§14.2, 11. We may suppose that \(f(x) \) is monic, and by Gauss’ lemma is irreducible. Therefore \([K : \mathbb{Q}] = 4 \). Let \(L \) be the splitting field of \(f \), then \(L \supset K \) and it is given that \(G(L/\mathbb{Q}) = S_4 \). Then any proper subfield \(M \) of \(K \) should be a quadratic extension of \(\mathbb{Q} \). Then the subgroup corresponding to \(M \), under the fundamental theorem of Galois theory, is of index 2 and hence should be \(A_4 \). Then \(G(L/K) \) is a subgroup of \(A_4 \) of index 2 which is not possible. (See page 111, Fig 8.)

§14.2, 12. The roots of \(f(x) = x^4 - 14x^2 + 9 \) are \(\pm \alpha, \pm \beta \), where \(\alpha = \sqrt{7 + 2\sqrt{10}} \) and \(\beta = \sqrt{7 - 2\sqrt{10}} \). Then the discriminant of \(f(x) \) is \(4\alpha\beta(\alpha^2 - \beta^2) = 4 \cdot 3 \cdot 16 \cdot 10 \) which is not a square in \(\mathbb{Q} \). Hence the Galois group of \(f(x) \) is \(S_4 \).

§14.3, 8. We have seen (in an earlier HW) that \(f(x) = x^p - x - a \) is irreducible and separable over \(\mathbb{F}_p \). If \(\alpha \) is a root of \(f(x) \), then so is \(\alpha + b, b = 1, 2, \cdots, p - 1 \). Thus \(\mathbb{F}_p(\alpha) \) is the splitting field of \(f(x) \) and its degree over \(\mathbb{F}_p \) is \(p \). We know that there is a Galois automorphism \(\sigma \) that maps \(\alpha \mapsto \alpha + 1 \). Then \(\sigma^i(\alpha) = \alpha + i, i = 1, 2, \cdots, p - 1 \). Moreover, for \(i \neq j \), \(\sigma^i \neq \sigma^j \), whence the Galois group of \(f(x) \) is a cyclic group generated by \(\sigma \).

§14.3, 9, 9]

a. For any \(x \in \mathbb{F}_q \), since \(x^q - x = 0 \), we have \(\sigma_q(x) = x^{p^m} = x \).

b. Any finite extension of \(\mathbb{F}_q \) of degree \(n \) is a finite field of cardinality \(q^n = p^{mn} \). Hence, such an extension is the splitting field of \(x^{p^m} - x \) over \(\mathbb{F}_p \), and hence the splitting field of \(x^q - x \) over \(\mathbb{F}_q \). Thus any extension of degree \(n \) (over \(\mathbb{F}_q \)) is the finite field \(\mathbb{F}_{q^n} \).

c. It is clear that \(\sigma_q^n = 1 \) since \(x^{q^n} - x = 0 \) for all \(x \in \mathbb{F}_{q^n} \). No lesser power of \(\sigma_q \) can be identity, for if \(\sigma_q^i = 1, i < n \), then \(x^{q^i} - x = 0 \) for all \(x \in \mathbb{F}_{q^n} \) which is impossible since there are only \(q^i \) roots of this equation. Thus \(\mathbb{F}_{q^n} \) is a cyclic extension of \(\mathbb{F}_q \).

d. By the fundamental theorem of Galois theory subfields \(L, \mathbb{F}_q \subset L \subset \mathbb{F}_{q^n} \), are in bijective correspondence with subgroups of \(G = G(\mathbb{F}_{q^n}/\mathbb{F}_q) \). Since \(G \) is cyclic of order \(n \), these are in turn is in bijective correspondence with the divisors \(d \) of \(n \).
§14.6, 2a. The Galois group is cyclic of order 2.

§14.6, 2d. The Galois group is A_3. (One checks that the determinant is a square.)

§14.6, 11. We know that the order of the Galois group G is > 4, and hence $G \simeq S_4, A_4$, or D_8.

§14.6, 13. We use the discussion in page 614-615 to do this problem. The roots of the resolvent cubic are $0, -(\alpha + \beta)^2, -(\alpha - \beta)^2$. In particular the resolvent cubic is reducible over \mathbb{Q}. We also have $f(x) = (x^2 - \alpha^2)(x^2 - \beta^2)$, $\alpha^2 + \beta^2 = -a$ and $\alpha^2 \beta^2 = b$. Further $D = 16\alpha^2 \beta^2(\alpha^2 - \beta^2)^4$.

a. This is a straightforward calculation. Check it yourself.

b(i). $G \simeq V$ if and only if the resolvent cubic is a product of linear factors. This is valid if and only if $\alpha \beta \in \mathbb{Q}$.

c(ii),(iii). We know that $G \simeq D_8$ or C if and only if the resolvent cubic splits into a linear and a quadratic polynomial which is equivalent to $\alpha \beta \notin \mathbb{Q}$ (i.e. b is not a square). Further the subgroup corresponding to $\mathbb{Q}(\sqrt{D}) \subset \text{spl}(f)$ is $G \cap A_4$. (Note that D is not a square in \mathbb{Q} if $G \simeq D_8$ or C, and we have $\mathbb{Q}(\sqrt{D}) = \mathbb{Q}(\alpha \beta)$ in this case.) Moreover, in either cases, we see that $\mathbb{Q}(\alpha \beta)$ is the splitting field of the resolvent cubic since $\alpha^2 + \beta^2 = -a \in \mathbb{Q}$. Now, if $G \simeq C$ with generator σ, where σ maps $\alpha \mapsto -\beta$ and $\beta \mapsto -\sigma$ since $\sigma(\alpha \beta) = -\alpha \beta$. Thus the element $\alpha \beta(\alpha^2 - \beta^2)$ is fixed by σ and hence by G. This implies that $\alpha \beta(\alpha^2 - \beta^2) \in \mathbb{Q}$, or in other words $b(a^2 - 4b)$ is a square. If $G \simeq D_8$, let τ be the automorphism that maps $\alpha \mapsto \beta$. Then in fact $G = \{< \sigma, \tau >; \sigma^4 = \tau = 1; \sigma \tau = \tau \sigma^3\}$. But τ doesn’t fix $\alpha \beta(\alpha^2 - \beta^2)$, and therefore $b(a^2 - 4b)$ is not a square.