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ABSTRACT

Taxi services play an important role in the public transporta-
tion system of large cities. Improving taxi business efficiency
is an important societal problem since it could improve the
income of the drivers and reduce gas emissions and fuel con-
sumption. The recent research on seeking strategies may not
be optimal for the overall revenue over an extended period
of time as they ignored the important impact of passengers’
destinations on future passenger seeking. To address these
issues, this paper investigates how to increase the revenue
efficiency (revenue per unit time) of taxi drivers, and models
the passenger seeking process as a Markov Decision Process
(MDP). For each one-hour time slot, we learn a different
set of parameters for the MDP from data and find the best
move for a vacant taxi to maximize the total revenue in that
time slot. A case study and several experimental evaluations
on a real dataset from a major city in China show that our
proposed approach improves the revenue efficiency of inex-
perienced drivers by up to 15% and outperforms a baseline
method in all the time slots.
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1. INTRODUCTION
Taxi services are playing an important role in the public

transportation system in modern cities. Taxi drivers are
a big social group in many major cities in the world, and
improving the business efficiency helps increase taxi drivers’
annual income and thus contributes to the development of
urban economy. Also, higher efficiency means less driving
time and cruising distance needed, and thus leads to lower
gas emission and fuel consumption.
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Recent research [1–3, 8, 11] have focused on developing
recommendation systems for taxi drivers. These work usu-
ally learn knowledge about passenger demand distribution
from data and recommend the best route or location for a
driver to optimize one or more of the following measures:
the profit margins for the next trip [1, 8], the chance of
finding the next passenger [4,7], or energy consumption be-
fore finding the next passenger [3]. Some other work learns
knowledge from taxi data for other types of recommenda-
tion scenarios such as fast routing, ride-sharing, or fair-
recommendation [9, 10, 13, 14], which is not directly related
with our topic.

The above work, although effective in improving the pro-
posed measures, still have some limitations. First of all,
some of the above work (e.g., [3, 8, 12]) simply aggregated
the historical data over the entire study period and ignored
the temporal variation of the passenger distribution. This
may lead to inaccuracy in the recommendations. More im-
portantly, all of the existing work focus on optimizing the
measures for the immediate next trip. However, they do
not consider the impact of the driver’s move on the overall
revenue in the next few trips.

To address the limitations of the related work, this pa-
per investigates how to learn business strategies from his-
torical data to increase the revenue efficiency (revenue per
unit time) of taxi drivers. This paper models the passenger-
seeking process as a Markov Decision Process (MDP). The
study area is partitioned into grids. Each state in MDP is
a combination of current grid, time, and the driving direc-
tion. For each state, a vacant taxi may choose to travel to a
subset of its neighboring grids and cruise through that grid.
At a probability pseek, the driver may find a passenger dur-
ing the cruising, and the destination of the passenger may
follow another probability distribution pdest.We learn the
necessary MDP parameters (e.g., pseek, pdest) for each time
slot from historical data. The MDP optimization problem is
solved by a dynamic programming algorithm. The output,
which contains the best action to take for each state, will be
recommended to taxi drivers.

The major contributions of this paper are sum-
marized as follows: (1) We perform a detailed analysis to
quantify taxi business efficiency and identify the key strate-
gic differences between the most successful and the least suc-
cessful drivers. (2) We model the passenger-seeking process
as a Markov Decision Process (MDP). For each time slot,



we learn a different set of input parameters for MDP from
historical data. A dynamic programming approach is em-
ployed to solve the MDP.(3) We propose a recommendation
mechanism based on our MDP solution in each time slot.
Computer simulations show that our solution can improve
the revenue efficiency of drivers by up to 15% in real data
and up to 8.4% over a baseline method.

2. PROBLEM FORMULATION
In this section we present our data analysis to quantify the

success of a driver and identify the more (less) successful
drivers. Then we identify the most important factors for
drivers to improve their business. Based on these analysis we
formulate the problem as an optimal decision problem. The
dataset we are using in this study contains taxi operation
record for a whole year from the capital city of a central
province in China. There are approximately 19 million taxi
trip records (53,000 per day), where each record has the
latitude-longitude coordinates and timestamps of the pick-
up and drop-off events, along with total traveled distance
and the fare of the corresponding trip. There are totally
about 1400 taxi cabs in the data.

2.1 Who Are More Successful?
We first calculate the total business time of each taxi cab

to better estimate the drivers’ time commitment. The to-
tal business time (denoted as Tbus) is the sum of two parts,
the total operating time (Tdrive) and the total seeking time
(Tseek) as shown in Eq. 1. The total operating time Tdrive is
the sum of all the trip duration of a taxi. Calculating total
seeking time is tricky since the gap between two consecutive
trips vary and some drivers may choose to take a rest be-
tween trips. We considered all the gaps between consecutive
trips in the dataset and call these gaps “seeking trips”. Fig-
ure 2 shows the distribution of the length of all the seeking
trips. As can be observed, 90% of the gaps are shorter than
25 minutes, so, we thus use 25 minutes as the threshold.

Tbus = Tdrive + Tseek (1)

Revenue Efficiency. An obvious way to increase revenue
is by driving taxi for longer time duration. However, given
time constraints, it makes sense to maximize revenue per
unit of time. To this end, we define a revenue efficiency
(Erev) metric: revenue earned divided by total taxi driver’s
business time. Formally it can be expressed as follows:

Erev =
M

Tbus
=

M

Tdrive + Tseek
(2)

where M denotes the total money earned by the taxi driver.
The revenue efficiency measure could be calculated for an
hour, a day, or a whole year.

Identifying Top and Bottom Drivers. Based on the
above proposed measure, we first rank all the day-time drivers
and find the top and bottom ones. Figure 1 plots the his-
togram of overall revenue efficiency for all taxi drivers in our
data set. About 80% drivers have a revenue efficiency be-
tween 0.72 and 0.80. We find the top 10% and bottom 10%
drivers as successful and not-so-successful drivers.

We also further zoom into each time slot to show the dif-
ference in efficiency between the top and bottom drivers. We
calculate the average revenue efficiency of the top 10% and
bottom 10% drivers in each time slot. Figure 3(a) shows
the average revenue efficiency of the top 10% drivers (yellow
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bar) and the bottom 10% drivers (red bar) during different
time slots of a day. As can be seen, there is a 15%-20%
difference between the two groups.

2.2 Why Are the Top Drivers Successful?
As noted previously, the total business time includes driv-

ing time (occupied taxi) and seeking time (vacant taxi). A
taxi driver has positive money income when driving with
passenger but no income while seeking. The revenue effi-
ciency of a driver depends on (1) how much money a driver
can make while driving for one minute, i.e., driving effi-
ciency, and (2) how quickly can one driver find the next
passenger (seeking efficiency). Taking slower routes, running
into traffic congestions will be likely to lower his/her driv-
ing efficiency and revenue efficiency. First we define driving
efficiency Edrive as follows:

Edrive =
M

Tdrive
(3)

The best way to improve the revenue efficiency is to increase
Edrive while reducing the total seeking time. Figure 3(b)
shows the comparison of driving efficiency between the top
and bottom drivers. The difference is about 10% to 13%,
which is smaller compared to the difference in the overall
revenue efficiency (approximately 17% difference).

We also compare the average seeking time of the top 10%
and bottom 10% drivers. Figure 3(c) shows the average
seeking time (the time gap between consecutive trips that
are less than 25 minutes) of the top (yellow bar) and bottom
drivers (red bar) in each time slot. Results show that top
drivers on average save up to 25% to 35% time between trips,
respectively.

2.3 What is the Optimal Strategy?
A number of related work have used taxi data to calcu-

late the chance of finding a passenger in each region or along
each road segment. Based on this probability and the cur-
rent location of a driver, one can choose the route or des-
tination with the highest probability to find the next pas-
senger. So where passengers want to go is also a key issue
to drivers. However, drivers don’t have much freedom in
choosing where to go after they have found a passenger. In
China, most cities will fine taxi drivers who refuse to take a
passenger. Taking this issue into consideration, we believe
that the driver’s decision on where to find the next passen-
ger is very important, not only because it determines the
seeking time of this iteration, but also to some degree the
next few trips and the overall revenue efficiency. To this
end, we formulate the best taxi seeking strategy as follows:

Given the historical passenger trips and seeking trips for
each time slot, the current status of an vacant taxi, we aim
to find the next movement for the driver. The objective
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Average seeking time

Table 1: Major variables in this paper

Variable Meaning
l, L The current location and the location set
t Number of minutes into a time slot
d,D Incoming direction to the current grid and

the set of all the possible directions
s A state of the MDP model, s = (l, t, d)
S The collection of all the states. s ∈ S
a An action taken by a vacant taxi
A The set of all the possible actions, a ∈ A
Aallowed(s) The allowed actions for state s
π(s) the optimal action for state s
tseek(j) The time needed for a taxi to cruise grid j
tdrive(i, j) The time needed to drive from grid i to j
Pdest(j, k) The probability a passenger picked up in

grid j wishes to go to grid k
Pfind(j) The probability that a passenger can be

found in grid j during the vacant cruise
r(i, j) The expected reward (trip fare) from grid

i to j
Edrive Driving efficiency (Yuan per minute while

occupied)

is to maximize the total expected revenue for this taxi in the
rest time of the current time slot.

3. A MARKOV DECISION PROCESS AP-

PROACH
A Markov Decision Process (MDP) [5] is a stochastic de-

cision process with a set of states (S) and a set of possible
actions (A) that transfer the states from one to another. A
MDP must have the Markov property, which requires that
the next state of the process only depends on the current
state and the action, but not any previous state or action.
Each action will transfer the process from the current state
to a new state at a probability (P ) with a corresponding
reward (R). Usually the optimal action for each state (often
denoted as “policy”) is desired, which maximizes the total
reward over a finite or infinite number of steps.

We model the passenger seeking strategy of a taxi as a
Markov Decision Process. Solving this MDP model will give
us the best seeking strategy for a taxi at each different state.
Table 1 shows all the parameters we use in the MDP model.

3.1 System States
It is obvious that the best seeking strategy of a taxi is de-

pendent on the current location and the remaining time of
the business time window. In our model, each state of a va-
cant taxi is described by three parameters: current location

(grid cell number)l ∈ L = {1, 2, ..., 128× 128}, current time
(minutes into the time slot) t ∈ T = {1, 2, ..., 60}, and the
direction from which the taxi arrived at the current location
d ∈ D, where D = {∅,↗, ↑,↖,←,�,→,↘, ↓,↙}.
The“incoming direction” is needed for each state to ensure

that the taxi does not fall into a infinite loop among a small
number of grid cells or staying in the same grid forever.
The set of arrival directions for a location includes the eight
possible directions from the queen-connectivity neighbors,
plus from the grid itself. We also include a NULL direction
∅ in the set, which indicates that the taxi just dropped off
a passenger and does not have any arriving direction. We
use ten numbers (0-9) to index these directions, which is
illustrated in Figure 4(a). 0 is for the NULL direction and
5 is for the direction to the current grid itself. Formally, a
state in our MDP model can be represented as s = (l, t, d).
The maximum number of states in our problem setting is
|L| × |T | × |D| = 16384× 60× 10 = 9830400. However, the
actual number of states is much smaller than this.
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Figure 4: An illustration of the direction of MDP model

3.2 Actions
In our model, each vacant taxi at one of the states has

nine possible actions to choose. Each action (a) is to move
from the current grid to one of the eight neighbors or stay
in the current grid. Formally, it can be expressed as: a ∈ A,
A = {↙↓,↘,→,�,←,↖, ↑,↗}. Similar to D, we also use
numbers (1-9) to index the directions. Figure 4(b) illustrates
the mapping of the directions. The arrow directions are the
opposite compared to the mapping of the d parameter in
the states. The same direction in D and A are indexed with
different numbers.

For each grid cell i, we examine all the seeking trips that
origin from i and end at each of i’s eight neighbors. For each
of i’s neighbors j, we calculate how many percent of these
seeking trips are between i and j. If the percentage of such
trips between i and j is lower than a minimum threshold
then we could conclude that there is no road connecting
these grids. In this case, we do not allow the taxi to move
from i to j. Taken into account the precision errors of GPS
signal, the threshold is set to 5%.

Finally, we also need to prevent a taxi from cruising the



same grid or a small number of grids in a loop. Figure 4(c)
illustrate such a scenario. To this end, we require that in a
state s, a taxi may only choose actions from a subset of A,
denoted as the allowed action set Aallowed(s). For a taxi that
just dropped off a passenger, the incoming direction is 0 (no
direction). The taxi may choose any action.After the taxi
searched the current grid, it must leave the current grid.Also
a taxi must follow approximately the same direction and
should not make a very sharp turn. Specifically, if the taxi
came to the current grid l at time t from direction d, then
Aallowed(l, t, d) should be within the range of [−90◦, 90◦] of
d. Figure 4(d) illustrates an example. A taxi coming to the
current state from left (4) can only go to the top, top-right,
right, bottom-right, or bottom grid (2,3,6,8,9).

3.3 State Transition and Objective Function
Assuming the current state of the taxi is s = (i, t, d). An

action a is taken to move the taxi from grid i to its neighbor
j. As a result, the taxi will cruise to the next destination j
and cruise the entire grid j in tseek(j) minutes. There will
be two possible consequences.

(1) The taxi successfully finds a passenger in grid j af-
ter cruising the grid for tseek(j) minutes. In this case, the
passenger may choose to go to one of the grid cells as des-
tination (denoted as k) at a probability pdest(j, k). We will
discuss how to obtain this probability later. Upon finishing
this trip, the taxi will arrive at location k. We use tdrive(j, k)
to represent the total time needed to travel from j to k. The
driver will receive a fare of r(j, k) Yuan, where r(j, k) rep-
resents the expected fare between grids j and k. The taxi
will start seeking from k again. The state of the taxi is thus
transitioned to s′ = (k, t+ tseek(j) + tdrive(j, k), 0).

(2) The taxi did not find any passenger after tseek(j)
minutes in j. Then the taxi must leave the current grid
and move to the next one. Assume the taxi took action
a = 6 (→). Then the taxi will end up in the next state
s′ = (j, t+ tseek(j), 4) (from the left grid, →).

In the above process, an important parameter needed is
the probability that the taxi can find a passenger during the
cruising in grid j, denoted as Pfind(j). We will discuss how
we estimate this parameter in the next subsection.

To summarize, a vacant taxi in any state s0 = (i, t, d), s0 ∈
S may take one of the possible actions a ∈ Aallowed(s0) to
cruise to a nearby grid j. With the probability 1−Pfind(j)
the taxi will transition to state s1 = (j, t + tseek(j), 10 −
a) with no reward. With the probability of Pfind(j) ×
Pdest(j, k), (k = 1, 2, ..., |L|), the taxi will end up in the
next state s2 = (k, t + tseek(j) + tdrive(j, k), 0) and receive
a reward of r(j, k) Yuan. The state transition diagram of
the proposed MDP model is shown in Figure 5. Each circle
represents a state with the three parameters listed beside it.

The objective of the MDP model is to maximize the total
expected reward (taxi fare) in the current time slot. The
MDP has a set of terminal states with t = 60. Once the
system reaches these states, no more actions can be taken.

For every a, the V ∗(s, a) function represents the maximal
expected revenue in the current time slot if action a is taken
at state s. V (s) is the maximum expected revenue for state
s. Formally the objective can be expressed as follows:

V ∗(s, a) = (1− Pfind(l))× V (la, t+ tseek(la), 10− a)+

Σ
|L|
k=1Pfind(j)× Pdest(j, k)

× (r(j, k) + V (k, t+ tseek(j) + tdrive(j, k), 0)) (4)
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Figure 5: An illustration of the MDP model

where s = (l, t, d) is a state and a is an action that moves
the taxi from l to la. The optimal policy (π) is defined as
follows:

π(s) = argmax
a

{V ∗(s, a)} (5)
V (s) = V ∗(s, π(s)) (6)

3.4 Learning Parameters for MDP
Now we discuss how to decide the necessary parameters

for the MDP. All the parameters are learned from our his-
torical passenger trips and seeking trips.
Learning the passenger pickup probability Pfind. First

we estimate the probability that a vacant taxi successfully
picks up a passenger during its cruise in each grid. For each
of the time slots, we calculate a 128×128 matrix Pfind with
the pick up probability of each grid.

The basic idea is: the probability of picking up a passen-
ger in grid i can be approximated by dividing the number of
successful pickups in i by the total number of times this grid
is visited by a vacant taxi. Since the data only contains the
origin and destination of each trip, we have to estimate the
route taken by each taxi when seeking for a passenger. For
each “seeking trip”, we use the API provided by Baidu Map
to calculate the shortest path between the origin (the previ-
ous drop-off) and the destination (the next pick-up). Then
we map each estimated seeking trip obtained to correspond-
ing grids and count how many times each grid is passed by
a vacant taxi during each time slot (denoted as nseek). We
also calculate the pickup counts npickup in each grid. The
pick up probability is thus calculated as follows:

Pfind(i) =
nfind(i)

nfind(i) + npickup(i)
(7)

Learning passenger destination probability Pdest

To estimate the destination probability for a time slot, we
calculate the number of trips between each pair of source and
destination in that time slot and get a 128 by 128 matrix W .
Each value Wij represents the total number of trips from i
to j in the corresponding time slot. We normalize the data
in each row (each value divided by the sum of the entire
row, except for zero sums). In the resulting matrix Pdest,
each row i has the empirical probability distribution of a
passenger choosing destination j when picked-up in grid i.

Estimating the reward function r(i, j). In our model,
the reward (r) is the fare income for a trip. We simply
calculate the average fare of trips between each pair of source
and destinations in the same time slot as the expected fare.



Estimating the driving time tdrive. Here we consider
the average driving efficiency of top 10% and bottom 10%
drivers. Specifically, we calculate the total fare income of the
two groups of drivers and divide them by the total driving
time, respectively. The driving efficiency of top 10% and
bottom 10% drivers are 1.3061 and 1.1648. Using the driving
efficiency, we estimate the travel time for a trip by dividing
the estimated fare by the corresponding driving efficiency.
Formally we have tdrive(i, j) = r(i, j)/Edrive

Seeking time for each grid tseek. We calculated the
average speed of seeking trips and find it is about 300m/min.
Since the grid size in our analysis is fairly small, we set the
seeking time tseek to 1 minute for every grid.

3.5 Solving MDP
For each time slot, we build a MDP with parameters

learned from our data. Now we solve the MDP to find the
optimal policy. For each state in the MDP model, the result
is the best action to take for that state to maximize total ex-
pected rewards in the remaining time of the time slot. The
MDP does not have a fixed number of steps. Instead, there
are a few terminal states. Once the system reaches a state
with t=60 the system terminates. The MDP can be solved
by employing a dynamic programming approach.

The pseudo code of the algorithm is presented in Algo-
rithm 1.The algorithm starts from the states with t = 60
and find out the maximum expected reward for them. Then
the algorithm traces back along time to t = 1. For each state
s, the algorithm examines all the possible actions and calcu-
lates the maximum expected reward for each of them (Lines
2-4). The total expected reward of state s after taking action
a, V ∗(s, a), is calculated using Equation 4 (Line 5). Here
V (la, t+tseek(la), 10−a) and V (k, t+tseek(j)+tdrive(j, k), 0)
must have been calculated already since they have larger t
value than s. Then the action with the maximum V ∗ for s
(denoted as amax) is selected (Line 6). The maximum ex-
pected reward of s is thus set to V ∗(s, amax) (Line 7). The
output of this algorithm is one action for each state.

The algorithm has time complexity of O(|T | × |D| × |L| ×
|A|). Since |D| and |A| are small constant numbers, the
complexity can be simplified to O(|T | · |L|). Similarly, the
space complexity is O(|T | · |L|).

Algorithm 1 Solving MDP using Dynamic Programming

Input: L,A,D, T, Pfind, Pdest, R, tseek
Output: The best policy π
1: V is a |L| × |T | matrix; V ← 0
2: for t = |T | to 1 do
3: for l = 1 To |L| do
4: for d in D do � s = (l, t, d)
5: amax ← a that maximizes V ∗(s, a)
6: π(s)← amax

7: V (s)← V ∗(s, amax)

8: Return π

4. EVALUATION
In this section, we perform a number of experiments to

evaluate the quality of our result. Specifically, we hope to
answer the following questions: (1) How much more revenue
can be generated if a driver uses our strategy? (2) Is our
proposed method better than methods in related work?

4.1 Revenue Improvement
In order to verify the effectiveness of our recommendation,

We carry out a simulation based on our MDP model, and
compare our revenue efficiency of simulated results with that
of the top 10% and bottom 10% drivers.

Figure 6 (a)-(b) show the revenue efficiency distribution of
the top 10% drivers (left, yellow) and our simulated results
using the top 10% drivers’ driving efficiency (right, red) for
time slot 12-13. The average revenue efficiency is improved
from 0.828 yuan/min to 0.89 yuan/min, yielding a 7.6% im-
provement. Figure 6 (c)-(d) show the revenue efficiency dis-
tribution of the bottom 10% drivers (left, green) and our
simulated results using the bottom 10% drivers’ driving ef-
ficiency (right, red) for the same time slot. The average
revenue efficiency is improved from 0.75 yuan/min to 0.82
yuan/min, yielding a 9.8% improvement. We also perform
the same simulations for all the day-time slots. Figure 7 (a)
show the average revenue efficiency of the top drivers in re-
ality compared to the simulated revenue efficiency using the
bottom 10% drivers’ driving efficiency for all the day-time
slots. The improvement is between 3.6% and 12%. Figure 7
(b) shows the comparison of revenue efficiency between the
bottom drivers and the simulated results using the bottom
10% drivers’ driving efficiency for the day-time slots. The
corresponding improvement are between 4.2% and 15.5%.
As can be observed, our approach has more improvements
during morning and evening rush hours because there are
more data records and our parameters learned from the data
are more accurate.
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Figure 6: Comparison between simulated and real revenue
efficiency in time slot 12-13

Figure 7 (c) shows the simulated revenue efficiency (red
line) is higher than the top 10% drivers’ revenue efficiency
for almost all the time slots. This result validates the effec-
tiveness of our proposed method: the bottom drivers with
limited driving efficiency can still make the same amount of
money as the top drivers if they follow our driving strategy.

4.2 Comparison with Baseline Method
Next we compare the output of our method with a baseline
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Figure 7: Revenue efficiency comparison between our method, real data, and a baseline method (best viewed in color).

algorithm called MNP algorithm in related work [8], which
is the most relevant and similar to ours. Given the current
location of a taxi, the baseline method MNP recommends
the next five road segments to seek passengers. The objec-
tive of the MNP algorithm is to maximize the total expected
net profit along the seeking trip. If no passenger is found,
the algorithm will recommend another five road segments
based on the new location of the taxi.

Here we use grids to replace road segments to make a
fair comparison. The experiment settings are the same as
described in 4.1. We calculate the average simulated revenue
of all the 6000 taxis in each of the one-hour time slots based
on the two methods, respectively. Figure 7(d) shows the
average revenue in the simulated results. Our method (red
curve) outperformed the baseline method (blue curve) in
average revenue efficiency (Yuan per minute) in all the time
slots. The maximum improvement is about 8.4%.

5. CONCLUSION AND FUTURE WORK
This paper investigated how to learn the best taxi seeking

strategy from historical data to improve taxi drivers’ busi-
ness efficiency over an extended period of time. This prob-
lem is of great societal importance.This paper proposed to
model the passenger-seeking process as a Markov Decision
Process (MDP)to get the best move for a vacant taxi at any
state. Case study and experiment results showed that our
approach effectively improved the revenue efficiency of inex-
perienced drivers by up to 15% and outperformed a baseline
by up to 8.4%.

For future work, we plan to improve our MDP model to
incorporate the total revenue and driving time covering the
taxi shift time, and recommend the best strategy to improve
the overall revenue efficiency. Finally, we plan to include
other attributes such weather condition and traffic condi-
tions to improve the results of our method.
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