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Abstract

Children at about age 18 months experience acceleration in word learning. This vocabulary explo-

sion is a robust phenomenon, although the exact shape and timing vary from child to child. One class

of explanations, which we term collectively as leveraged learning, posits that knowledge of some

words helps with the learning of others. In this framework, the child initially knows no words and so

learning is slow. As more words are acquired, new words become easier and thus it is the acquisition

of early words that fuels the explosion in learning. In this paper we examine the role of leveraged

learning in the vocabulary spurt by proposing a simple model of leveraged learning. Our results show

that leverage can change both the shape and timing of the acceleration, but that it cannot create accel-

eration if it did not exist in the corresponding model without leveraging. This model is then applied

to the Zipfian distribution of word frequencies, which confirm that leveraging does not create acceler-

ation, but that the relationship between frequency and the difficulty of learning a word may be

complex.

Keywords: Vocabulary explosion; Word learning; Fast-mapping; Acceleration; Language develop-

ment

1. Introduction

1.1. What causes learning to accelerate?

Classic approaches to learning are typically decelerative. The power law of learning

(Anderson, 1982; Logan, 1992; Newell & Rosenbloom, 1981), for example, posits that

during motor learning tasks, subjects’ reaction times slow in proportion to the log of
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time. That is, as time increases, there is a smaller effect of learning. Mathematical

approaches like Rescorla–Wagner (Rescorla & Wagner, 1972) and connectionist

approaches (Rumelhart, Hinton, & Williams, 1986) both model this explicitly: The

amount of change due to learning is a function of the distance between the current state

and some goal state or behavior. As the system approaches the goal, learning necessarily

decreases. In both of these examples, the maximal learning rate occurs early and tapers

off.

However, in a few cases learning accelerates. This is particularly apparent in language

acquisition. A classic example of this is the so-called vocabulary explosion. Also known as

the word burst, the naming explosion, or the word spurt, this typically occurs during the

middle of the second year of life when toddlers transition from acquiring only a few words

per week, to rates upwards of 20 words per week (Bloom, 1973; Fenson, Dale, Reznick,

Bates, & Thal, 1994; Ganger & Brent, 2004; Reznick & Goldfield, 1992). While there is

debate about the timing and universality of this phenomenon (Mervis & Bertrand, 1995;

Rescorla, Mirak, & Singh, 2000), there is agreement that learning accelerates for most chil-

dren around this time, and that it must eventually accelerate for all children if they are to

reach their adult vocabularies in time (Bloom, 2000).

This contrast with classic learning theory suggests that word learning may operate by

unique principles and their own specialized mechanisms. The purpose of the present study

is to challenge this with a mathematical analysis of one class of such mechanisms, which we

term leveraged learning. In a leveraged learning system, the acquisition of one or more

items (e.g., words) can be leveraged to improve the learning of future material. This idea

has been extensively applied to word learning, a domain in which multiple sources of lever-

age have been posited. Thus, our analyses are framed in terms of word learning, although

our findings concern leveraged learning broadly.

We start with an overview of the empirical work on the vocabulary explosion and the

proposed leveraged learning mechanisms. We then review a recent model of the vocabulary

explosion (McMurray, 2007), which suggests that such mechanisms may not be needed and

provides a framework for our analysis. Finally, we present a set of analyses in which we

develop that model to account for leveraged learning. They uniformly demonstrate that

while leveraged learning can change the rate of acquisition, it has little to do with the pres-

ence or absence of acceleration.

1.2. Acceleration in word learning

The vocabulary explosion is one of the most robustly observed phenomena in language

acquisition (e.g., Bloom, 1973; Fenson et al., 1994; Ganger & Brent, 2004; see Fig. 1A).

One class of explanations for it suggests that learning accelerates due to some unary change

in the child. Examples of such events include the realization that objects have names

(Reznick & Goldfield, 1992; Stern, 1924) or a reorganization of the conceptual space to

permit a more robust representation of objects (Gopnik & Meltzoff, 1987, 1992). Other

researchers posit a change in the learning mechanism as constraints on learning suddenly

appear (Golinkoff, Mervis, & Hirsh-Pasek, 1994) or word learning shifts from a primarily
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associative process to a more social ⁄ inferential one (Golinkoff & Hirsh-Pasek, 2006; Nazzi

& Bertoncini, 2003).

Such explanations essentially model the rate of vocabulary acquisition as two lines (e.g.,

Fig. 1B), an early period of growth with a shallow slope, followed by an abrupt transition to

a much steeper slope. Ganger and Brent (2004) recently evaluated such a model against the

growth curves of 38 children and found that a single polynomial function (featuring smooth

acceleration) was the better fit in 33 of 38 children. This is more consistent with models of

word learning in which acceleration is an ongoing and continuous process, not a two-stage

process (Fig. 1C).

1.3. Leveraged learning

One candidate for such a process is a class of mechanisms that we term leveraged
learning. Here, as each word is acquired it provides information that aids in the acquisition
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Fig. 1. (A) Number of words known as a function of time adapted from production norms of the MacArthur

Bates Communicative Development Inventory (MCDI). Note that this uses separate assessments for

0–15 months and 16–32 months. Thus, the lines are shown broken. (B) Data for a typical child (adapted from

Plunkett, 1993) fit with two lines. (C) Data for that same child fit with third-order polynomial (as in Ganger &

Brent, 2004).
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of future words. As more words are acquired, the net amount of leverage increases,

and learning accelerates. Indeed, such a process appears implicitly in models like that of

van Geert (1991) and Elman et al. (1996), which describe vocabulary acquisition as a simple

differential equation in which the rate of acquisition is a function of the current lexicon size.

There have been a number of proposed mechanisms that fall into the category of lever-

aged learning mechanisms. Perhaps the most well known is fast-mapping by mutual exclu-

sivity (Carey & Bartlett, 1978; Markman, 1994; Mervis & Bertrand, 1994; though see Horst

& Samuelson, 2008). In this situation, children are confronted with several objects for which

they have names, and one for which they do not. After hearing a novel word, children typi-

cally select the unnamed object as a referent, using their knowledge of which objects

already had names (Halberda, 2006). This offers an explanation for acceleration: As more

names are known, the likelihood of being in the appropriate situation increases. In addition,

fast-mapping is observed both before and after the explosion (Markman, Wasow, & Hanson,

2003), suggesting that acceleration due to fast-mapping arises out of leverage, not its sudden

onset.

Leveraged learning is not restricted to mutual exclusivity; the process of segmenting the

stream of speech into words is another candidate. Peters (1983) as well as Brent and

Cartwright (1996) posit that children segment words from running speech using known

words (or sequences of words) as access points. For example, in the phrase cognitive wug-
ness, knowledge of the word cognitive can be used to segment and identify the word, wug-
ness. In this way, each time a word is acquired this can be leveraged to support the

acquisition of future words. This is very clearly shown by Yang’s (2004) computational

work on word segmentation. He compares a segmentation model in which words are learned

independently of each other (using only transition probabilities and a simplified prosody) to

one that also incorporates this sort of leverage. The leveraged model shows an increase in

performance of 10–20% on a real corpus of English.

Empirically, there is substantial support for leverage in segmentation. Adults can use

newly learned words as a basis for segmentation in an artificial grammar (Dahan & Brent,

1999). Moreover, Bortfeld, Morgan, Golinkoff, and Rathbun (2005) demonstrated that

6-month-old infants can use their own name as well as the word mommy in segmentation.

Finally, Plunkett (1993) links the vocabulary growth functions of three children to their

abilities to segment speech.

Finally, leveraged learning can also come from syntax. Formal approaches such as syntactic

bootstrapping (Gleitman & Gleitman, 1992) and statistical approaches like ‘‘frequent-

frames’’ (Mintz, 2003) posit that the distributional properties between words can be used to

extract syntactic categories like nouns and verbs. For example, the class of objects that appear

after the and an are typically nouns, while those that appear after are, has, and is are typically

verbs (see also Christophe, Millotte, Bernal, & Lidz, 2008). While specifically syntactic

processes like these are often thought to occur well after the vocabulary spurt (although work

like Christophe et al., 2008 and Mintz, 2005 suggests that it can be at least close), these

represent leveraged learning mechanism that may account for longer term acceleration.

Leveraged learning provides a compelling account of acceleration in word learning.

However, there is little proof that it is causal. The bulk of evidence has attempted to tie the

1506 C. Mitchell, B. McMurray ⁄ Cognitive Science 33 (2009)



onset of leveraged learning to the timing of the vocabulary spurt. For example, Plunkett’s

(1993) longitudinal study suggests that the onset of correct segmentation coincides with the

vocabulary explosion. There have also been attempts to tie the onset of fast-mapping to the

vocabulary explosion (Mervis & Bertrand, 1994), but this has not held up (Woodward,

Markman, & Fitzsimmons, 1994). However, correlated timing alone cannot demonstrate

causality. More importantly, this sort of analysis ignores the strength of leveraged learning.

In leveraged learning, acceleration derives not from the onset of the mechanism but rather

from the gradual accumulation of the knowledge that provides leverage.

Finally, recent work suggests that fast-mapping may not even be sufficient to promote

short-term retention. Horst and Samuelson (2008) found that objects correctly named in

fast-mapping situations do not appear to be retained even 5 min later. This suggests that

leverage exerted by mutual exclusivity may be exerted primarily at the timescale of online

referent selection and may provide little help for long-term acquisition. It also raises the

question of retention for other forms of leverage. Thus, while leveraged learning mecha-

nisms provide a compelling framework in which to think about acceleration in learning, it is

not clear that they actually account for it.

1.4. Acceleration without specialized mechanisms

Recently, McMurray (2007) presents an alternative account of acceleration in word learn-

ing that requires no recourse to leveraged learning. This model points out that word learning

is fundamentally a parallel process. Words accumulate knowledge at the same time. Thus,

during the ‘‘slow phase’’ of word learning prior, children are doing significant learning

(on words they have not acquired yet), and a spurt that happens at 18 months is partially

the product of this knowledge that accumulated long before (see Bloom, 2004). Once we

consider this, then the relative difficulty of acquiring words become a crucial factor in

predicting the rate of acceleration.

To illustrate this, McMurray developed a simple model in which word learning was mod-

eled as the most linear, least accelerative process imaginable. If acceleration could still be

seen in such a simple system, then leveraged learning (or other specializations) may not be

necessary to account for the vocabulary explosion.

In this model, learning is simulated as the accumulation of points. At each time step, each

word accumulates a single point (and the rate of accumulation is fixed over time). Each

word has a threshold for learning (its time-to-acquisition or TTA)—when a word’s point

total exceeds its TTA, it is learned. In this system, the distribution of thresholds predicts the

time course of acquisition. If there are very few easy words (low thresholds), and many

moderately difficult words, the model will go through a period of slow learning (when it

gradually acquires the easy ones), followed by a sudden acceleration as the model suddenly

reaches the threshold for many more words. In this model, the number of words known at

any point in time, t, is simply the integral of the distribution of TTA from 0 to that time.

Thus, as long as the number of words at a given difficulty level increases as a function of

difficulty, acceleration will always be observed—there is no need for any explicitly acceler-

ative mechanisms.
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Thus, McMurray (2007) concludes that as long as two conditions hold, word learning will

always appear to accelerate. First, learning should be somewhat gradual and words should

be learned in parallel. Second, the distribution of word difficulty should vary such that there

are fewer easy words than hard words. If these hold, learning will always accelerate.

This would seem to rule out the need for any leveraged learning to explain acceleration.

To examine this, McMurray (2007) also models leveraged learning in this framework. Here,

as each word is acquired, a point (or partial point) is added to the unlearned words. This

model also demonstrates acceleration. Critically, though, when each learned word imposes a

cost (the inverse of leveraged learning), acceleration is also seen. This suggests that lever-

aged learning mechanisms may have little to do with the underlying form of the function.

However, little analysis was presented with this model, and it did not attempt to work out the

mathematical relationship between leveraged learning and the form of the growth function.

1.5. Overview

Given the aforementioned evidence that children utilize leveraged learning, it is impor-

tant to understand how such processes can impact the form of vocabulary growth. The pur-

pose of the present paper is to address this explicitly. We start from the McMurray (2007)

model of vocabulary acquisition and derive a general, continuous-time form of it. We then

implement leveraged learning and present a complete analysis of this model demonstrating

that leveraged learning cannot create acceleration when there is none.

2. The model

2.1. Vocabulary growth without leveraged learning

The McMurray (2007) model was a discrete-time model in which time was treated as

a discrete series of steps. However, the analysis of our leveraged model is simplified by

considering the analogous continuous-time model. Thus, we first formulate the continuous

version of this model (in which no leveraged learning occurs).

In this model, L(t) represents the number of words learned up to time t. Time is con-

tinuous, as are the number of points required to learn a word. Thus, the distribution of

difficulty is continuous (as a word’s difficulty is not limited to the set of integers). We

will let a represent the accumulated knowledge thus far (in the discrete version it is the

number of points accrued). At any given time a(t) will be the same across all words, as

all words acquire knowledge at the same rate. The distribution of word difficulty is

defined by the function g(a), which defines the number of words that can be acquired for

any value of a.
Fig. 2 shows an example of one such g(a), a Gaussian distribution with a mean of 4,000

and a standard deviation of 1,400. In this example, most of the words are acquired around

a = 4,000, and a smaller number of words can be acquired at smaller or larger values. In

addition to describing the distribution of easy and hard words, any specific value of g(a)
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gives the number of new words that are learned for a small change in accumulated knowl-

edge, a. Thus, in this example, there are about two additional words that can be acquired

between a = 2,821 and 2,822. Note that by this definition, g(a) is equal to dL=da, the

change in the number of words known for some change in a.

We can now formulate the problem as an ordinary differential equation. If there is no cost

or benefit associated with previously learned words, then da=dt ¼ 1. That is, for each unit

of time, the model gains one unit of accumulated knowledge. So, in general, the amount

of accumulated knowledge at any given time t is simply a(t) = t. Thus, we can replace a
with t in the relation dL=da ¼ gðaÞ to give the differential equation for L:

dL

dt
¼ dL

da
¼ gðaÞ ¼ gðtÞ ð1Þ

Therefore,the number of words learned up to time t is the area under the difficulty density

g(a) from zero to t. That is,

LðtÞ ¼
Z t

0

gðsÞds ð2Þ

(where s represents time, integrated from 0 to t, the current point in time) which we call

G(t). So L(t) will be concave up wherever g(a) is increasing. Thus, any distribution of diffi-

culty with fewer easy words than moderately difficult words will show an initial phase of

acceleration. This is the conclusion reached by McMurray (2007).

0 2000 4000 6000 8000 10000
0

1

3

Accumulated Knowledge (a)

# 
of

 w
or

ds
 g

(a
)

gmax= 2.85

g(2821)=2.0 2

Fig. 2. An example of g(a). Here, g(a) is a Gaussian distribution of TTA with a mean of 4,000 and a standard

deviation of 1,400. At 2,821 points of accumulated knowledge (dashed line), approximately two new words will

be acquired. Also shown is gmax, the maximum number of words that can be acquired at any point in accumu-

lated knowledge. This occurs at a = 4,000 (the mean).
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2.2. Vocabulary growth with leveraged learning

Now, we consider the case where there is a benefit (or cost) associated with learned

words. That is, each time a word is learned, the accumulated knowledge of remaining words

is adjusted slightly by adding the cost ⁄ benefit factor c. If c is positive, each time a word is

learned, the accumulated knowledge of the remaining words increases to provide leveraged

learning. If c is negative, this simulates interference, where each word slows down the

acquisition of future words.

For each unit of time, a increases by one unit (as before), plus the benefit offered by each

new word (c) multiplied by the number of new words learned at that time step. That is,

da

dt
¼ 1þ c

dL

dt
ð3Þ

Integration of this function over time allows us to compute the accumulated knowledge at

any given time, as the number of points for a given word is the number of time steps plus

the benefit offered by all previously learned words.

aðtÞ ¼ tþ cLðtÞ ð4Þ

Given this function, we can now derive the differential equation describing the growth of

L. We first use the chain rule to show that

dL

dt
¼ dL

da

da

dt
¼ gðaÞ da

dt
ð5Þ

Next, writing everything in terms of L and t (using Eq. 4 to define a and Eq. 3 to define

da=dt) gives us:

dL

dt
¼ gðtþ cLðtÞÞ 1þ c

dL

dt

� �
ð6Þ

Note that this function includes the derivative, dL=dt, on both sides of the equation as the

change in a is itself a function of the change in L (the number of new words acquired). Solv-

ing the equation for dL=dt we get

dL

dt
¼ gðtþ cLðtÞÞ

1� cgðtþ cLðtÞÞ ð7Þ

While this equation looks complicated, it is in fact an exact ODE and can therefore be

solved. However, the solution is only given implicitly.

LðtÞ ¼ Gðtþ cLÞ ð8Þ

Here, t + cL is a (accumulated points) and G(a) is the integral of the difficulty distribution

g(a). This solution makes intuitive sense. As in the no-cost ⁄ benefit case, L ¼ GðaÞ, L is the

integral of the distribution of TTA. While in the initial model we integrated from 0 to t, in

this model, L is integrated from 0 to t + cL.
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The fact that now the range of integration (for computing L) depends on L creates consid-

erable complexity. Thus, we cannot solve explicitly for L—given t, we cannot compute the

equation for the number of words known at that time (although we can simulate it itera-

tively). However, we can solve the inverse, solving for t as a function of L. That is, given

lexicon size, we can know the time at which it is reached. This is shown in Eq. 9.

t ¼ G�1ðLÞ � cL ð9Þ

This means that the time at which any given value of L is achieved is the original (no lever-

aging) time, G)1(L), minus a linear term, cL. Graphically, this means that a benefit will shift

the graph left by an amount proportional to the number of words L. This is illustrated in

Fig. 3.

Using this function, we can break down the relationship between c (the degree of lever-

age) and the form of learning. We do this in three cases: (a) when c is large, (b) when c is

small, and (c) when c is negative (interference).

2.2.1. When leveraging is large
Eq. 7 shows the change in the number of words as a function of time given a leveraging

benefit c (and the current lexicon size, L). We know (by the implicit function theorem)

that this function, L(t), is a function of t only as long as its derivative is well defined. That

is, as long as the denominator in Eq. 7 (1 ) cg(t + cL)) is non-zero. Thus, the solution will

be well defined by Eq. 9 as long as the difficulty distribution, g(a), stays below 1 ⁄ c. We
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therefore require that c be less than one over the maximum value of g, which we term gmax,

and which represents the number of words at the peak of the difficulty distribution

(see Fig. 2). Thus, the solution is only well defined for small c and too much benefit will

make the model unrealistic. For example, the distribution of difficulties used above was a

Gaussian distribution of 10,000 words, with a mean difficulty 4,000, standard deviation

1,400. This has maximum of about gmax = 2.85 words (at its mean of 4,000). Therefore, any

benefit, c, of less than approximately 0.35 will satisfy this condition.

If c exceeds this critical amount, c>1=gmax, the solution L(t) will be pushed left to such

a great degree that it has an infinite slope. This means that the benefit from the words

learned so far has given the child so much knowledge that he or she automatically knows all

words. Fig. 4, illustrates this case. This figure displays Eq. 9 computed for a model with the

above Gaussian distribution of TTA, when c = 0.5. After about 2,000 words, the function

bends back on itself (achieving an infinite slope at a time of around 1,800). When this same

simulation is computed iteratively, it appears that learning gradually accelerates from t = 0

at about time 1,800, at which point the entire remaining lexicon (8,000 words) is learned in

one time step.

Thus, a small value of c is required. In the simulations above, each word takes an average

of 4,000 time steps for learning, yet the benefit of learning a word must be less than one-

third of a point! This suggests that in order to maintain realistic growth functions, whatever

benefit is offered by leveraged learning must (a) be very small, (b) operate over a limited

number of words, or (c) be counteracted by some cost of learning new words.
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2.2.2. When leveraging is small
Given small benefits from leveraged learning (e.g., when 0<c<1=gmax), we can now

ask what role leveraged learning has in shaping the overall learning function. If the first

derivative of L(t) describes the velocity of learning at any given time (Eq. 7), the second

derivative allows us to compute its acceleration.

d2L

dt2
¼ g0ðtþ cLðtÞÞ
ð1� cgðtþ cLÞÞ3

ð10Þ

If we have chosen c less than the critical amount, then the denominator is always positive.

Therefore L(t) will be concave up whenever g¢ is positive, that is, whenever the distribution

of difficulty is increasing. This is exactly as in the no-benefit case. Again, a period of accel-

eration will be observed in this model if and only if there are fewer easy words than moder-

ately difficult words. Thus, a benefit can increase the acceleration in learning, but it cannot
create acceleration where none existed before (Fig. 5).

This formula for the second derivative can also be used to compute the inflection

point of the growth function. Note that the literature on word learning typically defines

the inflection point as the onset of acceleration. By contrast, we define the inflection

point, mathematically, as the point at which acceleration switches to deceleration (as

acceleration always occurs, it makes no sense to talk about its onset). Given Eq. 10,

then, the inflection point occurs whenever the numerator is 0, that is, when

g0ðtþ cLÞ ¼ 0. As g describes the distribution of easy and hard words, the inflection will

be at a maxima or minima (critical point) in the density function, g. For the Gaussian

density used above, there is only the one critical point for g, its maximum (at a = 4,000,

at which point L = 5,000—half the words are learned). Solving for t gives

t = 4,000 ) 5,000c. Thus, for this density of difficulties, the inflection point will always

be at the time where half the words are learned. If there is a benefit (c > 0), this point

will occur at an earlier time.

This illustrates that changes in c can alter the dynamics of learning, moving up the onset

and the inflection point. Thus, this model is compatible with results like those of Mervis and

Bertrand (1994) or Plunkett (1993), which suggest that variation in a leveraged learning

(mutual exclusivity or segmentation in these cases) across children correlated with the onset

of the vocabulary explosion across children. Accordingly, variation in c between children

causes changes in the inflection point, although it is not causally related to acceleration

itself.

2.2.3. Interference
The last interesting case is when c < 0. This represents a situation in which learning

one word imposes a cost on future learning. Research has typically focused on cases

where learning a word benefits future learning, motivated by the need to explain both the

vocabulary explosion, as well as the ambiguity faced by the child in everyday naming

situations (e.g., Quine, 1960). However, there are situations in which learning a word seems
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Fig. 5. Words known as a function of time and leveraging, c, for three different distributions of difficulty,

g(a). Lower panels show schematics of g(a). Left panels show results when g(a) is decreasing, a violation of

McMurray (2007), which does not show acceleration. Center panels show a uniform distribution of g(a), which

is also a violation and shows no acceleration. In both of these cases, positive values of c do not create accelera-

tion—they simply shift the curves to the left. The right panels shows results with an increasing g(a). In this case,

acceleration derives from the increasing g(a), and c merely hastens or forestalls it.
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to interfere with future learning. For example, Swingley and Aslin (2007) have demon-

strated that 1.5-year-olds have difficulty learning words that sound similar to words they

already known (e.g., tog) (see also Fennell & Werker, 2003; Stager & Werker, 1997; but see

Rost & McMurray, 2009).

This is straightforward to model in this framework. If c is negative, each time a word is

learned, it inflicts a cost on the remaining words. In this case, the solution for L(t) will be

pushed right, causing slower learning. However, as in the case where c is small, this can

only affect the steepness and will show acceleration whenever the no-leverage model shows

acceleration. Interestingly, there is no lower bound on c.

2.3. What is the nature of the difficulty distribution?

One question that is raised by the present study as well as by McMurray (2007) is, What

is the nature of word difficulty? The distribution of easy and hard words is important in pre-

dicting the presence of acceleration and the shape of the growth function (even when learn-

ing is leveraged). However, despite decades of research, the notion of what makes a word

easy or hard to learn is relatively poorly defined.

The prior analyses intentionally did not define the function, g(a), specifying the difficulty

distribution. Any g(a) that shows acceleration will still show it for all values of leverage (c);

any g(a) that does not will not. McMurray (2007) assumed that g(a) was Gaussian, and for

good reason: If we assume that a word’s difficulty is the sum of many factors that are rea-

sonably independent, then the distribution of difficulty will be Gaussian according to the

central limit theorem. There are longstanding findings that syntactic category (Bornstein

et al., 2004), phonology (Swingley & Aslin, 2007), and frequency (Huttenlocher, Haight,

Bryk, Seltzer, & Lyons, 1991), particularly in isolation (Brent & Siskind, 2003) all play a

role in predicting when a word is learned. Given that these are largely independent, this

seems a reasonable assumption.

While it is currently not possible to combine all of these factors to estimate diffi-

culty of a single word, our analysis does not rest on the difficulty of any single word.

Rather, we must be able to characterize the distribution, g(a). In this regard, word fre-

quency presents a particularly interesting case because its distribution is well defined

across many languages by Zipf’s (1935) law. Zipf’s law simply states that the fre-

quency of a word will be proportional to the inverse of its rank (e.g., the most frequent

word has rank 1, the second most frequent has rank 2, etc.). This relationship can be

modified with an exponent such that

FreqðiÞ ¼ f1
ksi

ð11Þ

Here, ki represents the rank order of word i’s frequency, s is a free parameter, and f1 is the

frequency of the most frequent word.

Zipf’s law gives rise to a hyperbolic function, similar to Fig. 6. When converted to a

statistical distribution (the number of words at any given frequency), it yields the function
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shown in the inset. Here, most words have a very low frequency (very difficult) and there

are a few high frequency (easy) words.

Theoretically, this distribution fits the criteria laid out by McMurray (2007). However,

frequency is the inverse of difficulty—that is, the words with high frequencies should have

low difficulties. This requires us to define the relationship between frequency and difficulty

before it can be applied to the foregoing analyses. There are two ways to do this. The most

obvious way is additive. Simply multiplying the Zipfian frequencies by a negative number

to reverse the directionality, and adding a constant to make everything positive. In a sense,

this switches the direction of the x-axis in Fig. 6 inset. However, recent analyses by Mitchell

and McMurray (2008) suggest that frequency can be rescaled multiplicatively, where diffi-

culty is proportional to 1=frequency. This latter approach has the nice property that a word

with twice the frequency will take half as long to learn.

Both have consequences for leveraged learning and will be discussed separately. For

compatibility with the prior analyses we use the continuous version of Zipf’s law, in which

the word number, k, is continuous.

2.3.1. Difficulty / frequency
In the first case, difficulty is scaled additively from frequency. Fig. 7A shows computa-

tions of L(t) using Eq. 9 to integrate a Zipfian distribution of frequencies in which s = 1,

f1 = 5,000, and there were 10,000 words. The frequencies were then converted to difficulties

by multiplying them by )1 and adding f1 to make them positive.
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Difficultyi ¼ f1 �
ksi
f1

ð13Þ

This predictably yields a positively increasing g(a) (Fig. 7A). Integrating this to achieve

the number of words known, L(t), shows a very steep acceleration (Fig. 7B), and positive

leveraging offers very little benefit. Moreover, in accord with our analysis, this same

shape is observed with negative values of c (interference). This, if difficulty is distributed as

a Zipfian distribution, the standard model holds and a very extreme acceleration will be

seen.

2.3.2. Difficulty / 1 ⁄ frequency
The alternative approach to scaling Zipfian frequencies is to treat difficulty as propor-

tional to the inverse of frequency:

Difficultyi /
ksi
f1

ð14Þ

This case gives rise to a couple of interesting properties.

First, if s = 1, then difficulty is proportional to each word’s frequency rank. Ranks are

equally spaced (that is the difference between rank 1 and rank 2 is the same as between rank

100 and rank 101), and there will always be one word with rank 1, one with rank 2 (and so

on). As a result of these facts about ranks, the resulting distribution of difficulty, g(a),

will be uniform—there are an equal number of words at each difficulty level. Integrating this

difficulty distribution leads to perfectly linear growth (no acceleration) and incorporating

positive or negative leveraging can only change its slope (Fig. 8).

4000 4200 4400 4600 4800 5000

2000

4000

6000

8000

10000

Difficulty

N
um

be
r 

of
 w

or
ds

3000 4000 5000 6000 7000 8000
0

1000

2000

3000

4000

5000

Time (t)
W

or
ds

 K
no

w
n 

L
(t

)

c=+0.05

c=0

c=-0.1

c=-1

A B
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(B) Growth functions for various amounts of leverage or interference. All curves show acceleration around

5,000, and even with no leverage learning is very steep. Moreover, at even small positive values of c, the func-

tion is poorly defined (has a negative slope), suggesting that leverage may not offer much benefit if difficulty is

Zipfian.
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Interestingly, when s > 1, the distribution of difficulty, g(a), shows slightly more

easy words than hard words, and as a result the growth functions are decelerating (con-

cave down).1 Conversely, when s < 1, there are more hard words than easy words, and the

growth functions show acceleration. However, in both cases, our leveraging analysis holds:

positive values of c do not create acceleration when s > 1, and negative values for c do not

eliminate it.

2.3.3. Implications
With difficulty as a concept still relatively undefined, it is hard to be certain of its precise

distribution across words, g(a), a factor that we have shown is important in vocabulary

growth. It is attractive to gravitate toward one component of difficulty, word frequency, for

which the distribution is well defined by Zipf’s law. At the broadest level, this can be done

quite simply in the context of the model, and it largely supports our findings: When there

are fewer easy than hard words acceleration is guaranteed, and leveraged learning does not

impact this.

However, in converting from frequency to difficulty, some subtleties arise. First, this

can be done additively or multiplicatively. In the additive case, acceleration is observed

because of the steeply increasing difficulty distribution. However, this may be too

steep—virtually the entire lexicon is learned at once. In the multiplicative case there were

some values of s for which acceleration will not be observed, and leveraging could not
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create it. These limitations suggest that frequency alone may be insufficient to define

difficulty. This, of course, must be true. According to Kucera and Francis’ estimates, the

10 most frequent words in English (the, be, of, and, a, in, he, to, have, it) are all closed

class words that are learned quite late. If difficulty were only a matter of frequency, this

would not be true.

While the Zipfian distribution is an important starting point to determining g(a), it will

ultimately depend on how frequency is treated (additively or multiplicatively) and what the

value of s is for a given language. However, beyond this particular model, it is important to

remember that frequency is not a property of the word (like phonology or syntactic class); it

is an estimate of how often it occurs (stochastically) in the child’s environment. Thus, our

model may be limited in its ability to handle frequency, and a stochastic model may be a

better approach for dealing with it (e.g., Mitchell & McMurray, 2008).

3. Discussion

The foregoing analyses suggest a complex relationship between leveraged learning and

acceleration. Leveraged learning cannot create acceleration where there is none—it is not

causally related to the vocabulary explosion. It can affect the timing and shape of the accel-

eration, but only if the overall amount of leverage is small. Given the behavioral evidence

that children do engage in many such processes, this would seem to suggest that leverage is

a component of learning, but not fundamental to acceleration. Moreover, it cannot be large:

either the amount of leverage provided by a word must be small, the scope of leverage

(number of words affected) must be narrow, or there must be costs that counteract it. This

does not minimize its importance: There are clearly learning situations in which the input is

ambiguous enough, or the underlying structure complex enough, that leveraged learning is

the only way to acquire the relevant information. However, leveraged learning does not

explain acceleration.

Recent behavioral and computational work on mutual exclusivity suggests a framework

for understanding the small benefit that leveraged learning must offer. Horst and Samuel-

son (2008) demonstrated that even though children can use mutual exclusivity to deter-

mine a novel name ⁄ referent mapping, they do not retain these mappings 5 min later when

tested in a less supportive context. Mitchell and McMurray (2008) (see also Horst,

McMurray, & Samuelson, 2006) modeled this in a dynamic neural network in which fast-

mapping was simulated as an online competition process, while learning accumulated via

slow associative mechanisms. This network was capable of fast-mapping and also failed

to show retention when tested again. However, the model did acquire a small amount of

knowledge on each fast-mapping trial, and over the course of thousands of such trials

eventually acquired the mappings. This implies that leverage may exist on two timescales:

the fast timescale of online referent selection (in which leverage could be large and

useful) and a slower timescale of learning (the case discussed here), in which leverage is

necessarily small.
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One limitation of the model is the fact that difficulty, and hence the difficulty distribution,

is still relatively undefined. Zipf’s law presents an attractive possibility for modeling the dif-

ficulty distribution as a function of frequency. However, our analyses suggest that it is not

sufficient (which may explain the relatively low percentage of variance that raw frequency

accounts for in age of acquisition: Brent & Siskind, 2003). Factors like phonology, syntax,

and the importance of the word in the child’s own developmental ecology are more difficult

to measure but ultimately may be more predictive.

A second limitation of the present work is our use of the deterministic model. In this

model, easy words are always learned before hard words and there is little room for

randomness. However, current work (Mitchell & McMurray, 2008) has generalized the

McMurray (2007) model to a stochastic process and shows similar findings. In this model,

on each time step, words obtain points with some probability. The frequency (probability

of obtaining a point) and difficulty (number of points required) both contribute to the

course of learning, and the time course of the model is not predetermined by the difficulty

of the words. Crucially in this model, we have proved that acceleration is guaranteed as

long as words require more than one point (exposure) for learning.

Analysis of this model is substantially more complex than the deterministic model; there-

fore, we have not yet implemented leveraged learning. However, our analysis of accelera-

tion in the stochastic case suggests that the findings are unlikely to be different. As before,

leverage offers a benefit, but, as acceleration is already guaranteed, leverage is not necessary

to create it. Thus, it does not seem likely that our conclusions are restricted to the determin-

istic model.

Together with McMurray (2007), this suggests that acceleration is a general property

that should be seen in virtually any parallel learning situation. However, this raises the

question as to why so many laboratory tasks show deceleration. We offer three explana-

tions. First, tasks that use reaction time and other continuous measures may be tapping

something more akin to our variable a (the number of points), rather than L(t) (the

number of items). Second, they may also be partially measuring a general skill that

applies across many items, rather than anything item specific (which would be captured

in L[t], the number of items learned). Finally, our analysis of the stochastic model

(Mitchell & McMurray, 2008) suggests that increasing degrees of overall difficulty lead

to increasingly ‘‘spurty’’ behavior. Language learning is clearly a task that spans many

years, while most laboratory tasks span hours or days, and subjects come to the labora-

tory with many of the prerequisite skills (e.g., ability to flexibly use categories, push

buttons, etc.).

To conclude, leveraged learning mechanisms are unnecessary to explain acceleration.

The present analyses prove that it can be observed even when anti-leverage (interference) is

implemented, and that leverage cannot create acceleration when the underlying function

does not already display it. Moreover, while leveraged learning is empirically attested, our

proof suggests that it must be small, limited in scope, or counteracted. Simply put, while

they are important tools in the arsenal of the developing child, leveraged learning does not

account for acceleration in vocabulary growth.
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Note

1. The distribution of difficulty gives the number of new words, Dk, for some small

change in difficulty, Ddifficulty. Thus, the distribution can be computed by inverting

the difficulty function (e.g., Eq. 13 or 14) to give the word number, k, as a function of

difficulty and then differentiating that function. Details are available from the first

author.
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