataloged in existing
databases that match the features in a sample object. For
example, consider the problem of understanding the spread
of disease in crops by monitoring global crop production
data and relating that to satellite images and climate models.

0018-9219/$20.00 © 2005 IEEE

PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005 551

The users of such a system do not want to think about how
to program Grid protocols to ftp data sets and launch large
supercomputer simulations. Rather, they would like to be
able to pose hypothetical questions about global warming
and its impact rice production in Asia.

The Grid is not yet in a state where such application sce-
narios are easily realized, but we are beginning to see exciting
examples emerge [9], [13], [19], [23]. In each of the scenarios
described above, there are several properties that distinguish
these applications as Grid applications.

1) It is very common for Grid applications to consist of a
heterogeneous composition of several (and sometimes
many) remote services, each of which is responsible
for one part of the overall computation. Sometimes this
service composition can be seen as sequences of opera-
tions that are scheduled over time as a “workflow” and
other times they involve applications running at differ-
ence locations that directly interact with each other in
a message-based dialog.

2) These applications often involve a complex web of
collaborations (Fig. 1). The end users are scientists
and engineers that only want solutions to problems and
they want to do this in language of their scientific do-
main. They interact with the application through a Web
portal systems which record their choices for the ap-
plication parameters. These application parameters are
entered into Grid execution workflow scripts that are
authored by a second group of scientists who under-
stand how to compose Grid services into distributed
applications. Domain experts are the authors and main-
tainers of the basic service and tool components such
as the simulation codes and data filters that compose
the basic elements of the computation.

3) The end user, who initiates or interacts with the
application, sits at a remote location and will expect
to authenticate his or her identity only once. From
this initial authentication, many resources from many
different administrative domains may be accessed.
The Grid security services pass the users identity to
the local security mechanisms for individual services.
Authorization to use the remote resources and services
is provided through authorization capabilities granted
by the remote resource providers and managed by an
authorization service.

This paper explores the progress of an effort to construct a
Grid application architecture that is based on Web services
and Grid portals. This architecture is designed to build
upon the still-evolving Open Grid Services Architecture
(OGSA) [10], the Open Grid Computing Environment
(OGCE) Portal framework [11] and service composition
tools such as the Business Process Execution Language for
Web Services (BPEL4WS) [4] workflow system, the Condor
Dagman service [8], and distributed software component
frameworks like the Common Component Architecture [2].
Very closely related ideas are found in many other projects
[1], [3], [5], [16]. This architecture does not (yet) describe
a single software system that the reader can download and

Fig. 1. Three levels of experts are involved in the design of
many Grid applications. Domain experts write the individual
computational components. Application integrators compose these
services into distributed application. End users interact with the
application through a Web portal that does not expose the details of
Grid management.

use (though most of the major components listed above are
available). Rather, it is an attempt to characterize a family of
application design patterns that can be implemented with a
number of existing software technologies. We will provide
pointers to many of these existing technology alternatives at
the appropriate point in the text.

The principal goal of this architecture is to liberate the end
user from the details of Grid middleware programming, yet
still providing a means for the ambitious scientist to create
new Grid applications. This is accomplished by providing
a layered approach to tools that reflect the three levels of
programming depicted in Fig. 1. This approach also exploits
the progress the commercial sector is making in transforming
the success of the World Wide Web to a platform of Web
services designed for business-to-business transactions and
intraenterprise resource management.

The focus of this paper is on the design of a framework that
allows applications to be installed and used as Web services
accessed through a Grid portal. We focus on two specific
problems.

1) How can a Grid application be captured as a Web ser-
vice? In particular, how can we wrap legacy applica-
tions in simple workflow scripts that can be configured
and launched by the user?

2) Once we have a way to encapsulate and execute Grid
applications as Grid services, how does one provide a
way for an application developer to generate an appli-
cation specific interface that can be provided to the end
user through the portal? In particular, how can this be
accomplished without reconfiguring, or even restarting
the portal server each time a new application is added?

552 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

Fig. 2. End user interacts through a Web browser with a portal server based on the OGCE portal
system. Specific application instances are created by an application factory which registers their
existence and basic properties with a searchable Grid application registry. The portal server, registry,
and application factory interact with OGSA core services.

In Section II, we describe the Grid portal architecture with
an emphasis on the way the portal server interacts with
remote grid services. We address the question of generating
interfaces to remote services by looking at two possible
solutions. In Section III, we turn to the architecture of Grid
application factories and workflows. We describe in detail
how an application or workflow may be encapsulated by an
application factory service and combined and reused with
another service.

II. GRID PORTAL ARCHITECTURE

Fig. 2 illustrates a three-layer architecture for the basic
system. The top layer is the end user who interacts with
the system through a Web browser. At the second layer, we
have the application-level Web services, which include the
portal server, searchable, user-level application and metadata
registries, and application factories. The third layer is the
OGSA-like services that provide the means to authenticate
the user, manage application event notification, and manage
and schedule resources. Our focus in this paper is the top two

layers. In the remainder of this section, we will focus on the
architecture of the portal server and the way in which it in-
teracts with remote services.

The portal server used here is the OGCE [11] portal, which
is based on the Java portlet model as implemented in Chef
[6]. OGCE is being deployed in a number of Grid portal
projects including LEAD [9], the National Center for Su-
percomputer Application (NCSA) alliance [18], the National
Science Foundation (NSF) Teragrid [25], and several other
NSF, Department of Energy (DOE), and NASA projects are
evaluating it. Chef is being used in the NeesGrid portal [19].
The portlet concept, which is now a Java standard (JSR-168)
[14], is simple. This is the same model used by the Grid-
Sphere portal framework [12], [17] and the portals available
from IBM, Sun, Oracle, and BEA. A portlet is a compo-
nent of the Web server that owns a part of the portal display
window. The portlet has access to the user’s session state and
different portlets can communicate with each other through
this mechanism.

A central concept in the architecture being presented here
is that the portal server provides two things.

GANNON et al.: BUILDING GRID PORTAL APPLICATIONS FROM A WEB SERVICE COMPONENT ARCHITECTURE 553

Fig. 3. Condor Dagman job submission portlet. This portlet interacts with a Web service that
handles the actual submission into the Codor pool.

1) A context to hold the user’s session and the objects as-
sociated with that session. Some of these session ob-
jects come from the user’s persistent state, which is
also managed by the portal server, and some objects
are created and used by portlets.

2) A container for portlets which are clients to remote
Grid and Web services. Portlet instances within this
container share the user’s context. Hence, a portlet
which is a client to one service has access to objects
created in another service.

For example, one of the OGCE standard portlets is used to
fetch the user’s Grid proxy certificate from the MyProxy ser-
vice and store it in the user’s session. Any other portlet which
requires the user’s proxy certificate in order to interact with a
remote service on behalf of the user can fetch the proxy from
the session state.

To illustrate this point in greater depth, we describe three
Grid/Web service client portlets that follow this pattern.

A. Condor Portlet

A good example of a portlet that interacts with a remote
Web service is the Condor Dagman portlet developed in col-
laboration with the University of Wisconsin Condor team.
Condor [8] is an environment for scheduling and executing

applications on distributed networks desktop computers.
Dagman is a language for describing complex application
workflows to be executed on Condor in terms of directed
acyclic graphs. In this case, the portlet allows the user to
upload descriptions of Condor jobs or workflow scripts
described with the Dagman language. The user can return
later and monitor the progress of the jobs. (We will return to
the topic of workflow later in this paper.)

The portlet interface shown in Fig. 3 also illustrates the
OGCE Chef graphical layout. The user’s browsers shows a
row of tabs across the top and a column of buttons on the left
and a panel to the right. In this case, there is only one tab at the
top, and it is called “My Workspace.” These tabs correspond
to collaboration groups that the user has joined. Selecting a
tab selects the set of portlets shared by that particular group.
For example, if a user belongs to a group that is managing
the data analysis tools on a Grid testbed, there may be a “data
analysis” group. If the user selects that tab for that group, he
or she would see the set of portlets used by that group listed
in the column on the left. These may be specialized portlets
for interacting with remote data analysis grid services.

In Fig. 3, the user is in his or her private “My Workspace”
group and the portlets available are listed on the left. In this
case, the button for “Condor Portlet” has been pressed, and
the pane on the right displays the user interface to the portlet.

554 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

Fig. 4. Secure Grid Context portlet interface to the XDirectory Web Service. The XDirectory
is a secure Web service that stores a tree of nodes managed by the user. Each node is either a
subdirectory or a leaf. Leaf nodes contain XML metadata about that node including XHTML that
is displayed for the currently selected to the right of the current directory listing. Nodes can be
purely informational (such as this example, which describes the portal architecture) or they can be
references to other services.

B. XDirectory Grid Context

One service we use frequently is called the XDirectory
Grid Context (see Fig. 4). This is a secure Web service that
provides a simple searchable directory of a user’s metadata
about useful services or other data. Each entry is similar to
a “resource” in the WSRF [28] sense. Security is provided
by XML signatures that are embedded in the SOAP request
from the portal server to the directory service using the user’s
proxy credential. This is part of the WS Security [29] model.

The client portlet is organized as two panes. In the left
pane is the current “directory.” If a user selects a node, the
right pane displays any XHTML metadata associated with
that node. Or, if the node refers to a remote Grid service of
a type described later, the user interface associated with that
service is displayed. We will return to these points later.

C. OGSA-DAI Service

As a final example of this design paradigm, the
OGSA-DAI portlet is a client to the Data Access and
Integration Grid service developed in the U.K. e-Science
project [20]. Portal interaction with the database through
OGSA-DAI is illustrated in Fig. 5. The portlet is provided
with the Grid Service Handle (GSH) of the Grid Service
Registry (GSR). This is done out of band. The portlet queries
the registry to obtain the Grid service handle to the factory,
and the accompanying service document that describes the
grid data service instance that has already been created.
From a prior screen, not shown, the user has browsed the

local files system to obtain a perform document that de-
scribes the query the user wishes to execute. That perform
document is shown at the top of the portlet.

The user issues a query by selecting “Query/Update Data-
base” at the bottom of the page. Shown in the portlet are the
results of having executed a query. Shown to the left is the re-
sponse document in its XML form. On the right is the status
of the execution. Partially shown in the bottom right are the
results in table format. The response document has been con-
verted to a table format using XSLT before being displayed
to the user.

D. Generic Portal Interfaces to Remote Services

In each of the examples described above, we have illus-
trated a portlet that provides a specialized client interface
to a specific remote Grid service type. While this works, it
poses a serious scalability problem. Every time a new appli-
cation Grid service is created, a new portlet client must be
written and configured into the portal deployment. In a more
“Web-like” Grid, one should be able to discover a new ser-
vice and automatically load its interface into the portal server
directly.

There are three approaches to solving this problem. The
first and most natural is to remember that every Web service
is described by a Web Service Description Language doc-
ument that provides information about each port type that
the service supports. This is an abstract description of the
service interface. If this service is one that a human could

GANNON et al.: BUILDING GRID PORTAL APPLICATIONS FROM A WEB SERVICE COMPONENT ARCHITECTURE 555

Fig. 5. OGSA Data Access and Integration Portlet.

possibly operate, it should be possible to generate automati-
cally the interface for the service. We have done this with the
Xydra-OntoBrew service. As shown in Fig. 6, OntoBrew is
able to automatically generate a usable interface.

In its current form, the reply from the Web service is
an echo of the request and the reply in raw XML form.
However, it possible to do more than this. The WSDL also
contains information about message replies; hence, it is
possible to generate a basic XHTML format for the returned
values. Xydra-Ontobrew provides an automatic solution to
the portlet client generation problem for simple services.
However, for Grid applications that are to be presented to
the scientific users, it is often desirable to build a custom
interface that is richer in its interactive features. The natural
solution is to build a custom client for the service that can be
loaded dynamically from the service. There are a few small
problems to solve. How does the portal know if a service
has a special, dynamically loadable interface? And, if it has
one, where is it located?

To solve this problem we can use a property of OGSI. Each
Grid service has a set of attributes called Service Data Ele-
ments (SDEs) that can be interrogated by interested clients.
These SDEs are similar to resources in the WSRF specifica-
tion. For our Grid services that have dynamically loadable
interfaces, there is an SDE for that service called “interface-
client.” If you query for this SDE by name, you are handed
the URL for the client. Theoretically, this interface client can
be a Java applet, a link to an HTML document with em-

bedded scripts that call the Web service, a Java Web Start ap-
plication, or any other type of interface that the Grid Service
Provider wants to provide. Currently, as shown in Fig. 7, we
are building applications with the Applet interface in mind.
As shown in Fig. 7, the clients may be a Java applet. A new
standard has been proposed called Web Services for Remote
Portlets (WSRP) [15] which provides a very similar though,
in our opinion, less flexible solution.

It should be noted that the Gridspeed project [24] provides
an alternative approach to this problem. GridSpeed has an
application wizard that is capable of generating interfaces to
remote workflows as a single step. Though GridSpeed is not
a Web service based architecture, it does show that it is pos-
sible to generate very good interfaces to complex applica-
tions with little or no programming required.

III. WORKFLOW AND THE FACTORY SERVICE

In a service-based model of the Grid, everything is ren-
dered as a service or a client to a service. In the general Web
services world, services are stateless entities that respond to
incoming messages. However, there are very few things in
computing that are truly stateless. A good example of this is
a workflow, which is a process that represents the automation
of a sequence of interactions with a set of external services or
agents. Another example is the execution of a large, long-run-
ning scientific application that consumes files and produces
new ones before it terminates. While it is running, it certainly
has state.

556 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

Fig. 6. Xydra-Ontobrew service. The directory service contains a link to the
Xydra. Xydra then requests a URL for the WSDL for a service. The supplied url,
http://www.xmethods.net/sd/2001/CATrafficService.wsdl, is the location of the WSDL for Web
service for the California Highway Traffic Condition reporter Web service. Ontobrew dynamically
generated the interface shown in the top half of the figure from the WSDL. In the bottom half, we
see the result of the request.

In what sense are these examples considered to be ser-
vices? The answer lies in how we interact with them.

For example, if we wish to be able to send messages to a
running application process like “Are you almost finished?”

GANNON et al.: BUILDING GRID PORTAL APPLICATIONS FROM A WEB SERVICE COMPONENT ARCHITECTURE 557

Fig. 7. Dynamiclly loading an applet client from the Grid service “interface client” SDE. In this
case, the Web service is an English language dictionary.

Fig. 8. Application factory architecture. The generic application factory is used to generate specific
factory services for specific applications. The specific application instance factories launch the
specific workflow or job scripts.

or “Please save your state and stop running” or “Please
start running and put you output in this file ,” then it is
reasonable to consider these entities to be services.

However, a more natural model is to consider the ability to
run an application or workflow as the service and associate
the actual instance of a particular execution of the applica-
tion/workflow with a “resource” in a manner similar to the
concept of resource as defined by the proposed WSRF spec-
ification. In this case, the resource represents the evolving
state of the execution of the application as an object associ-
ated with the service that started it.

In order to turn “the ability” to run an application into a
service, we follow the Factory pattern and we adopt a very
specific way of associating resource objects with the things
created by those factories.

We begin with the assumption that each “application”
is defined by a high-level workflow or an execution script
that invokes the underlying file management and application

executables. As illustrated in Fig. 8, each execution of the
application workflow or script is launched by a specific
application service, which, itself, was generated by a Generic
Application Factory. This Generic Factory is a persistent
service that is used to generate the application specific
services from a formal specification we will describe later.
For now, we focus on the specific application instance
factory.

In the model presented here, each newly created service
or process is associated with a new resource object that is
stored in the XDirectory. These resource objects appear as
subdirectories of the user context. They can be thought of
as the permanent record of that service or process instance.
The resource documents for the specific application instance
factory contain a copy of all the application metadata used
to create it as well as a reference to the service interface to
access it. This is enough information to restart the service if
needed.

558 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

Fig. 9. OGRE script for the parallel rendering of WRF output.

The specific application service is specialized to launch
instances of the predefined workflow or application script.
By interacting with the supplied user interface client for the
service, the user provides the missing parameter values that
needed for that execution. Each executing application in-
stance is associated with a resource document that is stored
as a subdirectory of the resource object for the service that
created it. This running instance resource document contains
the workflow files, the parameter settings, links to outputs,
and a log of message events generated by the execution.

To illustrate these ideas, we will consider a real work-
flow example. NCSA has developed a system called OGRE
that extends the build tool ANT [26] to manage simple Grid
workflows. An OGRE workflow is represented by an XML
document that consists of a set of properties and a sequence
of actions. Among the action tags are:

• —run a program;
• —publish a message into the Grid event

stream;
• —move a file from one location to another.

In the example illustrated in Fig. 9, the workflow runs a par-
allel rendering program to transform output from the WRF
weather simulation program into a small animation that can
be viewed from a portal. The steps involved are to first boot
the LAM MPI system, then execute mpirun with the “water-
Pipe” parallel renderer, then run an image converter to turn

the frames into a “GIF movie,” and finally copy the movie to
a location visible to a Web server.

In order to monitor the progress of the rendering, the script
is punctuated with frequent messages published to the event
stream.

The Specific Application Service is a service that contains
the OGRE script in Fig. 9 and is ready to create running in-
stances when the user provides any additional needed pa-
rameters. In this case, that is the name of the WRF output
file we wish to render and the storage location for the final
movie. When so invoked the application services responds by
doing two things. First it creates a “resource subdirectory” in
the XDirectory that will contain properties of the execution.
Second, it instantiates a new, transient process that is exe-
cuting the OGRE script. In the XDirectory, this resource node
looks like a subdirectory that represents that this transient
process. This is called the “Run” subdirectory for that exe-
cution. Each time we invoke this application service a new
“Run” resource is added as a child to resource node for the
application service (see Fig. 10). This “Run” resource con-
tains the original OGRE script and any parameters supplied
to the execution, the log of all events generated by the exe-
cution and a link to the final output animation.

A. Generating a Factory Service

A Factory Service is a persistent, stateless service that
allows authorized users to create instances of other services.

GANNON et al.: BUILDING GRID PORTAL APPLICATIONS FROM A WEB SERVICE COMPONENT ARCHITECTURE 559

Fig. 10. In the top display, the user has selected the “Status” element of the Run resource for that
execution. What is shown on the right is log of published messages from the execution. In the bottom
display, the user has selected the “Result” element, which is a link to the execution.

In OGSI terms, a factory implements the document-centric
Factory PortType, which is an extension of the GridService
PortType. The GridService PortType provides mechanisms
for discovery, life time management and notification. The
Factory PortType provides the CreateService method for
creating service instances on the Grid. It accepts as input an
XML document called the CreateServiceExtensibilityType
which conforms to the OGSI specification. Clients use this
document to specify the service creation parameters in-
cluding the initial termination time and the set of PortTypes
that are implemented by the service instance.

The CreateServiceExtensibilityType document provides
all the information that the factory needs to create a new
instance of the service. But to instantiate a service, an im-

plementation of the service must be available to the factory.
In addition, any needed implementation resource files must
be made available to the factory. For example, in the case
that the service being generated is the Specific Application
Service which launches an OGRE execution engine, we
need to supply the OGRE script and the client used to invoke
the service from the portal.

In the case where the service implementation and the client
already exist and are deployed, such as with the Dictionary
Service example illustrated in Fig. 7, there is very little for
the factory to do. It only needs to launch the service running
on a specified host using a protocol like Gram or SSH.

However, in the case where the service is specific to
a particular workflow or OGRE script, the factory must

560 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

Fig. 11. ServiceMap for a dynamically generated Grid service to launch the OGRE script for the
animiation example.

dynamically generate parts of the implementation. To tell
the factory what it must generate, we provide it with a
ServiceMap document which is of a type that extends the
OGSI’s CreateServiceExtensibilityType.

The ServiceMap document has three elements: service,
portType, and creationParameters. The service element spec-
ifies the name of the service instance and a description of the
service that is to be created. This can also be used to provide
XHTML text for the portal user interface for the service. The
portType specifies the WSDL portType that should be im-
plemented by the service instance. A portType can contain
several methods. Each method is mapped to an executable,
which is invoked when the method is invoked. The input pa-
rameters of the method are mapped to the command line ar-
guments of the executable. The creationParameters specifies
the host and port on which the service must be started and
additional command line arguments.

Fig. 11 illustrates the ServiceMap to create an instance
of the Specific Application Service for the OGRE animation
script described previously.

In this case, the generated service has a single porttype
with one method “animiate.” The argument to this message
is an array of two strings, one of which is the URL of the
WRF file to animate and the other is the URL for the output
animation. The executable line provides the binding from the
parameters to the command line string needed to actually
launch the application. The string associated with the input-
Params are the names that can be used to label the parame-
ters in the interface client However, the creation parameters
such as the host and port and OGRE script URL are the exact
values that are mapped to the execution.

IV. CONCLUSION

This paper has presented a Web service based architecture
for building specialized Web services and portal clients for

Grid applications. The key idea is to wrap Grid application
scripts and workflows behind a Grid Web service that pro-
vides the ability to run instances of the workflow or script. In
many cases, these specialized application service have im-
plementations that are dynamically generated from a simple
XML specification by a persistent factory service.

Each dynamically generated object (application service or
executing application instance) is associated with a resource
which is stored for the user. For application execution in-
stances, the resource stores everything needed to recreate the
execution including records of execution events and links to
the output files.

This paper also describes a portal architecture based on the
idea that communities of scientific application users would
rather access the applications via Web interfaces integrated
into a portal. We address the problem of designing user inter-
faces for Grid applications that can be use in the portal, and
we discuss ways in which these interfaces may be included
in the portal framework at runtime.

There are two topics that have not been addressed here that
are very important to the architecture. One is the pub/sub no-
tification system and the other is the Grid service authoriza-
tion systems. The notification system is based on Narada [22]
and WS-Notification and the authorization system is based
on a peer-to-peer capability management framework. Both
of these topics will soon be described in more detail in an-
other paper.

ACKNOWLEDGMENT

The authors would like to thank the OGCE Collaboration
members whose work was critical for the effort described
in this paper, in particular, G. von Laszewski, who provided
COG, and C. Severance, who provided Chef, the portal
container used here. The authors would also like to thank
K. Droegemeier and B. Wilhelmson for allowing them to
work on the LEAD application.

GANNON et al.: BUILDING GRID PORTAL APPLICATIONS FROM A WEB SERVICE COMPONENT ARCHITECTURE 561

REFERENCES

[1] M. Agarwal and M. Parashar, “Enabling autonomic compositions
in grid environments,” in Proc. 4th Int. Workshop Grid Computing
(Grid 2003), pp. 34–41.

[2] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L.
McInnes, S. Parker, and B. Smolinski, “Toward a common com-
ponent architecture for high performance scientific computing,”
in Proc. 8th IEEE Int. Symp. High Performance Distributed Com-
puting, 1998, pp. 115–124.

[3] V. Bhat and M. Parashar, “Discover middleware substrate for inte-
grating services on the Grid,” in Lecture Notes in Computer Science,
Proceedings of the 10th International Conference on High Perfor-
mance Computing (HiPC 2003), T. M. Pinkston and V. K. Prasanna,
Eds. Heidelberg, Germany: Springer-Verlag, 2003, vol. 2913, pp.
373–382.

[4] Business Process Execution Language for Web Services Version
1.1 [Online]. Available: http://www-106.ibm.com/developerworks/
library/ws-bpel/

[5] H. Casanova and J. Dongarra, “NetSolve: A network server for
solving computational science problems,” Int. J. Supercomput.
Appl. High Perform. Comput., vol. 11, no. 3, pp. 212–223, 1997.

[6] The Chef Project [Online]. Available: http://chefproject.org/
chef/portal

[7] Xydra—An automatic form generator for Web services, O.
Chipara and A. Slominski. [Online]. Available: http://www.
extreme.indiana.edu/xgws/xydra/

[8] Condor Dagman [Online]. Available: http://www.cs.wisc.edu/
condor/dagman/

[9] K. Droegemeier, V. Chandrasekar, R. Clark, D. Gannon, S. Graves,
E. Joseph, M. Ramamurthy, R. Wilhelmson, K. Brewster, B.
Domenico, T. Leyton, V. Morris, D. Murray, P. Plale, R. Ramachan-
dran, D. Reed, J. Rushing, D. Weber, A. Wilson, M. Xue, and S.
Yalda, “Linked environments for atmospheric discovery (LEAD): A
cyberinfrastructure for mesoscale meteorology research and educa-
tion,” presented at the Amer. Meteorol. Soc. 20th Conf. Interactive
Info. Processing Systems for Meteorology, Oceanography, and
Hydrology, Seattle, WA, 2004.

[10] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “Grid services for
distributed system integration,” Computer, vol. 35, no. 6, pp. 37–46,
2002.

[11] Open Grid Computing Environment (OGCE) [Online]. Available:
http://www.ogce.org

[12] GridLab, the GridSphere portal [Online]. Available: http://www.
gridsphere.org

[13] The Grid Physics Network [Online]. Available: http://www.griphyn.
org/

[14] JSR-168 portlet specification [Online]. Available: http://www.
jcp.org/aboutJava/communityprocess/final/jsr168/

[15] A. Kropp, C. Leue, and R. Thompson. Web services for remote
portlets (WSRP). [Online]. Available: http://www.oasis-open.org

[16] S. Matsuoka et al.. Ninf: A global computing infrastructure. [On-
line]. Available: http://ninf.apgrid.org/welcome.shtml

[17] J. Navotny. Developing Grid portlets using the GridSphere
Portal Framework. [Online]. Available: http://www-106.ibm.com/
developerworks/grid/library/gr-portlets/

[18] NCSA Alliance Portal [Online]. Available: http://www.extreme.
indiana.edu/alliance/

[19] Network for Earthquake Engineering Simulation Grid (NEESgrid)
[Online]. Available: http://www.neesgrid.org

[20] Open Grid Service Architecture Data Access and Integration [On-
line]. Available: http://www.ogsa-dai.org.uk

[21] Open Grid Services Infrastructure Working Group (2003). [Online].
Available: http://www.gridforum.org/ogsi-wg

[22] S. Pallickara and G. Fox, “NaradaBrokering: A middleware
framework and architecture for enabling durable peer-to-peer
grids,” in Proc. ACM/IFIP/USENIX Int. Middleware Conf., 2003,
pp. 41–61.

[23] Particle Physics Data Grid [Online]. Available: http://www.
ppdg.net/

[24] T. Suzumura, H. Nakada, S. Matsuoka, and H. Casanova. GridSpeed:
A Web-based portal generator. Proc. HPCAsia 2004 Conf. [Online].
Available: http://grail.sdsc.edu/papers/suzumura_hpcaisa04.pdf

[25] Teragrid [Online]. Available: http://www.teragrid.org/
[26] J. Tilly and E. Burke, Ant, The Definitive Guide. Sebastopol, CA:

O’Reilly, 2002.

[27] S. Tuecke, K. Czaijkowski, I. Foster, J. Frey, S. Graham, C.
Kesselman, D. Snelling, and P. Vanderbilt. (2003) Open Grid
Services Infrastructure, Version 1.0, Global Grid Forum GWD-R.
[Online]. Available: http://www.gridforum.org/ogsi-wg

[28] WS resource framework [Online]. Available: http://www.
globus.org/wsrf

[29] WS Security [Online]. Available: http://www-106.ibm.com/
developerworks/webservices/library/ws-secure/

Dennis Gannon received the Ph.D. degree in mathematics from the Univer-
sity of California, Davis, in 1975 and the Ph.D. degree in computer science
from the University of Illinois, Urbana, in 1980.

He was on the faculty of Purdue University, and he has been a Senior
Visiting Scientist at the University of Illinois. Since 1985, he has been with
Indiana University, Bloomington, where he is currently a Professor of Com-
puter Science and Science Director for the Indiana Pervasive Technology
Labs. He was also part of the NASA Ames Information Power Grid project
from 1998 to 2000. His research interests include high-performance dis-
tributed computing and problem-solving environments for computational
science.

Jay Alameda (Member, IEEE) received the M.S. degree in nuclear engi-
neering from the University of Illinois, Urbana, in 1991.

He is with the National Center for Supercomputer Application (NCSA),
University of Illinois, Champaign, and is the Group Leader for the NCSA’s
effort in Grid computing environments for applications. In this role, he has
worked to develop cyberinfrastructure in service of advanced environments
for atmospheric discovery and advanced multiscale chemical engineering, in
the form of configurable, reusable workflow engines, and client-side tools
and supporting services.

Mr. Alameda is a Member of the IEEE Computer Society, a Member of the
American Chemical Society, and a Senior Member of the American Institute
of Chemical Engineers.

Octav Chipara received the B.S. degree in computer science from Indiana
University, Bloomington, in 2003. He is working toward the Ph.D. degree
in computer science at Washington University, St. Louis, MO.

His interests are in networks, distributed computing. and software engi-
neering with emphasis on wireless sensor networks.

Marcus Christie received the B.S. degree in math and astrophysics from
Indiana University (IU), Bloomington, in 1998. He is currently working to-
ward the M.S. degree in computer science at IU.

He is a Member of the Research Staff of the IU Computer Science De-
partment working under Prof. D. Gannon in the Extreme Lab. His interests
are scientific computing and grid portals.

Vinayak Dukle received the B.E. degree in computer engineering from Uni-
versity of Mumbai, Mumbai, India, in 1999 and the M.S. degree from In-
diana University, Bloomington, in 2004.

He has previously worked as a Research Assistant in the Extreme Lab,
Indiana University. His interests are in developing software systems that im-
pact the bottom line.

Liang Fang received the B.E. degree from Nanjing University of Science
and Technology, Nanjing, China, in 1999 and the M.S. degree from Indiana
University, Bloomington, in 2002. He is currently working toward the Ph.D.
degree in computer science at Indiana University.

He is a Research Assistant in the Extreme Lab, Indiana University. His
interests are in the areas of Web services, Grid computing, and their corre-
sponding security issues.

562 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

Matthew Farrellee received the B.S. degree in computer science and the
B.S. degree in cognitive science from Indiana University, Bloomington, in
2003. He is currently working toward the Ph.D. degree in the Computer
Sciences Department at the University of Wisconsin, Madison, where he
works as a research assistant.

Gopi Kandaswamy received the M.S. degree in computer science from In-
diana University, Bloomington, in 2002. He is currently working toward the
Ph.D. degree in computer science at Indiana University.

He is a Research Assistant under Prof. D. Gannon and is interested in
application factories and workflows for the Grid.

Deepti Kodeboyina received the M.S. degree in computer science from In-
diana University, Bloomington, in 2004, where she worked on the metadata
portal components for the Linked Environments for Atmospheric Discovery
(LEAD) project.

She is currently a Research Programmer at Argonne National Laboratory,
Argonne, IL.

Sriram Krishnan received the Ph.D. degree in computer science at Indiana
University, Bloomington, in 2004.

He is currently a Senior Grid Services and Applications Developer at
the San Diego Supercomputer Center (SDSC), San Diego, CA, working on
the National Biomedical Computation Resource (NBCR) project. He is the
principal author of the XCAT3 implementation of the Common Component
Architecture.

Charles Moad received the M.S. degree in computer science at Indiana Uni-
versity, Bloomington, in 2004.

He is currently a Research Scientist at the Indiana Pervasive Technology
Labs in the Visualization and Scientific Data Analysis Lab, Indianapolis.

Marlon Pierce received the Ph.D. degree in computational condensed
matter physics from Florida State University, Tallahassee, in 1998.

He is currently a Senior Research Associate in the Community Grids Lab,
Indiana University, Bloomington, where he leads computing portal and Web
service development for science Grid applications.

Beth Plale (Member, IEEE) received the Ph.D. degree in computer science
from the State University of New York, Binghamton, in 1998.

She was a Postdoctoral Fellow in the Center for Experimental Research
and Computer Systems, Georgia Institute of Technology, Atlanta. She is cur-
rently an Assistant Professor in the Computer Science Department, Indiana
University, Bloomington. Her research interests include datastreams, data
driven applications, parallel and distributed computing, relational represen-
tation of Grid resource information, and database query processing.

Dr. Plale is a Member of the Association for Computing Machinery.

Al Rossi received the M.S. degree in computer science from Indiana Uni-
versity, Bloomington, in 2002.

He is currently Research Programmer in the Grid Computing Environ-
ments group at the National Center for Supercomputer Application (NCSA),
University of Illinois, Champaign, IL. His interests are in workflow manage-
ment and orchestration, data management, data mining, and programming
languages.

Yogesh Simmhan received the B.E. degree in computer science from
Madras University, Madras, India in 2000. He is working toward the Ph.D.
degree in computer science at Indiana University, Bloomington.

He is currently a Research Assistant at the Extreme Lab, Indiana Univer-
sity. His interests lie in information management on Grid systems.

Anuraag Sarangi received the M.S. degree in compute science at Indiana
University, Bloomington, in 2004. He is currently working toward the Ph.D.
degree in neuroscience at Indiana University.

Aleksander Slominski received the Magister degree in mathematics from
Nicholaus Copernicus University, Torun, Poland, in 1998 and the M.S. de-
gree in computer science from Indiana University, Bloomington, in 2003.
He is currently working toward the Ph.D. degree at Indiana University.

He is a Research Assistant in the Extreme Computing Lab, Indiana Uni-
versity. His interests are in development of applications for next-generation
Internet and in particular development of dynamic scientific workflows that
orchestrate grid services, components, and Web services.

Satoshi Shirasuna received the B.S. and M.S. degrees from Tokyo Institute
of Technology, Tokyo, Japan, in 1999 and 2002, respectively. He is currently
working toward the Ph.D. degree at Indiana University, Bloomington.

He is currently a Research Assistant in the Computer Science department,
Indiana University. His interests are in Grid middleware.

Thomas Thomas received the M.S. degree in computer science at Indiana
University, Bloomington, in 2004.

He is currently employed in the financial sector building information tech-
nology infrastructure.

GANNON et al.: BUILDING GRID PORTAL APPLICATIONS FROM A WEB SERVICE COMPONENT ARCHITECTURE 563

	toc
	Building Grid Portal Applications From a Web Service Component A
	D. GANNON, J. ALAMEDA, MEMBER, IEEE, O. CHIPARA, M. CHRISTIE, V.
	I. I NTRODUCTION

	Fig.€1. Three levels of experts are involved in the design of ma
	Fig.€2. End user interacts through a Web browser with a portal s
	II. G RID P ORTAL A RCHITECTURE

	Fig.€3. Condor Dagman job submission portlet. This portlet inter
	A. Condor Portlet

	Fig.€4. Secure Grid Context portlet interface to the XDirectory
	B. XDirectory Grid Context
	C. OGSA-DAI Service
	D. Generic Portal Interfaces to Remote Services

	Fig.€5. OGSA Data Access and Integration Portlet.
	III. W ORKFLOW AND THE F ACTORY S ERVICE
	Fig.€6. Xydra-Ontobrew service. The directory service contains a

	Fig.€7. Dynamiclly loading an applet client from the Grid servic
	Fig.€8. Application factory architecture. The generic applicatio
	Fig.€9. OGRE script for the parallel rendering of WRF output.
	A. Generating a Factory Service

	Fig.€10. In the top display, the user has selected the Status el
	Fig.€11. ServiceMap for a dynamically generated Grid service to
	IV. C ONCLUSION
	M. Agarwal and M. Parashar, Enabling autonomic compositions in g
	R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInne
	V. Bhat and M. Parashar, Discover middleware substrate for integ

	Business Process Execution Language for Web Services Version 1.1
	H. Casanova and J. Dongarra, NetSolve: A network server for solv

	The Chef Project [Online] . Available: http://chefproject.org/ c
	Xydra An automatic form generator for Web services, O. Chipara a

	Condor Dagman [Online] . Available: http://www.cs.wisc.edu/ cond
	K. Droegemeier, V. Chandrasekar, R. Clark, D. Gannon, S. Graves,
	I. Foster, C. Kesselman, J. Nick, and S. Tuecke, Grid services f

	Open Grid Computing Environment (OGCE) [Online] . Available: htt
	GridLab, the GridSphere portal [Online] . Available: http://www.
	The Grid Physics Network [Online] . Available: http://www.griphy
	JSR-168 portlet specification [Online] . Available: http://www.
	A. Kropp, C. Leue, and R. Thompson . Web services for remote por
	S. Matsuoka et al. . Ninf: A global computing infrastructure . [
	J. Navotny . Developing Grid portlets using the GridSphere Porta

	NCSA Alliance Portal [Online] . Available: http://www.extreme. i
	Network for Earthquake Engineering Simulation Grid (NEESgrid) [O
	Open Grid Service Architecture Data Access and Integration [Onli
	Open Grid Services Infrastructure Working Group (2003). [Online]
	S. Pallickara and G. Fox, NaradaBrokering: A middleware framewor

	Particle Physics Data Grid [Online] . Available: http://www. ppd
	T. Suzumura, H. Nakada, S. Matsuoka, and H. Casanova . GridSpeed

	Teragrid [Online] . Available: http://www.teragrid.org/
	J. Tilly and E. Burke, Ant, The Definitive Guide . Sebastopol, C
	S. Tuecke, K. Czaijkowski, I. Foster, J. Frey, S. Graham, C. Kes

	WS resource framework [Online] . Available: http://www. globus.o
	WS Security [Online] . Available: http://www-106.ibm.com/ develo

