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ABSTRACT
We uncover a thriving ecosystem of large-scale reputation manipu-
lation services on Facebook that leverage the principle of collusion.
Collusion networks collect OAuth access tokens from colludingmem-
bers and abuse them to provide fake likes or comments to their
members. We carry out a comprehensive measurement study to
understand how these collusion networks exploit popular third-
party Facebook applications with weak security settings to retrieve
OAuth access tokens. We infiltrate popular collusion networks
using honeypots and identify more than one million colluding Face-
book accounts by “milking” these collusion networks. We disclose
our findings to Facebook and collaborate with them to implement a
series of countermeasures that mitigate OAuth access token abuse
without sacrificing application platform usability for third-party
developers. These countermeasures remained in place until April
2017, after which Facebook implemented a set of unrelated changes
in its infrastructure to counter collusion networks. We are the first
to report and effectively mitigate large-scale OAuth access token
abuse in the wild.
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1 INTRODUCTION
Online social networks have become the primary way people con-
nect and communicate with each other, consume information, and
form opinions. Reputation is a fundamental tenet of online social
networks. People trust the information that is posted by a reputable
social media account or is endorsed (e.g., liked) by a large number
of accounts. Unfortunately, reputation fraud is prevalent in online
social networks. A number of black-hat reputation manipulation
services target popular online social networks such as Facebook
and Twitter [29, 53, 63]. These services rely on a large number of on-
line social network accounts to conduct reputation manipulation at
scale. To accomplish this goal, fraudsters purchase fake accounts in
bulk from undergroundmarketplaces [55, 57], use infected accounts
compromised by malware [51], or recruit users to join collusion
networks [58].

Online social networks try to counter reputation manipulation
activities on their platforms by removing fake likes and suspending
suspicious accounts. Prior research on detecting reputation manip-
ulation activities in online social networks can be broadly divided
into two categories: (a) identifying temporally synchronized ma-
nipulative activity patterns [24, 28, 40]; (b) identifying individual
accounts suspected to be involved in manipulative activity based
on their social graph characteristics [26, 58, 64, 65]. Recent studies
have shown that fraudsters can circumvent these detection meth-
ods by incorporating “normal” behavior in their activity patterns
[29, 50, 59]. Defending against fraudulent reputation manipulation
is an ongoing arms race between fraudsters and social network op-
erators. According to their own published estimates, Facebook and
Twitter currently have tens of millions of “false” accounts [5, 21].
Therefore, the issue of fraudulent reputation manipulation remains
an ongoing challenge for social network operators.

In this paper, we uncover a thriving ecosystem of reputation
manipulation services on Facebook that leverage the principle of
collusion. In these collusion networks, members like other members’
posts and in return receive likes on their own posts. Such collusion
networks of significant size enable members to receive a large num-
ber of likes from other members, making them appear much more
popular than they actually are. As expected, colluding accounts are
hard to detect because they mix real and fake activity. Our goal
in this paper is to understand their methods of coordination and
execution to develop effective and long-lasting countermeasures.
OAuth Access Token Leakage. To understand the extent of the
problem collusion networks pose, we start by analyzing popular
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Facebook collusion networks. We find that collusion networks con-
duct reputation manipulation activities by exploiting popular third-
party Facebook applications with weak security settings. Collusion
networks collect OAuth access tokens for applications, which uti-
lize the implicit mode in OAuth 2.0 [30], with help from colluding
members. These access tokens are then used to conduct activi-
ties on behalf of these applications and colluding accounts. Using
a large pool of access tokens, collusion networks provide likes
and comments to their members on an on-demand basis. We find
that popular collusion networks currently exploit a few popular
Facebook applications. However, our analysis of top 100 Facebook
applications reveals that more than half of them are susceptible to
access token leakage and abuse by collusion networks. While prior
research has reported several security weaknesses in OAuth and its
implementations [54, 61, 66], we are the first to report large-scale
OAuth access token leakage and abuse. Since OAuth 2.0 is also used
by many other large service providers, their implementation may
also be susceptible to similar access token leakage and abuse.
MilkingCollusionNetworksUsingHoneypots.Wedeploy hon-
eypots to conduct a large-scale measurement study of popular Face-
book collusion networks. Specifically, we create honeypot Facebook
accounts, join collusion networks, and “milk” them by requesting
likes and comments on posts of our honeypot accounts. We then
monitor and analyze our honeypots to understand the strategies
used by collusion networks to manipulate reputation. We identify
more than one million unique colluding accounts by milking col-
lusion networks. As part of the milking process, we submit more
than 11K posts to collusion networks and receive a total of more
than 2.7 million likes. We identify the membership size of collusion
networks by tracking the number of unique accounts that like the
posts of our honeypot accounts. Our membership estimate of these
collusion networks are up to 295K for hublaa.me followed by 233K
for official-liker.net in the second place. The short URLs used by
collusion networks to retrieve access tokens have more than 289
million clicks to date. Our analysis of short URLs shows that popu-
lar collusion networks are daily used by hundreds of thousands of
members. Collusion networks monetize their services by display-
ing advertisements on their heavily visited websites and offering
premium reputation manipulation plans.
Countermeasures.Wedisclose our findings to Facebook andwork
with them to mitigate these collusion-based reputation manipu-
lation services. While we identify a wide range of possible coun-
termeasures, we decide to implement the countermeasures that
provide a suitable tradeoff between detection of access token abuse
and application platform usability for third-party developers. For
instance, we do not block the third-party applications exploited by
collusion networks because it will negatively impact their millions
of legitimate users. We do not disallow OAuth implicit mode, which
is optimized for browser-based applications, because it will bur-
den third-party developers with prohibitive costs associated with
server-side application management. As part of countermeasures,
we first introduce rate limits to mitigate access token abuse but
collusion networks quickly adapt their activities to avoid these rate
limits. We then start invalidating access tokens that are milked as
part of our honeypot experiments to mitigate access token abuse

by collusion networks. We further rate limit and blacklist the IP ad-
dresses and autonomous systems (ASes) used by collusion networks
to completely cease their operations.1

Key Contributions. Our key contributions are summarized as
follows.

• We are the first to report large-scale OAuth access token
leakage in the wild. We demonstrate how collusion networks
exploit popular third-party Facebook applications with weak
security settings to retrieve OAuth access tokens and abuse
them for reputation manipulation.

• We deploy honeypots to milk collusion networks, identify
colluding accounts, and study the scale of their operation.We
identify more than one million unique colluding accounts.

• We disclose our findings to Facebook and investigate coun-
termeasures to detect abuse of leaked OAuth access tokens.
Our countermeasures are able to cease collusion network op-
erations without requiring any modifications to the OAuth
framework.

Paper Organization: The rest of this paper is organized as follows.
In Section 2, we discuss how attackers exploit security weaknesses
in third-party Facebook applications for leaking and abusing OAuth
access tokens. Section 3 discusses the reputation manipulation oper-
ations of collusion networks. In Section 4, we describe our honeypot
deployment to measure the activities collusion networks. Section 5
sheds light on the monetization strategies and ownership of collu-
sion networks. Section 6 discusses the design and deployment of
our countermeasures. We review the related work in Section 7 and
conclude in Section 8.

2 OAUTH ACCESS TOKEN ABUSE
In this section, we first provide a background of Facebook’s third-
party application ecosystem and then discuss how attackers can
exploit these applications to abuse their OAuth access tokens.

2.1 Background
All major online social networks provide social integration APIs.
These APIs are used for third-party application development such
as games, entertainment, education, utilities, etc. These applications
acquire read/write permissions from the social network to imple-
ment their functionalities. Popular social network applications have
tens of millions of active users and routinely conduct read/write
operations on behalf of their users.

Facebook also provides a development platform for third-party
applications. Facebook implements OAuth 2.0 authorization frame-
work [30] which allows third-party applications to gain restricted
access to users’ accounts without sharing authentication creden-
tials (i.e., username and password). When a user authenticates an
application using OAuth 2.0, an access token is generated. This ac-
cess token is an opaque string that uniquely identifies a user and
represents a specific permission scope granted to the application
to perform read/write actions on behalf of the user. A permission

1The discussed countermeasures remained in place until April 2017, after which
Facebook implemented a set of unrelated changes in its infrastructure [11] to counter
collusion networks.
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scope is a set of permissions requested by the application to perform
actions on behalf of the user.

There are two types of permissions that an application may
request. The first type of basic permissions do not require Face-
book’s approval. They include access to profile information, email
addresses, and friend lists. The second type of sensitive permissions
(e.g., publish_actions) require Facebook’s approval [7]. These per-
missions allow third-party applications to conduct certain actions
on behalf of a user, e.g., posting status updates, generating likes
and comments.

Access tokens are invalidated after a fixed expiration duration.
They can be categorized as short-term or long-term based on their
expiration duration. Facebook issues short-term access tokens with
1 to 2 hours expiration duration and long-term access tokens with
approximately 2 months expiration duration.

OAuth 2.0 [30] provides two workflows to generate an access
token: client-side flow (also referred to as implicit mode) and server-
side flow (also referred to as authorization code mode).2 Both work-
flows are similar with few changes in request parameters and some
additional steps in the server-side flow. Figure 1 illustrates the
OAuth 2.0 workflow of a Facebook application to generate an ac-
cess token for client-side and server-side authorization.

• The flow is initiated by directing a user to Facebook’s autho-
rization server by clicking on a login button. The request to
the authorization server includes application ID, redirection
URI, response type, and a permission scope. The application
ID is a unique identifier assigned to every Facebook appli-
cation. The redirection URI is configured in the application
settings. The response type is set as ‘token’ to return access
token in a client-side flow and is set as ‘code’ to return an
authorization code in a server-side flow.

• Facebook’s authorization server validates the request and
prompts the user to authorize the application and grant
permissions in the browser. User authorizes the application
and grants the requested permissions to the application.

• Facebook redirects the user to the redirection URI along
with an access token or an authorization code in the URL
fragment. For the client-side flow, an access token is returned
in response which is retrieved and stored by the application
terminating the client-side flow. For the server-side flow, an
authorization code is returned in response and the following
additional step is required.

• The authorization code is exchanged for an access token
by requesting Facebook’s authorization server through the
application’s server [14]. The request includes application ID,
redirection URI, authorization code, and application secret.
The request to exchange an authorization code for an access
token is authenticated using the application secret.

The access tokens are then used by applications to perform
the Facebook Graph API requests on behalf of users. For each
request, an application is generally required to pass on application

2In addition to implicit and authorization code modes, OAuth 2.0 supports resource
owner password credentials mode and client credentials mode. The former mode is used
by clients to give their credentials (username and password) directly to the applications.
The latter mode does not involve any client interaction and is used by applications to
access their resources. We do not discuss these modes because they are not used to
generate user access tokens.
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Figure 1: Workflow of Facebook applications

ID, application secret, and the corresponding access token. As we
discuss next, the application secret may not be mandatory to make
these requests.

2.2 Identifying Susceptible Applications
Applications select a suitable OAuth flow based on their access
token usage scenarios. Server-side flows are by design more secure
than client-side flows because they do not expose access tokens at
the browser. As shown in Figure 2(a), Facebook provides an option
to disable client-side flow from application settings. Facebook rec-
ommends third-party applications to disable client-side flow if it is
not used [13]. The client-side flow is typically allowed by applica-
tions that make Facebook Graph API calls only from the client-side.
For example, the client-side flow is used by browser-based applica-
tions which cannot include application secret in client-side code.
In fact, some client-side applications may not have an application
server at all and perform Graph API requests only from the browser
using JavaScript. If the application secret is required, as shown in
Figure 2(b), applications will have to expose their application secret
in the client-side flow. It is noteworthy that application secret is
treated like a password and hence it should not be embedded in
client-side code.

Prior work has shown that attackers can retrieve access tokens
by exploiting security weaknesses in the OAuth protocol and its
implementations [16, 32, 49, 54, 61, 66]. Facebook applications that
use client-side flow and do not require application secret are sus-
ceptible to access token leakage and abuse. For example, attackers
can retrieve access tokens in client-side flows by eavesdropping
[54], cross-site scripting [49, 54], or social engineering techniques
[25, 38]. A leaked access token has serious security and privacy
repercussions depending on its authorized resources. Attackers can
abuse leaked access tokens to retrieve users’ personal information.
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(a) Client-side flow enable/disable option

(b) Application secret enable/disable option

Figure 2: Security settings of Facebook applications

Attackers can also abuse leaked access tokens to conduct malicious
activities such as spreading spam/malware.

We implement a Facebook application scanning tool to identify
applications that are susceptible to access token leakage and abuse.
Our tool uses Selenium [19] and Facebook SDK for Python [17]
to launch the application’s login URL and install the application
on a test Facebook account with the full set of permissions. We
first infer the OAuth redirection URI used by the application by
monitoring redirections during the Facebook login flow. Using the
OAuth redirection URI, we install the application on the test Face-
book account with the permissions that were originally acquired
by the application. If the application is successfully installed, we
retrieve the access token at the client-side from the application’s
login URL. Using the access token, we make an API call to retrieve
the public profile information of the test Facebook account and like
a test Facebook post. If we are able to successfully conduct these
operations, we conclude that the application can be exploited for
reputation manipulation using leaked access tokens.

We analyze top 100 third-party Facebook applications [6] using
our scanning tool. Our tool has identified 55 susceptible applica-
tions, out of which 46 applications are issued short-term access
tokens and 9 applications are issued long-term access tokens. Short-
term access tokens pose a limited threat because they are required
to be refreshed after every 1-2 hours. On the other hand, long-term
access tokens provide a 2 month long time window for an attacker.
Table 1 lists 9 susceptible applications that are issued long-term
access tokens. We report their monthly active users (MAUs) sta-
tistics provided by the Facebook Graph API. The highest ranked
susceptible application in the list has about 50 million monthly
active users. We note that all of these susceptible applications have
millions of monthly active users, which can cloak access token
abuse by attackers.

3 COLLUSION NETWORKS
A number of reputation manipulation services provide likes and
comments to Facebook users based on the principle of collusion:
members like other members’ posts, and in return receive likes
from other members. As discussed earlier, these collusion networks
exploit Facebook applications with weak security settings. Collu-
sion networks of significant size can enable members to escalate

Application Application Monthly Active
Identifier Name Users (MAU)

174829003346 Spotify 50 million
100577877361 PlayStation Network 5 million
241284008322 Deezer 5 million
139475280761 Pandora 5 million

193278124048833 HTC Sense 1 million
153996561399852 Flipagram 1 million
226681500790782 TownShip 1 million
137234499712326 Tango 1 million

41158896424 HTC Sense 1 million

Table 1: List of 9 susceptible applications with long-term ac-
cess tokens among top 100 Facebook applications. These ap-
plications can be exploited for reputation manipulation by
abusing their access tokens.

their reputation, making them appear much more popular than
they actually are.

We first survey the landscape of Facebook collusion networks
by querying search engines for the relevant keywords, such as
‘Facebook AutoLiker’, ‘Status Liker’, and ‘Page Liker’, that are found
on a few well-known collusion network websites. This approach
of using seed keywords to find other similar websites via search
engines has been used in prior literature [36, 39, 46]. We compile a
list of such websites and use Alexa [2] to shortlist popular collusion
networks. Table 2 lists top 50 Facebook collusion network websites.
It is noteworthy that top 8 collusion networks are ranked within
the top 100K. For example, hublaa.me is ranked around 8K and 18%
of their visitors are from India, where it is ranked within the top 3K
sites. It is interesting to note that other collusion networks also get
most of their traffic from countries such as India, Egypt, Turkey,
and Vietnam.

We investigate popular collusion networks to understand the
features they offer and to identify Facebook applications that they
exploit. Collusion networks ask users to install a Facebook applica-
tion and submit the generated access token in a textbox on their
website. The installation link redirects users to a Facebook dialog
mentioning the application’s name. Table 3 lists the applications
used by popular collusion networks along with their statistics re-
trieved from the Facebook Graph API. Using our tool, we verify that
these Facebook applications use client-side flow and do not require
application secret for making the Graph API calls. We note that
HTC Sense, which is used by several popular collusion networks,
is ranked at 40 and has on the order of a million daily active users
(DAU). Nokia Account is ranked at 249 and has approximately a
hundred thousand daily active users. Similarly, Sony Xperia smart-
phone is ranked at 886 and has on the order of ten thousand daily
active users. It is noteworthy that collusion networks cannot create
and use their own applications because they would not pass Face-
book’s strict manual review process for applications that require
write permissions [3]. However, collusion networks can (and do
sometimes) switch between existing legitimate applications that
are susceptible to access token leakage and abuse.
Workflow of collusion networks.Most collusion networks have
a similar web interface and they all provide a fairly similar user
experience. Figure 3 illustrates the workflow of Facebook collusion
networks.
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Collusion Alexa Top Top
Network Rank Country Country

Visitors
hublaa.me 8K India 18%
official-liker.net 17K India 26%
djliker.com 39K India 55%
autolikesgroups.com 54K India 30%
myliker.com 55K India 45%
mg-likers.com 56K India 50%
4liker.com 81K India 33%
fb-autolikers.com 99K India 44%
autolikerfb.com 109K India 62%
cyberlikes.com 119K India 78%
postliker.net 132K India 63%
oneliker.com 136K India 58%
f8-autoliker.com 136K India 74%
postlikers.com 148K India 83%
fblikess.com 150K India 64%
way2likes.com 154K India 74%
kdliker.com 154K India 80%
topautolike.com 192K India 60%
royaliker.net 201K India 86%
begeniyor.com 205K Turkey 85%
autolike-us.com 227K India 52%
royaliker.net 210K India 59%
autolike.in 216K India 74%
likelikego.com 232K India 52%
myfbliker.com 238K India 58%
vliker.com 273K India 43%
likermoo.com 296K India 62%
f8liker.com 296K India 80%
facebook-autoliker.com 312K India 87%
kingliker.com 351K India 72%
likeslo.net 373K India 61%
machineliker.com 386K India 59%
likerty.com 393K India 60%
monkeyliker.com 410K India 80%
vipautoliker.com 448K India 64%
likelo.me 479K India 16%
loveliker.com 491K India 59%
autoliker.com 496K India 56%
likerhub.com 498K India 69%
monsterlikes.com 509K India 82%
hacklike.net 514K Vietnam 57%
rockliker.net 530K India 92%
likepana.com 545K India 57%
autolikesub.com 603K Vietnam 92%
extreamliker.com 687K India 50%
autolikesub.com 721K Vietnam 84%
autolike.vn 969K Vietnam 94%
fast-liker.com 1,208K - -
arabfblike.com 1,221K Egypt 43%
realliker.com 1,379K - -

Table 2: List of popular collusionnetworks in the descending
order of their Alexa rank

Application Application DAU DAU MAU MAU
Identifier Name Rank Rank

41158896424 HTC Sense 1M 40 1M 85
200758583311692 Nokia Account 100K 249 1M 213
104018109673165 Sony Xperia 10K 866 100K 1563

Table 3: Facebook applications used by popular collusion
networks.

• A user visits the collusion network’s website and clicks on
the button to install the application. The website redirects

Open collusion 
network website

Click to allow 
application

Click to get access 
token

Copy access token 
from address bar

Submit access 
token

Redirect to 
application 

authorization 
page

Request for 
access token

Store access 
token in 
database

 User grants 
permissions and 

joins the 
application

Redirects to 
callback URI with 

access token

User Collusion Network Facebook

Figure 3: Workflow of Facebook collusion networks

the user to the application authorization dialog URL. The
user is asked to grant the requested permissions and install
the application.

• The user returns to the collusion network website after in-
stalling the application and clicks on the button to retrieve
the access token. The website again redirects the user to
the Facebook authorization dialog URL with view-source ap-
pended. The authorization dialog redirects the user to a page
that contains the access token as a query string in the URL.
The use of view-source stops the authorization dialog from
further redirections. The user manually copies the access
token from the address bar and submits it at a textbox on
the collusion network website.

• The collusion network saves the access token and redirects
the user to an admin panel, where the user can request likes
and comments. Some collusion networks require users to
solve CAPTCHAs and/or make users watch ads before al-
lowing them to request likes and comments.

4 MEASURING COLLUSION NETWORKS
Honeypots have proven to be an effective tool to study reputa-
tion manipulation in online social networks [29, 42, 52, 62]. The
basic principle of honeypots is to bait and deceive fraudsters for
surveilling their activities. In order to investigate the operation
and scale of Facebook collusion networks, we deploy honeypots to
“milk” them.
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(b) mg-likers.com
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Figure 4: Cumulative distribution of likes and unique accounts. We note that collusion networks provide a fixed number of
likes on a post per request. However, the rate of new unique accounts decreases steadily indicating repetition in accounts.

We create new Facebook honeypot accounts and join different
collusion networks using the workflow described in Section 3. Our
honeypot accounts regularly post status updates and request collu-
sion networks to provide likes/comments on these posts. Soon after
the submission of our requests to collusion networks, we notice
sudden bursts of likes and comments by a large number of Facebook
accounts which are part of the collusion network. Since repeated
requests result in likes/comments from many unique Facebook ac-
counts, we can uncover the memberships of collusion networks
by making a large number of reputation manipulation requests.
Our goal is to estimate the scale of collusion networks by tracking
their member Facebook accounts. We also want to understand the
tactics used by collusion networks to stay under the radar and avoid
detection.
Experimental design. We register 22 new Facebook accounts in-
tended to be used as active honeypots for studying popular collusion
networks. Each honeypot account joins a different collusion net-
work in Table 2. In an effort to actively engage collusion networks,
our honeypot accounts regularly post status updates on their time-
lines and request the collusion networks to provide likes/comments
on them.3 It is challenging to fully automate this process because
collusion networks employ several tactics to avoid automation. For
example, some collusion networks impose fixed or random delays
between two successive requests. Many collusion networks redirect
users through various redirection services before allowing request
submission. Several collusion networks require users to solve a
CAPTCHA in order to login and before making each request. To
fully automate our honeypots, we use a CAPTCHA solving service
[4] for automatically solving CAPTCHAs and Selenium [19] for
submitting requests to collusion networks. We continuously post
status updates and requests to collusion networks over the duration
of approximately three months from November 2015 to February
2016.
Data collection.We regularly crawl the timelines of our honeypot
Facebook accounts to log incoming likes and comments provided
3Our honeypot accounts do not take part in any other activity. Therefore, it is reason-
able to assume that all activities involving our honeypot accounts are performed by
collusion networks.

by collusion networks. The number of unique Facebook accounts
who like or comment on a honeypot account is an estimate of the
collusion network’s size. Note that our membership estimate is
strictly a lower bound because we may not observe all collusion
network accounts, which are randomly picked from a large pool
of access tokens. We also crawl the activity logs of our honeypot
accounts to collect outgoing likes and comments.

4.1 Size of Collusion Networks
Milking Collusion Networks.We post status updates from our
honeypot accounts and request collusion networks to provide likes
on the posts. Figure 4 plots the cumulative distribution of likes and
unique accounts milked by our honeypots for three collusion net-
works. We observe that the count of new unique accounts steadily
declines even though the new like count remains constant. The de-
cline represents diminishing returns due to the increased repetition
in users who likes the posts of our honeypot accounts. Specifically,
due to the random sampling of users from the database of access
tokens, the likelihood of user repetition increases as we post more
status updates for a honeypot account. It is important that we milk
collusion networks as much as possible to accurately estimate their
membership size. While we are able to max out many collusion
networks, we face some issues for a few collusion networks. For
example, djliker.com and monkeyliker.com impose a daily limit of
10 requests, thus we are not able to fully max out these collusion
networks. Moreover, arabfblike.com and a few other collusion net-
works suffer from intermittent outages when they do not respond
to our requests for likes. The set of unique accounts who like posts
of our honeypot accounts are collusion network members. Table
4 shows that the membership size of collusion networks vary be-
tween 295K for hublaa.me to 834 for fast-liker.com. We note that
hublaa.me has the largest membership size at 295K accounts, fol-
lowed by official-liker.net at 233K and mg-likers.com at 178K. The
membership size of all collusion networks in our study sum up
to 1,150,782. As we discuss later, some accounts are part of mul-
tiple collusion networks. After eliminating these duplicates, the
total number of unique accounts across all collusion networks is
1,008,021.
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Incoming Activities Outgoing Activities
Collusion Total Number Total Avg. Number Number of Number of Number of Membership
Network of Posts Number of of Likes Activities Target Target Size

Submitted Likes Per Post Performed Accounts Pages
hublaa.me 1,421 496,714 350 145 46 47 294,949
official-liker.net 1,757 685,888 390 1,955 846 253 233,161
mg-likers.com 1,537 379,475 247 1,524 911 63 177,665
monkeyliker.com 710 165,479 233 956 356 19 137,048
f8-autoliker.com 1,311 331,923 253 2,542 1,254 118 72,157
djliker.com 471 70,046 149 360 316 23 61,450
autolikesgroups.com 774 202,373 261 1,857 885 189 41,015
4liker.com 269 71,059 264 2,254 1,211 301 23,110
myliker.com 320 32,821 102 1,727 983 33 18,514
kdliker.com 599 82,736 138 1,444 626 79 18,421
oneliker.com 334 24,374 72 956 483 81 18,013
fb-autolikers.com 244 19,552 80 621 397 32 16,234
autolike.vn 139 35,425 254 2,822 1,382 144 14,892
monsterlikes.com 495 72,755 146 2,107 671 39 5,168
postlikers.com 96 8,613 89 2,590 1,543 94 4,656
facebook-autoliker.com 132 4,461 33 2,403 1,757 15 3,108
realliker.com 105 19,673 187 2,362 846 61 2,860
autolikesub.com 286 25,422 88 1,531 717 100 2,379
kingliker.com 107 5,072 47 1,245 587 136 2,243
rockliker.net 99 4,376 44 82 39 1 1,480
arabfblike.com 311 4,548 14 68 31 14 1,328
fast-liker.com 232 10,270 44 1,472 572 102 834
All 11,751 2,753,153 238 33,023 16,459 1,944 1,150,782

Table 4: Statistics of the collected data for all collusion networks

Analyzing Short URLs. Some collusion networks use URL short-
ening services to redirect users to the Facebook application installa-
tion page and retrieve access tokens. URL shortening services such
as goo.gl publicly provide information about short URLs such as
total clicks, referrers, browsers, platforms, and geolocation. We use
this publicly available information to further understand the scale
of collusion network operations. Table 5 lists the short URLs that are
used by collusion networks. The oldest short URL was created on
June 11, 2014, withmore than 147million clicks to date. The creation
dates of older short URLs likely represent the launch dates of differ-
ent collusion networks. To confirm this hypothesis, we further use
Google Trends [10] and the Internet Archive’s Wayback Machine
[12] to analyze popular collusion networks. Our analysis confirms
that most of the collusion networks were publicly launched around
late 2013 to mid 2014. The top three short URLs redirect users to
install the HTC Sense application and retrieve access tokens. Their
referrer domains are mg-likers.com, djliker.com, and hublaa.me,
each of which has hundreds of thousands of members (see Table
4). The top 3 short URLs currently receive around 308K, 139K, and
122K daily clicks. We note that several short URLs point to the
same long URL. The sum of click counts for all unique long URLs
in Table 5 exceeds 289 million. The click counts of short URLs are
reasonable estimates of traffic on collusion network websites. How-
ever, these click counts may not give us an accurate estimate of
collusion network membership because a user can click on a short
URL several times to submit multiple likes/comments requests to
the collusion network. The geolocation statistics of short URLs
indicate that a vast majority of users are from India, Egypt, Viet-
nam, Bangladesh, Pakistan, Indonesia, and Algeria. This finding
corroborates the geolocation statistics from Alexa in Table 2.

4.2 Collusion Network Activities
Incoming Activities. Table 4 summarizes the statistics of the data
collected for different collusion networks using our honeypot ac-
counts. In total, we submit more than 11K posts to collusion net-
works and garner more than 2.7 million likes. As shown in Figure
4, we observe that status updates typically receive a fixed number
of likes per request, ranging between 14-390 across different col-
lusion networks. For example, official-liker.net, f8-autoliker.com,
and myliker.com provide approximately 400, 250, and 100 likes per
request, respectively.
Outgoing Activities. Collusion networks also use our honeypot
accounts to conduct reputation manipulation activities on other
Facebook accounts and pages. In total, our honeypot accounts are
used by collusion networks to like more than 33K posts of 16K
accounts and 2K pages. We observe that some collusion networks
use our honeypots more frequently than others. For example, auto-
like.vn uses our honeypot accounts to provide a maximum of 2.8K
likes on posts of 1.3K users and 144 pages.
Analyzing Comments. Several collusion networks also provide
“auto-comment” services. Users are required to specify target posts
to get comments. Only 7 out of the 22 collusion networks listed in
Table 4 provide this service. The remaining collusion networks ei-
ther do not provide comments or they ask users to input comments.
We submit at least 100 posts of our honeypot accounts to garner
comments from each of these seven collusion networks. Table 6
summarizes key statistics for our lexical analysis of these comments.
We observe that collusion networks provide an average of only 16
comments per post. It is noteworthy that the total number of unique
comments constitutes a small fraction of all comments provided by
collusion networks. Overall, only 187 comments are unique out of
a total of 12,959 comments. We also compute lexical richness (i.e.,
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Short URL Date Created Short URL Long URL Applications Top Referrer
Click Count Click Count

goo.gl/jZ7Nyl June 11, 2014 147,959,735 236,194,576 HTC Sense mg-likers.com
goo.gl/4GYbBl June 30, 2014 64,493,698 236,194,576 HTC Sense djliker.com
goo.gl/rHnKIv May 3, 2015 28,511,756 29,211,768 HTC Sense sys.hublaa.me
goo.gl/2hbUps October 4, 2014 7,000,579 7,289,920 Page Manager For iOS autolike.vn
goo.gl/KJnSnH November 19, 2014 7,582,494 8,223,464 HTC Sense m.machineliker.com
goo.gl/QfLHlq June 13, 2014 2,269,148 236,194,576 HTC Sense begeniyor.com
goo.gl/zsaJ61 May 23, 2015 2,721,864 2,766,805 HTC Sense www.royaliker.net
goo.gl/civ2CS December 29, 2014 1,288,801 1,288,902 HTC Sense oneliker.com
goo.gl/ZQwU5e June 21, 2014 1,005,471 1,005,698 Nokia Account adf.ly
goo.gl/nC9ciz September 6, 2015 1,009,801 1,034,299 Sony Xperia smartphone refer.autolikerfb.com
goo.gl/kKPCNy January 24, 2015 297,915 236,194,576 HTC Sense realliker.com
goo.gl/uIv2OS February 1, 2015 355,405 1,019,830 Sony Xperia smartphone Unknown
goo.gl/5XbAaz January 26, 2015 165,345 1,887,940 HTC Sense postlikers.com

Table 5: Statistics of short URLs used by collusion networks. Several short URLs point to the same long URL.

Collusion Number Average Number of Number of Percentage of Number Number Lexical ARI % of
Network of Comments Comments Unique Unique of of Richness Non-

Posts Per Post Comments Comments Words Unique (%) dictionary
Words Words

myliker.com 128 19 2,499 42 1.7 7,023 80 1.1 17.8 16.2
monkeyliker.com 115 9 1,074 45 4.2 2,983 82 2.7 20.0 21.9
mg-likers.com 120 17 1,486 16 1.1 5,059 40 0.8 25.2 20.0
monsterlikes.com 100 9 930 41 4.4 3,784 102 2.7 21.6 9.8
kdliker.com 119 47 5,664 31 0.5 14,852 64 0.4 22.3 28.1
arabfblike.com 130 2 304 37 12.2 1,091 96 8.8 16.9 29.1
djliker.com 104 9 1,002 52 5.2 3,449 93 2.7 13.2 20.4
All 816 16 12,959 187 1.4 38,241 553 1.4 19.6 20.6

Table 6: Lexical analysis of comments provided by collusion networks

fraction of unique words) to quantify how many unique words are
used in these comments [41]. Small lexical richness values indicate
that collusion networks rely on a finite sized dictionary that results
in repetition of comments. We also use Automated Readability In-
dex (ARI) to understand the syntactic and semantic complexity of
comments [41]. Larger ARI values indicate better text readability.
ARI values range from 13.2 (djliker.com) to 25.2 (mg-likers.com).
However, these ARI values do not necessarily indicate a high level
of understandability because of (a) unnecessarily lengthened words
like “bravooooo" and “ahhhhh", (b) unnecessary use of punctuation
such as “?? AW E S O M E ??? ??????? ????", and (c) large nonsensi-
cal words such as “bfewguvchieuwver". We further use the Python
Natural Language Toolkit [15] to identify English dictionary words
in these comments. We note that 20.6% words are not found in Eng-
lish dictionary. Non-dictionary words include incorrectly spelled
words such as “gr8" and “w00wwwwwwww", and Hindi phrases
such as “SARYE THAK KE BETH GYE". We conclude that collu-
sion networks generate very few unique comments with limited
vocabulary.

5 DISCUSSIONS
5.1 Monetization
Collusion network operators use two main mechanisms for mone-
tizing their services: (1) advertising and (2) premium plans.
Advertising. Collusion networks attract a large number of users
to their websites everyday. For example, recall from Table 5 that

the short URLs used by collusion networks daily receive hundreds
of thousands of clicks. Collusion networks display ads from dif-
ferent ad networks to monetize user traffic on their websites. We
identify ad networks and trackers on collusion network websites
using Ghostery [9]. We note that some collusion networks do not
directly use reputable ad networks, such as DoubleClick, which
is likely because collusion networks domains are blacklisted by
these ad networks. To overcome this issue, several collusion net-
works use URL redirections to temporarily redirect users to other
whitelisted domains and display ads from different ad networks on
the redirected page. For example, mg-likers.com redirects users to
kackroch.com where ads are served by AdSense and Atlas. Users
are typically required to stay on the redirected pages for several
seconds before they are redirected back to the original page. Some
collusion networks redirect to paid URL shortening services such
as adf.ly and sh.st. It is interesting to note that most collusion net-
works require users to disable ad-block extensions [44] to use their
services. To this end, collusion networks use anti-adblocking scripts
[37, 45] to detect popular ad-blockers and prompt users to disable
ad-block extensions or whitelist their websites.
PremiumPlans.Collusion networks place artificial restrictions on
the number of likes/comments allowed on free plans. For example,
each collusion network restricts the number of likes per post to a
pre-defined limit. Most collusion networks also restrict activities
by making users wait for fixed/random time between consecutive
like requests. Collusion networks sell premium plans that allow
users to get more likes/comments and overcome other restrictions.
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Premium plans claim to provide much more likes (e.g., up to 2000
likes for the most expensive plan by mg-likers.com). They also
automatically provide likes without requiring users to manually
login to collusion network sites for each request.

5.2 Ownership
We want to identify the culprits behind collusion networks for
designing technical and legal countermeasures. To this end, we
perform WHOIS lookups of popular collusion network domains in
Table 2. We observe that collusion network websites use various
techniques to hide their identity. First, we find that 36% (18 out of
50) of the domains have anonymized WHOIS records using privacy
protection services such as WhoisGuard [20]. For the remaining
collusion networks, domain registrants are mostly located in Asian
countries such as India, Pakistan, and Indonesia. In fact, more than
40% of these domain registrants are located in India. Second, we ob-
serve that most collusion network domains resolve to an IP address
of CloudFlare which helps them to conceal the original hosting
location. Other collusion network domains resolve to IP addresses
of web hosting and cloud infrastructure providers. We also search
the registrant names on popular search engines to identify their
matching social media accounts. As a note of caution, we point out
that the registrant information extracted from WHOIS records and
social media accounts may be staged by the actual owners. Our
analysis reveals that Facebook accounts of collusion network own-
ers have a large number of followers. For example, the Facebook
account of mg-likers.com’s owner had more than 9 million follow-
ers at the time of this writing. We observe that the timeline posts of
these Facebook accounts often have hundreds of thousands of likes.
It is also noteworthy that our honeypot accounts are frequently
used to like the profile pictures and other timeline posts of these
Facebook accounts.

6 COUNTERMEASURES
Ethical Considerations. Before conducting any experiments, we
received a formal review from our local Institutional Review Board
(IRB) because we collect some publicly available account informa-
tion such as posts and likes. We enforce several mechanisms to
protect user privacy. For example, we do not store any personally
identifiable information. We are aware that our honeypot accounts
are used by collusion networks to conduct some reputation manip-
ulation activities. We argue that these activities represent a small
fraction of the overall reputation manipulation activities of collu-
sion networks. Thus, we do not expect normal user activity to be
significantly impacted by our honeypot experiments. The benefit of
our honeypot approach in detecting collusion network accounts far
outweighs the potential harm to regular Facebook users. To further
minimize harm, as discussed next, we disclose our findings to Face-
book to remove all artifacts of reputation manipulation during our
measurements as well as investigate countermeasures to mitigate
collusion network activities.

Before implementing any countermeasures in collaboration with
Facebook, we perform honeypot experiments for approximately
ten days to establish a baseline of collusion network activities. We
repeat the honeypot milking experiments for popular collusion
networks starting August 2016 (and continue until mid October

2016). Figure 5 shows the average number of likes received by our
honeypots for two popular collusion networks.4 As we discuss next,
while we consider a wide range of countermeasures, we decide
to implement countermeasures that provide a suitable tradeoff
between detection of access token abuse and application platform
usability for third-party developers.

Collusion networks currently exploit a few applications (listed
in Table 3) to conduct reputation manipulation activities. Therefore,
we can immediately disrupt all collusion networks by suspending
these applications. Since collusion networks can switch between
other susceptible applications listed in Table 1, we would need to
suspend them as well. Suspending these applications is a relatively
simple countermeasure to implement; however, it will negatively
impact their millions of legitimate users. We can also make changes
in Facebook’s application workflow to stop access token abuse by
collusion networks. For example, we can mandate application secret
(thereby forcing server-side operations) for liking/commenting ac-
tivities that require publish_actions permissions [1, 18]. As a result
of this restriction, collusion networks will not be able to conduct rep-
utation manipulation activities even if they retrieve access tokens
from colluding users. However, many Facebook applications solely
rely on client-side operations for cross-platform interoperability
and to reduce third-party developer costs of server-side applica-
tion management [13, 30]. Therefore, mandating application secret
would adversely impact legitimate use cases for these Facebook
applications.

6.1 Access Token Rate Limits
As the first countermeasure, we impose restrictions on access tokens
to mitigate abuse by collusion networks. Facebook employs rate
limits to restrict excessive activities performed by an access token.
Since collusion network activities slip under the current rate limit,
we reduce the rate limit by more than an order of magnitude on day
12 as marked by green circles in Figure 5. We observe a sharp initial
decrease in activities for official-liker.net. Specifically, the average
number of likes provided by official-liker.net decreases from more
than 400 to less than 200 on day 16. However, official-liker.net
starts to bounce back after approximately one week. Moreover, this
countermeasure does not impact hublaa.me. We surmise that both
of these collusion networks have a large pool of access tokens which
limits the need to repeatedly use them. Therefore, these collusion
networks can stay under the reduced access token rate limit while
maintaining their high activity levels. We do not reduce the rate
limit further to avoid potential false positives.

6.2 Honeypot based Access Token Invalidation
We next invalidate access tokens of colluding accounts which are
identified as part of our honeypot experiments. In the first 22 days,
we have milked access tokens of 283K and 41K users for hublaa.me
and official-liker.net, respectively. We expect that invalidation of
these access tokens will curb collusion network activities. To this
end, we invalidate randomly sampled 50% of the milked access to-
kens on day 23 as marked by a black cross in Figure 5.5 We observe

4The results for other collusion networks are not shown due to space constraints.
5We decided to initially invalidate only half of the milked access tokens to avoid
alerting collusion networks about our honeypots and countermeasures.
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Figure 5: The impact of our countermeasures on two popular collusion networks.We observe that collusion network activities
are not impacted by reduction in access token rate limit. While access token invalidation significantly reduced collusion
network activities, it cannot completely stop them. Clustering based access token invalidation also does not help. Our IP rate
limits effectively counter most collusion networks that use a few IP addresses. We can target autonomous systems (ASes) of
collusion networks that use a large pool of IP addresses.

a sharp decrease in collusion network activities. Specifically, the
average number of likes provided by hublaa.me decreases from 320
to 250 and for official-liker.net decreases from 350 to 275. Unfortu-
nately, this decline was not permanent and the average number of
likes gradually increase again over the next few days. We surmise
that collusion networks gradually replenish their access token pool
with fresh access tokens from new and returning users.

To mitigate this, we next invalidate all access tokens that are
observed until day 28 (marked by red cross) and also begin invalidat-
ing 50% of newly observed access tokens on a daily basis (marked
by orange cross). We observe a sharp decline for both hublaa.me
and official-liker.net on day 28 when we invalidate all access to-
kens. However, average likes by hublaa.me start to bounce back and
those by official-liker.net stabilize at 100 over the next few days. We
suspect that the rate of fresh access tokens from new and returning
users exceeds our rate of daily access token invalidation. This is

due to the rather small number of distinct new colluding accounts
milked daily by our honeypots.

To increase our access token invalidation rate, starting day 36,
we begin invalidating all newly observed access tokens on a daily
basis as marked by blue cross in Figure 5. We observe a steady
decrease in average likes by hublaa.me from day 36 to day 44.
hublaa.me’s site was temporarily shutdown on day 45. The site
resumed operations on day 51 and their average number of likes
decreased to 120. official-liker.net sustained their likes between 110-
192 despite our daily access token invalidation.While regular access
token invalidation curbed collusion network activities, we conclude
that it cannot completely stop them because honeypot milking can
only identify a subset of all newly joining users. Therefore, we
decide not to pursue regular access token invalidation further.
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Figure 6: Number of our honeypot posts liked by collusion
network accounts. We observe that a small fraction of collu-
sion network accounts like multiple honeypot posts.
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Figure 7: Hourly timeseries of number of likes performed by
our honeypot accounts. We observe that collusion networks
spread out liking activities performed by our honeypot ac-
counts over time.

6.3 Temporal Clustering
Collusion networks provide likes on submitted posts in less than
one minute. Such bursts of liking activity can be detected by tempo-
ral clustering algorithms [24, 28, 40] which are designed to detect
accounts that act similarly at around the same time for a sustained
period of time. Starting day 55, as marked by cyan squares in Figure
5, we use SynchoTrap [28] to cluster synchronized access token
abuse by collusion network accounts. Surprisingly, we do not ob-
serve any major impact on collusion network activities. Our drill-
down analysis showed that collusion networks avoid detection
by (1) using different set of accounts to like target posts and (2)
spreading out liking activities performed by each access token over
time. Figure 6 shows that different sets of accounts like posts of
our honeypot accounts. We note that 76% and 30% accounts like at
most one post of our honeypots for hublaa.me and official-liker.net,
respectively. Figure 7 shows that collusion networks do not binge
use our honeypot accounts within a short timeframe. We note that
the hourly average of likes performed by our honeypot accounts
ranges between 5-10. Therefore, collusion network accounts do not
behave similarly at around the same time for a sustained period of
time.
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Figure 8: Source IP addresses and ASes of Facebook Graph
API requests by hublaa.me and official-liker.net to like posts
of our honeypot accounts

6.4 IP and AS based Limits
We next target the origin of collusion networks to further mitigate
their activities. To this end, we track the source IP addresses of
the Facebook Graph API requests for liking posts of our honeypot
accounts. Figure 8(a) shows the scatter plot of these IP addresses
where x-axis represents the number of days an IP address is ob-
served during our countermeasures and y-axis represents the total
number of likes generated by each IP address. It is noteworthy that
a few IP addresses account for a vast majority of likes for official-
liker.net. Therefore, we imposed daily and weekly IP rate limits
on the like requests beginning day 46. Note that this rate limit
will not impact activities of normal users (e.g., regularly accessing
Facebook via commodity web browsers) because this IP rate limit
is only applicable to like requests by the Facebook Graph API using
access tokens. Figure 5 shows that official-liker.net stops working
immediately after we impose IP rate limits. Although not shown in
Figure 5 due to space constraints, other popular collusion networks
in Table 4 also stopped working on day 63. The only exception is
hublaa.me, which uses a large pool of more than 6,000 IP addresses
and circumvents the IP rate limits. Further analysis in Figure 8(b)
reveals that all of hublaa.me’s IP addresses belong to two distinct
autonomous systems (ASes) of bulletproof hosting providers [23].
On day 70, we start to block like requests from these ASes for sus-
ceptible applications (e.g., listed in Table 1) which helps in ceasing
all likes from hublaa.me. Note that we target a small set of suscep-
tible applications for AS blocking to mitigate the risk of collateral
damage to other applications.

6.5 Limitations
First, our countermeasures should not result in collateral damage
while being robust to evasion attempts by collusion networks. To
date, we have not received any collateral damage complaints from
popular third-party developers. Therefore, we conclude that our
countermeasures do not result in significant false positives. Second,
our countermeasures need to be robust against potential evasion
attempts by collusion networks. Our countermeasures have proven
to be long-lasting for several months now. In future, collusion net-
works can try to evade our countermeasures in several ways. For
example, collusion networks can use many different IP addresses
and ASes (e.g., using botnets and proxies) to circumvent our IP- and
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AS-based countermeasures. If and when that happens, we can again
use honeypots to swiftly identify IP addresses and ASes used by
collusion networks. Third, collusion networks may try to identify
the honeypot accounts that we use to infiltrate them. For example,
collusion networks can try to detect our honeypots accounts which
currently make very frequent like/comment requests. To circum-
vent such detection, we can create multiple honeypot accounts to
decrease the frequency of per-account like/comment requests.

7 RELATEDWORK
7.1 Third-party Applications
Twitter and Facebook allowed third-party developers to create appli-
cations starting 2006 and 2007, respectively. Millions of applications
use third-party application platforms supported by popular online
social networks. For example, more than 30 million applications and
websites currently use Facebook’s third-party application platform
[8].

Online social networks use OAuth for granting access to user
accounts to third-party applications. OAuth [30, 31] is an IETF
standardized authorization framework which allows third-party ap-
plications to gain restricted access to user accounts without sharing
authentication credentials (i.e., username and password). OAuth
was designed by a community of web developers to enable delegated
access to protected resources. OAuth 1.0 was published as RFC 5849
[31] and later OAuth 2.0 was published as RFC 6749 [30]. Online
social networks implement different variations of the OAuth proto-
col. For example, Twitter implements OAuth 1.0a6 while Facebook,
YouTube, Instagram, and SoundCloud implement OAuth 2.0. Re-
searchers have uncovered many security issues in the OAuth frame-
work and its implementations over the years[33, 35, 49, 54, 61, 66].
In particular, researchers have highlighted security vulnerabilities
that arise due to the underlying issues in the protocol and bad
implementation practices that prefer simplicity over security. For
example, Sun et al. [54] discussed the inherent security issues in
client-side flows which can be exploited by an attacker to steal
access tokens by cross-site scripting or eavesdropping. The OAuth
2.0 specification [30] also highlights security implications of the
client-side flow and potential access token leakage. While the se-
curity issues in the OAuth protocol have been previously reported
[16], we are the first to report on and effectively disrupt large-scale
abuse of leaked access tokens for reputation manipulation. Below
we discuss prior work on exploitation of third-party applications
in Facebook and Twitter.

Makridakis et al. [43] showed that malicious Facebook applica-
tions can leak users’ private data, can retrieve remote files from
a user’s machine, and even launch denial of service attacks. Rah-
man et al. [47, 48] proposed FRAppE to detect malicious Facebook
applications. They identified distinguishing features of malicious
Facebook applications (e.g., name sharing, ask for fewer permis-
sion requests, have redirect URIs to domains with poor reputation
scores) and trained a machine learning classifier to detect them. In
contrast, Facebook applications used by collusion networks studied
in our work request all read/write permissions and use Facebook’s
recommended redirect URIs. Thus, the feature set used by FRAppE
6OAuth 1.0a is a revision of OAuth 1.0 to address some security issues identified in
OAuth 1.0.

will not detect the legitimate Facebook applications exploited by
collusion networks.

Twitter applications are also abused to launch spam campaigns.
For example, Stringhini et al. [53] and Thomas et al. [56] showed
that Twitter spammers rely on third-party applications to gain con-
trol of user accounts. Twitter blocks the third-party applications
that are used by spammers; however, spammers periodically create
new applications to overcome this problem [53]. Note that Face-
book collusion networks studied in our work do not create new
applications; instead, they exploit existing legitimate third-party
applications for access token leakage and abuse.

7.2 Honeypots
Honeypots have proven to be an effective tool to study reputation
manipulation in online social networks. The basic principle of hon-
eypots is to bait and deceive fraudsters for understanding their
activities. In a seminal work, Webb et al. [62] introduced the idea of
using honeypots to study spam in online social networks. They used
51 honeypot accounts on MySpace to identify 1,570 bogus accounts
over the course of 5 months. Lee et al. [42] used an undisclosed
number of honeypot accounts on Twitter to identify 500 bogus
accounts over the course of 2 months. Stringhini et al. [52] used
900 honeypot accounts on Facebook, MySpace, and Twitter to iden-
tify 15,762 bogus accounts over the course of 12 months. Boshmaf
et al. [27] designed and deployed a Socialbot network consisting
of approximately 100 interactive honeypot accounts to infiltrate
more than 8,000 Facebook users with a success rate of up to 80%.
Wang et al. [60] paid users on two crowdturfing websites in China
(zhubajie.com and sandaha.com) to post spam messages to Weibo,
QQ instant message groups, and discussion forums. Cristofaro et
al. [29] paid 4 different Facebook like farms to like their honey-
pot Facebook pages, and identified 4,145 bogus accounts over the
course of 15 days. Viswanath et al. [58] paid black-market services
and collusion networks to like their honeypot Facebook pages, and
identified 5,647 bogus accounts. Aggarwal et al. [22] created honey-
pot accounts on Twitter to acquire more than 170K followers from
57 different premium and freemium collusion services on Twitter.
Song et al. [50] paid 9 different crowdturfing services to get more
than 19K retweets on the tweets posted by their honeypot Twitter
accounts. Some Twitter black-market and collusion services ask for
users’ credentials, while others ask a user to install their third-party
applications with write permissions. In contrast, Facebook collusion
networks operate differently as they exploit security weaknesses
in legitimate Facebook applications.

The collusion networks studied by Viswanath et al. [58] (ad-
dmefast.com and likesasap.com) use a web-based credit system to
perform reputation manipulation on Facebook, Twitter, YouTube,
and SoundCloud. These collusion networks require users to manu-
ally perform and report their reputation manipulation activities to
receive credit. In contrast, Facebook collusion networks studied in
our work are fully automated using the Facebook Graph API; thus,
the scale of their reputation manipulation activities is much larger
than addmefast.com and likesasap.com. In contrast to prior work,
we deploy honeypot accounts to join collusion networks and milk
them by repeatedly requesting likes on the posts of our honeypot
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accounts. An in-depth investigation of these large-scale Facebook
collusion networks is lacking in prior literature.

7.3 Detecting Reputation Manipulation
There is a large body of research on detecting reputation manipu-
lation in online social networks. Lee et al. [42] trained a machine
learning classifier based on content features, social graph char-
acteristics, and posting patterns to detect spammers on MySpace
and Twitter. Stringhini et al. [52] trained a machine learning clas-
sifier based on features such as message similarity and URL ratio
to detect spammers on Facebook and Twitter. Viswanath et al. [58]
designed a Principal Component Analysis (PCA) based technique
to detect anomalous Facebook accounts based on features such
as timeseries of like count and distribution of liked pages across
content categories. Boshmaf et al. [26] detected fake accounts on
Facebook and Tuenti by predicting targets based on features such
as gender, number of friends, time since last update, etc. Song et
al. [50] trained a machine learning classifier to detect reputation
manipulation targets on Twitter based on features such as retweet
time distribution, ratio of the most dominant application, number
of unreachable retweeters, and number of received clicks. Jian et al.
[40] proposed an outlier detection approach to detect synchronized
and rare activity patterns on Twitter and Weibo. Recent studies
have also proposed graph based algorithms to detect reputation
manipulation[24, 28, 34]. Beutel et al. [24] proposed a bipartite
graph clustering algorithm to detect suspicious lockstep activity
patterns on Facebook. Cao et al. [28] proposed graph clustering
algorithm to detect large groups of malicious accounts that act
similarly for a sustained period of time on Facebook and Instagram.
Hooi et al. [34] proposed a camouflage-resistant bipartite graph
clustering algorithm to detect fraudulent users in online social
networks.

These methods can be leveraged to detect both collusion net-
work member accounts and their reputation manipulation activities.
However, collusion networks are different in the sense that the ac-
counts used for fraudulent activities are not all fake. Our manual
analysis of collusion network accounts indicated that many ac-
counts likely belong to real users who voluntarily allow collusion
networks to conduct reputation manipulation on their behalf. As
our experiments shows, these colluding accounts are hard to detect
because they mix real and fake activity.

8 CONCLUDING REMARKS
We presented a comprehensive measurement study of collusion-
based reputation manipulation services on Facebook. We made
three major contributions. First, we uncovered that collusion net-
works exploit Facebook applications with weak security settings to
retrieve access tokens and abuse them for reputation manipulation.
Second, we deployed honeypots to understand the operations of
collusion networks and to demonstrate the scale of the problem.
We were able to identify more than one million active collusion net-
work members. Third, we implemented a series of countermeasures
to effectively thwart the operations of collusion networks.

Our results raise a number of questions that motivate future
research. First, we would like to investigate potential access token
leakage and abuse on other popular online services that implement

OAuth 2.0. For instance, YouTube, Instagram, and SoundCloud
implement OAuth 2.0 to support third-party applications. Second,
in addition to reputation manipulation, attackers can launch other
serious attacks using leaked access tokens. For example, attackers
can steal personal information of collusion network members as
well as exploit their social graph to propagate malware. We plan to
investigate other possible attacks as well. Third, while our simple
countermeasures have been effective now for more than six months,
collusion networks may start using more sophisticated approaches
to evade them in future. We plan to investigate more sophisticated
machine learning based approaches to robustly detect access token
abuse. We are also interested in developing methods to detect and
remove reputation manipulation activities of collusion network
members. Finally, a deeper investigation into the economic aspects
of collusion networks may reveal operational insights that can be
leveraged to limit their financial incentives.

ACKNOWLEDGMENTS
We would like to thank Usama Naseer, Minhaj-Us-Salam Khan, and
Mohammad Raza Hussain for their help with an initial investiga-
tion of the problem. We would also like to thank our shepherd,
Andrew Moore, and the anonymous reviewers for their useful feed-
back on this paper. This work is supported in part by the National
Science Foundation under grant number CNS-1715152 and by an
unrestricted gift from Facebook.

REFERENCES
[1] Access Tokens. https://developers.facebook.com/docs/facebook-login/

access-tokens.
[2] Alexa - Actionable Analytics for the Web. http://www.alexa.com.
[3] App Review. https://developers.facebook.com/docs/apps/review.
[4] Death By Captcha | Best and cheapest captcha service. http://www.

deathbycaptcha.com/.
[5] Facebook - Annual Report. http://investor.fb.com/secfiling.cfm?filingID=

1326801-16-43&CIK=1326801.
[6] Facebook Apps Leaderboard. http://www.appdata.com/leaderboard/apps.
[7] Facebook Login for Apps - Developer Documentation. https://developers.

facebook.com/docs/facebook-login.
[8] Facebook’s F8 developers conference by the numbers. http://fortune.com/2015/

03/25/facebook-f8-developers-conference-numbers/.
[9] Ghostery Tracker Browser Extension. https://www.ghostery.com/our-solutions/

ghostery-browser-extention/.
[10] Google Trends. https://www.google.com/trends/.
[11] Graph API Reference /object/likes. https://developers.facebook.com/docs/

graph-api/reference/v2.9/object/likes.
[12] Internet Archive: Wayback Machine. https://archive.org/web/.
[13] Login Security - Facebook Login. https://developers.facebook.com/docs/

facebook-login/security.
[14] Manually Build a Login Flow - Facebook Login. https://developers.facebook.com/

docs/facebook-login/manually-build-a-login-flow.
[15] Natural Language Toolkit. http://www.nltk.org.
[16] OAuth 2.0 Threat Model and Security Considerations. https://tools.ietf.org/html/

rfc6819.
[17] Python SDK for Facebook’s Graph API. https://github.com/mobolic/

facebook-sdk.
[18] Securing Graph API Requests. https://developers.facebook.com/docs/graph-api/

securing-requests.
[19] Selenium - Web Browser Automation. http://www.seleniumhq.org/.
[20] WhoisGuard: Protect your privacy using WhoisGuard (Whois protection). http:

//www.whoisguard.com/.
[21] 2016. Twitter Inc. - Quarterly Report. http://files.shareholder.com/downloads/

AMDA-2F526X/3022492942x0xS1564590-16-21918/1418091/filing.pdf. (August
2016).

[22] Anupama Aggarwal and Ponnurangam Kumaraguru. 2015. What they do in
shadows: Twitter underground follower market. In 13th IEEE Annual Conference
on Privacy, Security and Trust (PST).



IMC ’17, November 1–3, 2017, London, United Kingdom Farooqi et al.

[23] Sumayah Alrwais, Xiaojing Liao, Xianghang Mi, Peng Wang, XiaoFeng Wang,
Feng Qian, Raheem Beyah, and Damon McCoy. 2017. Under the Shadow of Sun-
shine: Understanding and Detecting Bulletproof Hosting on Legitimate Service
Provider Networks. In IEEE Symposium on Security and Privacy.

[24] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Chris-
tos Faloutsos. 2013. CopyCatch: Stopping Group Attacks by Spotting Lockstep
Behavior in Social Networks. In WWW.

[25] Leyla Bilge, Thorsten Strufe, Davide Balzarotti, and Engin Kirda. 2009. All Your
Contacts Are Belong to Us: Automated Identity Theft Attacks on Social Networks.
In WWW.

[26] Yazan Boshmaf, Dionysios Logothetis, Georgos Siganos, Jorge Leria, Jose Lorenzo,
Matei Ripeanu, and Konstantin Beznosov. 2015. Integro: Leveraging Victim
Prediction for Robust Fake Account Detection in OSNs. In NDSS.

[27] Yazan Boshmaf, Ildar Muslukhov, Konstantin Beznosov, and Matei Ripeanu. 2011.
The socialbot network: when bots socialize for fame and money. In ACM ACSAC.

[28] Qiang Cao, Xiaowei Yang, Jieqi Yu, and Christopher Palow. 2014. Uncovering
Large Groups of Active Malicious Accounts in Online Social Networks. In ACM
CSS.

[29] Emiliano De Cristofaro, Arik Friedman, Guillaume Jourjon, Mohamed Ali Kaafar,
and M. Zubair Shafiq. 2014. Paying for Likes?: Understanding Facebook Like
Fraud Using Honeypots. In ACM Internet Measurement Conference (IMC).

[30] Ed. D. Hardt. 2012. The OAuth 2.0 Authorization Framework. IETF RFC 6749.
(October 2012).

[31] ED. E. Hammer-Lahav. 2010. The OAuth 1.0 Protocol. IETF RFC 5849. (April
2010).

[32] Daniel Fett, Ralf Kusters, and Guido Schmitz. 2016. A Comprehensive Formal
Security Analysis of OAuth 2.0. In ACM CCS.

[33] Eran Hammer. OAuth 2.0 and the Road to Hell. https://hueniverse.com/
oauth-2-0-and-the-road-to-hell-8eec45921529.

[34] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos
Faloutsos. 2016. FRAUDAR: Bounding Graph Fraud in the Face of Camouflage.
In ACM KDD.

[35] Pili Hu, Ronghai Yang, Yue Li, and Wing Lau. 2014. Application impersonation:
problems of OAuth and API design in online social networks. In ACM COSN.

[36] Luca Invernizzi, Paolo Milani, Stefano Benvenuti, Christopher Kruegel, Marco
Cova, andGiovanni Vigna. 2012. EvilSeed: A guided approach to findingmalicious
web pages. In IEEE Symposium on Security and Privacy.

[37] Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. 2017. The Ad Wars: Retrospec-
tive Measurement and Analysis of Anti-Adblock Filter Lists. In ACM Internet
Measurement Conference (IMC).

[38] Tom N. Jagatic, Nathaniel A. Johnson, Markus Jakobsson, and Filippo Menczer.
2007. SOCIAL PHISHING. Commun. ACM (2007).

[39] Mobin Javed, Cormac Herley, Marcus Peinado, and Vern Paxson. 2015. Measure-
ment and Analysis of Traffic Exchange Services. In ACM Internet Measurement
Conference (IMC).

[40] Meng Jian, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. 2014.
CatchSync: catching synchronized behavior in large directed graphs. In ACM
KDD.

[41] Daniel Jurafsky, James H. Martin, Peter Norvig, and Stuart Russell. 2014. Speech
and Language Processing. Pearson.

[42] Kyumin Lee, James Caverlee, and Steve Webb. 2010. Uncovering social spammers:
social honeypots + machine learning. In ACM SIGIR.

[43] Andreas Makridakis, Elias Athanasopoulos, Spiros Antonatos, Demetres Anto-
niades, Sotiris Ioannidis, and Evangelos P. Markatos. 2010. Understanding the
behavior of malicious applications in social networks. IEEE Network 24, 5 (2010),
14–19.

[44] Muhammad Haris Mughees, Zhiyun Qian, and Zubair Shafiq. 2017. Detecting
Anti Ad-blockers in the Wild. In Privacy Enhancing Technologies Symposium
(PETS).

[45] Rishab Nithyanand, Sheharbano Khattak, Mobin Javed, Narseo Vallina-Rodriguez,
Marjan Falahrastegar, Julia E. Powles, Emiliano De Cristofaro, Hamed Haddadi,
and Steven J. Murdoch. 2016. Adblocking and Counter-Blocking: A Slice of
the Arms Race . In USENIX Workshop on Free and Open Communications on the
Internet (FOCI).

[46] M. Zubair Rafique, Tom Van Goethem, Wouter Joosen, Christophe Huygens, and
Nick Nikiforakis. 2016. It’s Free for a Reason: Exploring the Ecosystem of Free
Live Streaming Services . In Network and Distributed System Security Symposium
(NDSS).

[47] Md Sazzadur Rahman, Ting-Kai Huang, Harsha V. Madhyastha, and Michalis
Faloutsos. 2012. FRAppE: Detecting Malicious Facebook Applications. In ACM
Conference on emerging Networking EXperiments and Technologies (CoNEXT).

[48] Sazzadur Rahman, Ting-Kai Huang, Harsha V. Madhyastha, , and Michalis Falout-
sos. 2016. Detecting Malicious Facebook Applications. IEEE/ACM Transactions
on Networking 24, 2 (2016), 773–787.

[49] Ethan Shernan, Henry Carter, Dave Tian, Patrick Traynor, and Kevin Butler. 2015.
More Guidelines Than Rules: CSRF Vulnerabilities from Noncompliant OAuth
2.0 Implementations. In Proceedings of the International Conference on Detection
of Intrusions & Malware, and Vulnerability Assessment (DIMVA).

[50] Jonghyuk Song, Sangho Lee, and Jong Kim. 2015. CrowdTarget: Target-based
Detection of Crowdturfing in Online Social Networks. In ACM CCS.

[51] Tao Stein, Erdong Chen, and Karan Mangla. 2011. Facebook immune system. In
Workshop on Social Network Systems (SNS).

[52] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. 2010. Detect-
ing Spammers on Social Networks. In Annual Computer Security Applications
Conference (ACSAC).

[53] Gianluca Stringhini, Gang Wang, Manuel Egele, Christopher Kruegel, Giovanni
Vigna, Haitao Zheng, and Ben Y. Zhao. 2013. Follow the Green: Growth and
Dynamics in Twitter Follower Markets. In ACM Internet Measurement Conference
(IMC).

[54] San-Tsai Sun and Konstantin Beznosov. 2012. The Devil is in the (Implementation)
Details: An Empirical Analysis of OAuth SSO Systems. In ACM CCS.

[55] Kurt Thomas, Dmytro latskiv, Elie Bursztien, Tadek Pietraszek, Chris Grier, and
Damon McCoy. 2014. Dialing Back Abuse on Phone Verified Accounts. In ACM
CCS.

[56] Kurt Thomas, Frank Li, Chris Grier, and Vern Paxson. 2014. Consequences of
Connectivity: Characterizing Account Hijacking on Twitter. In ACM CCS.

[57] K Thomas, DMcCoy, C Grier, A Kolcz, and V Paxson. 2013. Trafficking Fraudulent
Accounts: The Role of the Underground Market in Twitter Spam and Abuse. In
USENIX Security Symposium.

[58] Bimal Viswanath, M. Ahmad Bashir, Mark Crovella, Saikat Guha, Krishna P.
Gummadi, Balachander Krishnamurthy, and Alan Mislove. 2014. Towards De-
tecting Anomalous User Behavior in Online Social Networks. In USENIX Security
Symposium.

[59] GangWang, TianyiWang, Haitao Zheng, and Ben Y. Zhao. 2014. Man vs. Machine:
Practical Adversarial Detection of Malicious Crowdsourcing Workers. In USENIX
Security Symposium.

[60] Gang Wang, Christo Wilson, Xiaohan Zhao, Yibo Zhu, Manish Mohanlal, Haitao
Zheng, and Ben Y. Zhao. 2012. Serf and Turf: Crowdturfing for Fun and Profit. In
WWW.

[61] Rui Wang, Yuchen Zhou, Shuo Chen, Shaz Qadeer, David Evans, and Yuri Gure-
vich. 2013. Explicating SDKs: Uncovering Assumptions Underlying Secure Au-
thentication and Authorization. In USENIX Security Symposium.

[62] Steve Webb, James Caverlee, and Calton Pu. 2008. Social Honeypots: Making
Friends With A Spammer Near You. In Collaboration, Electronic messaging, Anti-
Abuse and Spam Conference (CEAS).

[63] Haitao Xu, Daiping Liu, Haining Wang, and Angelos Stavrou. 2015. E-commerce
Reputation Manipulation: The Emergence of Reputation-Escalation-as-a-Service.
In WWW.

[64] Haifeng Yu, Phillip B. Gibbons, Michael Kaminsky, and Feng Xiao. 2008. Sybil-
Limit: A Near-Optimal Social Network Defense against Sybil Attacks. In IEEE
Symposium on Security and Privacy.

[65] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham Flaxman. 2006.
SybilGuard: defending against sybil attacks via social networks. In ACM SIG-
COMM.

[66] Yuchen Zhou and David Evans. 2014. SSOScan: Automated Testing of Web
Applications for Single Sign-On Vulnerabilities. In USENIX Security Symposium.


