NOTES FOR 02/16 CLASS (#3, §12.1)

Definition. For any domain \(R \) the rank of an \(R \)-module \(M \) is the maximum number of \(R \)-linearly independent elements of \(M \).

Problem. Let \(A \), and \(B \) be \(R \)-modules of ranks \(m \) and \(n \), respectively. Prove that the rank of \(A \oplus B \) is \(m + n \).

Proof. Let \(\mathcal{L}_A = \{x_1, x_2, \ldots, x_m\} \) be a maximal set of \(R \)-linearly independent elements of \(A \), and let \(\mathcal{L}_B = \{y_1, y_2, \ldots, y_n\} \) be a maximal set of \(R \)-linearly independent elements of \(B \). Let \(\mathcal{L}_A' = \{(x_1,0),(x_2,0),\ldots,(x_m,0)\} \), and \(\mathcal{L}_B' = \{(y_1,0),(y_2,0),\ldots,(y_n,0)\} \). Then \(\mathcal{L}_A' \cup \mathcal{L}_B' \) is a linearly independent subset of \(A \oplus B \). Let \(N \) be the submodule generated by them. We claim that \(A \oplus B/N \) is a torsion \(R \)-module. Let \((a,b)\) be any element in \(A \oplus B \). By #2, (a) in Section 12.1, we know that there exists a nonzero \(r_1 \in R \) such that \(r_1a \) belongs to the submodule generated by \(\mathcal{L}_A \), and there exists a nonzero \(r_2 \in R \) such that \(r_2b \) belongs to the submodule generated by \(\mathcal{L}_B \). Consequently, if \(r = r_1r_2 \), then \(r \) is nonzero and \(r(a,b) \in N \). This proves the claim, and according to #2, (b), it implies that the rank of \(A \oplus B \) is \(m + n \). \(\square \)