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Tail (Extreme) Dependence

Dependence exhibited in tails

Dependence in the
middle can be different
from the tail
Dependence in tail more
relevant in the age of
extremes

Financial Crises

An area of active
practical and academic
interest

See McNeil et al. (2015)
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Measures of Dependence

Some Bivariate Measures
Linear Correlation Coefficient (ρ)
Kendall’s τ - ρ(sgn(X1 − X̃1), sgn(X2 − X̃2))
Spearman’s ρS - ρ(F1(X1),F2(X2))

The matrix of bivariate measures serves as a
d-dimensional measure
The tails contribute little to the above measures
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Tail Dependence Coefficient

The (lower) Tail Dependence Coefficient of two continuous
random variables X1 ∼ F1 and X2 ∼ F2 is defined by

χ(X1,X2) = lim
u↓0

P(F1(X1) ≤ u,F2(X2) ≤ u)

u
,

given the limit exist.
A motivation for the above is

lim
u↓0

ρ(IU1≤u, IU2≤u) = lim
u↓0

E(IU1≤u IU2≤u)−u2

u(1−u)

= lim
u↓0

P(U1≤u,U2≤u)
u
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The Realization Problem

Given Td×d ∈ [0,1]d , does it correspond to the matrix of
tail dependence coefficients (TDM) of some X?

Embrechts et al. (2016)
Study a related class - Bernoulli Compatible matrices (BCM)
Establish a connection between BCMs and TDMs

Fiebig et al. (2017)
Study TDM and its extension to stochastic processes
Establish detailed geometric properties

Our contributions:
Determine the computational complexity of the
realization problem for BCM and TDM
An algorithm that works for d up to the 20’s or larger (in the
presence of symmetry)
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Bernoulli Compatible Matrices

From Embrechts et al. (2016):
Matrices of the form E (ZZ′), Z ∈ {0,1}d are called
Bernoulli Compatible Matrices (BCMs)

For Ai := {Zi = 1}, we have E (ZZ′) is 1− 1 fn. of

p̃d := (1,P(A1), . . . ,P(Ad ),P(A1A2),P(A1A3), . . . ,P(Ad−1Ad ))>

For qi,j,k := P
(

Ai
1Aj

2Ak
3

)
, for i , j , k = 0,1, define

q̃3 = (q0,0,0,q0,0,1, ...,q1,1,1)>

Exists a (
(d

2

)
+ d + 1)× 2d matrix Cd with elements in

{0,1} such that Cd q̃d = p̃d .
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Equivalent Problem

Proposition

A matrix Ad×d is BCM iff there exists a vector x̃ ≥ 0 such that
Cd x̃d = p̃d .

Note that Cd is (
(d

2

)
+ d + 1)× 2d

Symmetry in a problem helps reduce the dimensionality
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Illustrative Example 1

For what values of a and b is this a BCM? a · · · b
...

. . .
...

b · · · a

 = (a− b) ∗ Id×d + bJd×d

For fixed a ∈ [0,1] seek set of b’s
Clearly b ≤ a, with upper bound being sharp
Since aJd×d is a BCM, suffices to find lower bound ba

α(a− ba) ∗ Id×d + (α ∗ ba + (1− α) ∗ a)Jd×d , ∀α ∈ [0,1]

Familiar setting in the context of linear correlation
Hogg and Craig (1978): Variance of sum; ρ ≥ −1/d
The above argument yields sharp lower bound, but only
when ad ∈ Z+
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Example 1: Solution

p̃ = (1,a,a,a,b,b,b)> is invariant w.r.t. S3

We can assume that the solution is invariant w.r.t. S3
This reduces dimension as the problem becomes



1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1





x0
x1
x1
x1
x2
x2
x2
x3


=



1
a
a
a
b
b
b



minimize
d∑

k=2

(
d − 2
k − 2

)
xk

subject to
d∑

k=1

(
d − 1
k − 1

)
xk = a

d∑
k=0

(
d
k

)
xk = 1

xk ≥ 0
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Example 1: Solution

The dual problem:
maximize ax + y

subject to y ≤ 0; x + d · y ≤ 0(
d − 1
k − 1

)
x +

(
d
k

)
y ≤

(
d − 2
k − 2

)
, for k = 2, ..., d.

Solution:
(2ad − badc − 1) badc

d(d − 1)

Case d = 3:

x

y

-1 1 2 3

-2

-1

1

1/6
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BCM and TDM - The connection

Theorem (Embrechts et al. (2016))
Matrix T is a TDM iff αT is a BCM, with identical diagonal
elements, for some α > 0.

Proposition

Matrix T is a TDM iff T/d is a BCM with diagonal elements
equal to 1/d .

Shyamalkumar, N. D. & Tao, S. On Tail Dependence Coefficients



Introduction
Complexity

An Algorithm

Illustrative Example 2

Example from Embrechts et al. (2016): TDM iff
∑d−1

i=1 αi ≤ 1.

1 0 · · · 0 α1
0 1 · · · 0 α2
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · 1 αd−1
α1 α2 · · · αd−1 1

 ,

Pr
(

d−1⊕
i=1

AiAd

)
=
∑d−1

i=1 Pr (AiAd ) ≤ Pr (Ad ) ⇐⇒ ∑d−1
i=1 αi ≤ 1.

Z1 = 1 Z2 = 1Z3 = 1
α1

d
α2

d

Z1 = Z2 = Z3 = 0

1
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Complexity of Decision Problems

Worst case Complexity

Polynomial complexity - Good

NP Complete

NP
NP Hard

To show Γ is NP-Complete

Show Γ is NP
Select a known
NP-complete Γ′

Transform Γ′ to Γ in
polytime

P

NP
NP-Complete

non-NP

NP-Hard

P 6= NP

P = NP

P = NP

= NP-Complete

non-NP

NP-Hard

Complexity

1
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Essence of NP Completeness - Garey and Johnson (1979)
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A Connection with Max Cut Problem

Farkas Lemma transforms problem
Non-emptiness of a bounded convex set

Issue - Exponential number of constraints
Ellipsoid Method - Shor (1977) and Khachian (1979)

Shrinking containing ellipsoids
Separation Oracle being polytime is key
Maximum Weighted Matching problem

Weighted min-cut Problem

Separation Oracle in the TDM case
Transforms to a max-cut problem (NP complete)

Shyamalkumar, N. D. & Tao, S. On Tail Dependence Coefficients
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Realization Problem for TDM is NP-Complete

CORd - correlation polytope

{(P(A1), . . . , P(Ad ), P(A1A2), . . . , P(Ad−1Ad )) : P a prob. measure ; A1, . . . Ad events}

2d Extreme points

Determining membership in CORd is NP-Complete
Pitowsky (1991)
1-in-3 SAT problem
3-colorability of graph

Theorem
Realization problem for TDM is NP
TDM realization is NP hard

Transformation reduces CORd realization to TDM
realization

Shyamalkumar, N. D. & Tao, S. On Tail Dependence Coefficients
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Algorithm

Step 1: Matrix T is a TDM iff T/d is a BCM with diagonal
elements equal to 1/d .

Convert T/d to the corresponding p̃ probability vector
Resultant Problem: Existence of q̃ >= 0 such that
Cd · q̃ = p̃

Step 2: Apply Farkas Lemma:

∃q̃ ∈ R2d

+ such that Cd · q̃ = p̃

⇐⇒ min
y∈Rd(d+1)/2+1|C>d y≥0

p̃>y ≥ 0

Solve the resultant Linear Programming problem

Shyamalkumar, N. D. & Tao, S. On Tail Dependence Coefficients
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Performance of the Algorithm

Since the algorithm ultimately works with BCMs
We skipped Step 1 (low compute time)
Chose BCMs directly for Step 2

Considered parametric BCMs for test cases with
d = 2, . . . ,20
For positive test cases used independent BCMs
For negative test cases used Example 1 with a = .5,
b = b0.5 − .001
Used linprog (MATLAB R©) for LP solver

Mac-book Pro 2.7 GHz Intel Core i7 with 16GB RAM

Shyamalkumar, N. D. & Tao, S. On Tail Dependence Coefficients
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LP method using Matlab

Computation Time

dimension

tim
e

non−BCM
BCM

2 3 4 5 6 7 8 9 11 13 15 17 19

1ms

0.01s

0.1s

1s

1min

1hr

6hrs
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Any point in the convex cone of vertices (dim 2–6)

Simulated 100 TDMs for each dimension d from 3 to 6
Fiebig et al. (2017):

d 3 4 5 6
# of vertices (Nd ) 5 15 214 28895

K - uniformly distributed on {1, . . . ,Nd}
Randomly chose K vertices from among the Nd vertices
Generated a probability vector from K -simplex

Used Stick Breaking with Beta(1/K , 1 − 1/K ) variables

Used the algorithm and linprog (MATLAB R©) on the
simulated TDM ten times
Record the minimum among the ten compute times

Shyamalkumar, N. D. & Tao, S. On Tail Dependence Coefficients
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Variation in Compute Time

Time in units of millisecond.

d 3 4 5 6
Mean 9 9 9 13

(Min,Max) (9,10) (8,10) (8,10) (10,16)

Conclusion: Compute time does not vary significantly w.r.t.
input matrix
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