Tail Dependence Coefficients

A Decision Problem

Shyamalkumar, N. D.¹

(Work done with Siyang Tao1)

¹Department of Statistics and Actuarial Science The University of Iowa

IME (2017) - Vienna, Austria

Shyamalkumar, N. D. & Tao, S. On Tail Dependence Coefficients

Tail (Extreme) Dependence

- Dependence exhibited in tails
 - Dependence in the middle can be different from the tail
 - Dependence in tail more relevant in the age of extremes
 - Financial Crises
 - An area of active practical and academic interest
- See McNeil et al. (2015)

Measures of Dependence

- Some Bivariate Measures
 - Linear Correlation Coefficient (ρ)
 - Kendall's τ $\rho(\operatorname{sgn}(X_1 \tilde{X}_1), \operatorname{sgn}(X_2 \tilde{X}_2))$
 - Spearman's $\rho_S \rho(F_1(X_1), F_2(X_2))$
- The matrix of bivariate measures serves as a d-dimensional measure
- The tails contribute little to the above measures

Tail Dependence Coefficient

 The (lower) Tail Dependence Coefficient of two continuous random variables X₁ ~ F₁ and X₂ ~ F₂ is defined by

$$\chi(X_1, X_2) = \lim_{u \downarrow 0} \frac{\mathbb{P}(F_1(X_1) \le u, F_2(X_2) \le u)}{u},$$

given the limit exist.

A motivation for the above is

$$\lim_{u \downarrow 0} \rho(I_{U_1 \le u}, I_{U_2 \le u}) = \lim_{u \downarrow 0} \frac{\mathbb{E}(I_{U_1 \le u} I_{U_2 \le u}) - u^2}{u(1-u)}$$
$$= \lim_{u \downarrow 0} \frac{\mathbb{P}(U_1 \le u, U_2 \le u)}{u}$$

The Realization Problem

Given *T*_{d×d} ∈ [0, 1]^d, does it correspond to the matrix of tail dependence coefficients (TDM) of some X?

- Embrechts et al. (2016)
 - Study a related class Bernoulli Compatible matrices (BCM)
 - Establish a connection between BCMs and TDMs
- Fiebig et al. (2017)
 - Study TDM and its extension to stochastic processes
 - Establish detailed geometric properties
- Our contributions:
 - Determine the computational complexity of the realization problem for BCM and TDM
 - An algorithm that works for *d* up to the 20's or larger (in the presence of symmetry)

Bernoulli Compatible Matrices

- From Embrechts et al. (2016):
 - Matrices of the form 𝔅 (ZZ'), Z ∈ {0,1}^d are called Bernoulli Compatible Matrices (BCMs)
- For $A_i := \{Z_i = 1\}$, we have $\mathbb{E}(ZZ')$ is 1 1 fn. of

$$\tilde{p}_d := (1, \mathbb{P}(A_1), \dots, \mathbb{P}(A_d), \mathbb{P}(A_1A_2), \mathbb{P}(A_1A_3), \dots, \mathbb{P}(A_{d-1}A_d))^\top$$

• For
$$q_{i,j,k} := \mathbb{P}\left(A_1^i A_2^j A_3^k\right)$$
, for $i, j, k = 0, 1$, define

$$\tilde{q}_3 = (q_{0,0,0}, q_{0,0,1}, ..., q_{1,1,1})^{\top}$$

• Exists a $\binom{d}{2} + d + 1 \times 2^d$ matrix C_d with elements in $\{0, 1\}$ such that $C_d \tilde{q}_d = \tilde{p}_d$.

Equivalent Problem

Proposition

A matrix $A_{d \times d}$ is BCM iff there exists a vector $\tilde{x} \ge 0$ such that $C_d \tilde{x}_d = \tilde{p}_d$.

- Note that C_d is $\binom{d}{2} + d + 1 \times 2^d$
- Symmetry in a problem helps reduce the dimensionality

Illustrative Example 1

• For what values of a and b is this a BCM?

$$\begin{pmatrix} a & \cdots & b \\ \vdots & \ddots & \vdots \\ b & \cdots & a \end{pmatrix} = (a-b) * I_{d \times d} + bJ_{d \times d}$$

• For fixed $a \in [0, 1]$ seek set of b's

- Clearly $b \le a$, with upper bound being sharp
- Since $aJ_{d\times d}$ is a BCM, suffices to find lower bound b_a

$$\alpha(\mathbf{a} - \mathbf{b}_{\mathbf{a}}) * \mathbf{I}_{\mathbf{d} \times \mathbf{d}} + (\alpha * \mathbf{b}_{\mathbf{a}} + (1 - \alpha) * \mathbf{a})\mathbf{J}_{\mathbf{d} \times \mathbf{d}}, \quad \forall \alpha \in [0, 1]$$

- Familiar setting in the context of linear correlation
 - Hogg and Craig (1978): Variance of sum; $\rho \ge -1/d$
 - The above argument yields sharp lower bound, but only when $\textit{ad} \in \mathbb{Z}^+$

Example 1: Solution

•
$$\tilde{p} = (1, a, a, a, b, b, b)^{\top}$$
 is invariant w.r.t. S_3

- We can assume that the solution is invariant w.r.t. S₃
- This reduces dimension as the problem becomes

Example 1: Solution

• The dual problem:

$$\begin{array}{ll} \text{maximize} & ax + y \\ \text{subject to} & y \leq 0; \quad x + d \cdot y \leq 0 \\ & \left(\begin{array}{c} d-1 \\ k-1 \end{array} \right) x + \left(\begin{array}{c} d \\ k \end{array} \right) y \leq \left(\begin{array}{c} d-2 \\ k-2 \end{array} \right), \text{ for } k = 2, ..., d. \\ \\ \text{Solution:} & \frac{(2ad - \lfloor ad \rfloor - 1) \lfloor ad \rfloor}{d(d-1)} \end{array}$$

• Case d = 3:

BCM and TDM - The connection

Theorem (Embrechts et al. (2016))

Matrix T is a TDM iff α T is a BCM, with identical diagonal elements, for some $\alpha > 0$.

Proposition

Matrix T is a TDM iff T/d is a BCM with diagonal elements equal to 1/d.

Illustrative Example 2

• Example from Embrechts et al. (2016): TDM iff $\sum_{i=1}^{d-1} \alpha_i \leq 1$.

1	1	0		0	α_1	
	0	1		0	α_2	
	:		·.			
	0	0		1	α_{d-1}	
(α_1	α_2		α_{d-1}	1)

,

OF LOWA

•
$$\Pr\left(\bigoplus_{i=1}^{d-1} A_i A_d\right) = \sum_{i=1}^{d-1} \Pr\left(A_i A_d\right) \le \Pr\left(A_d\right) \iff \sum_{i=1}^{d-1} \alpha_i \le 1.$$

Complexity of Decision Problems

- Worst case Complexity
- Polynomial complexity Good
- NP Complete
 - NP
 - NP Hard
- To show Γ is NP-Complete
 - Show Γ is NP
 - Select a known NP-complete Γ'
 - Transform Γ' to Γ in polytime

Essence of NP Completeness - Garey and Johnson (1979)

"I can't find an efficient algorithm, I guess I'm just too dumb."

"I can't find an efficient algorithm, because no such algorithm is possible!"

"I can't find an efficient algorithm, but neither can all these famous people."

A Connection with Max Cut Problem

- Farkas Lemma transforms problem
 - Non-emptiness of a bounded convex set
- Issue Exponential number of constraints
- Ellipsoid Method Shor (1977) and Khachian (1979)
 - Shrinking containing ellipsoids
 - Separation Oracle being polytime is key
 - Maximum Weighted Matching problem
 - Weighted min-cut Problem
- Separation Oracle in the TDM case
 - Transforms to a max-cut problem (NP complete)

Realization Problem for TDM is NP-Complete

• COR_d - correlation polytope

- $\{(\mathbb{P}(A_1), \ldots, \mathbb{P}(A_d), \mathbb{P}(A_1A_2), \ldots, \mathbb{P}(A_{d-1}A_d)) : \mathbb{P} \text{ a prob. measure } ; A_1, \ldots, A_d \text{ events} \}$
- 2^d Extreme points
- Determining membership in COR_d is NP-Complete
 - Pitowsky (1991)
 - 1-in-3 SAT problem
 - 3-colorability of graph

Theorem

- Realization problem for TDM is NP
- TDM realization is NP hard
 - Transformation reduces COR_d realization to TDM realization

- Step 1: Matrix T is a TDM iff T/d is a BCM with diagonal elements equal to 1/d.
 - Convert T/d to the corresponding \tilde{p} probability vector
 - Resultant Problem: Existence of $\tilde{q} >= 0$ such that $C_d \cdot \tilde{q} = \tilde{p}$
- Step 2: Apply Farkas Lemma:

$$\begin{aligned} \exists \tilde{\pmb{q}} \in \mathbb{R}^{2^d}_+ \text{ such that } C_d \cdot \tilde{\pmb{q}} = \tilde{\pmb{\rho}} \\ \Longleftrightarrow \quad \min_{\pmb{y} \in \mathbb{R}^{d(d+1)/2+1} | C_d^\top \pmb{y} \ge 0} \tilde{\pmb{\rho}}^\top \pmb{y} \ge 0 \end{aligned}$$

Solve the resultant Linear Programming problem

Performance of the Algorithm

- Since the algorithm ultimately works with BCMs
 - We skipped Step 1 (low compute time)
 - Chose BCMs directly for Step 2
- Considered parametric BCMs for test cases with $d = 2, \dots, 20$
- For positive test cases used independent BCMs
- For negative test cases used Example 1 with a = .5,
 b = b_{0.5} .001
- Used linprog (MATLAB[®]) for LP solver
 - Mac-book Pro 2.7 GHz Intel Core i7 with 16GB RAM

LP method using Matlab

6hrs non-BCM 1hr BCM 1min time 1s 0.1s 0.01s -0-0-0 1ms 2 3 5 9 13 15 17 19 4 6 7 8 11 dimension

Computation Time

Any point in the convex cone of vertices (dim 2–6)

Simulated 100 TDMs for each dimension *d* from 3 to 6
 Fiebig et al. (2017):

d	3	4	5	6
# of vertices (N_d)	5	15	214	28895

- K uniformly distributed on $\{1, \ldots, N_d\}$
- Randomly chose K vertices from among the N_d vertices
- Generated a probability vector from K-simplex
 - Used Stick Breaking with Beta(1/K, 1 1/K) variables
- Used the algorithm and linprog (MATLAB[®]) on the simulated TDM ten times
- Record the minimum among the ten compute times

Variation in Compute Time

• Time in units of millisecond.

d	3	4	5	6
Mean	9	9	9	13
(Min,Max)	(9,10)	(8,10)	(8,10)	(10,16)

 Conclusion: Compute time does not vary significantly w.r.t. input matrix

- Embrechts, P., Hofert, M., and Wang, R. (2016). Bernoulli and tail-dependence compatibility. Ann. Appl. Probab., 26(3):1636–1658.
- Fiebig, U.-R., Strokorb, K., and Schlather, M. (2017). The realization problem for tail correlation functions. *Extremes*, 20(1):121–168.
- Garey, M. R. and Johnson, D. S. (1979). Computers and intractability. W. H. Freeman and Co., San Francisco, Calif. A guide to the theory of NP-completeness, A Series of Books in the Mathematical Sciences.
- Hogg, R. V. and Craig, A. T. (1978). Introduction to mathematical statistics. Macmillan Publishing Co., Inc., New York; Collier Macmillan Publishers, London, fourth edition.
- McNeil, A. J., Frey, R., and Embrechts, P. (2015). *Quantitative risk management*. Princeton Series in Finance. Princeton University Press, Princeton, NJ, revised edition. Concepts, techniques and tools.
- Pitowsky, I. (1991). Correlation polytopes: their geometry and complexity. *Math. Programming*, 50(3, (Ser. A)):395–414.

