Chapter 14

The following exercise computes the Galois group of \(spl(x^4 - 2x^2 - 2) \) over \(\mathbb{Q} \) in several steps. We keep the notation in the text. (See page 582.)

16. a. Let \(f(x) = x^4 - 2x^2 - 2 \). By the Eisenstein’s criterion, \(f(x) \) is irreducible in \(\mathbb{Z}[x] \), and by Gauss’ Lemma (see Corollary 6, pg 304) \(f(x) \) is irreducible over \(\mathbb{Q} \).

b. This is straightforward to check.

c. Note that \(K_1 \subset \mathbb{R} \). If \(K_1 = K_2 \), then \(\alpha_2 \in K_1 \), and this implies that \(\alpha_1 \alpha_2 \in K_1 \). However, \(\alpha_1 \alpha_2 \) \((= 2\sqrt{-1})\) is a complex number. Thus \(K_1 \neq K_2 \). It is clear that \(\mathbb{Q}(\sqrt{3}) \subset K_1 \cap K_2 \) since \(\frac{\alpha_1^2 - \alpha_2^2}{2} = \sqrt{3} \). Hence \([K_1 \cap K_2 : \mathbb{Q}] \geq 2 \). On the other hand \([K_1 : \mathbb{Q}] = 4 \), consequently \([K_1 \cap K_2 : \mathbb{Q}] = 2, 4 \). Since \(K_1 \neq K_2 \), we see that \(K_1 \cap K_2 = \mathbb{Q}(\sqrt{3}) \) as they are both of degree 2 over \(\mathbb{Q} \), and \(\mathbb{Q}(\sqrt{3}) \subset K_1 \cap K_2 \). Since the splitting field of a polynomial is generated by all the roots, it is also clear that \(K_1 K_2 = \mathbb{Q}(\sqrt{3}) \).

d. Let \(F = \mathbb{Q}(\sqrt{3}) = K_1 \cap K_2 \). Since \(K_1/F \) and \(K_2/F \) are quadratic extensions, and \(\text{char}(F) \neq 2 \), it follows that they are both Galois extensions, and hence the compositum \(K_1 K_2 \) is also Galois over \(F \). It is in fact clear that \(K_1 = F(\alpha_1), K_2 = F(\alpha_2) \), and \(K_1 K_2 = F(\alpha_1, \alpha_2) \). Now let \(G = G(K_1 K_2/F) \). For any \(\rho \in G \), since \(\alpha_1^2, \alpha_2^2 \in F \), we see that \(\rho(\alpha_1) = \pm \alpha_1 \) and \(\rho(\alpha_2) = \pm \alpha_2 \). Moreover, any such \(\rho \) is completely determined by its action on \(\{\alpha_1, \alpha_2\} \). Let \(\sigma \in G \) be the element which maps \(\alpha_1 \mapsto -\alpha_1 \) and fixes \(\alpha_2 \); let \(\tau \in G \) be the element which maps \(\alpha_2 \mapsto -\alpha_2 \) and fixes \(\alpha_1 \). Then \(\sigma^2 = \tau^2 = 1 \); and \(\sigma \tau = \tau \sigma \). Thus \(G \) is the Klein 4-group

\[G = \{1, \sigma, \tau, \sigma \tau : \sigma^2 = \tau^2 = 1; \sigma \tau = \tau \sigma\} \]

In particular \([K_1 K_2 : F] = 4 \). All the subgroups of \(G \) are given by

\[\{1\}, H_1 = \{1, \sigma\}, h_2 = \{1, \tau\}, H_3 = \{1, \sigma \tau\}, G \]

Using the fact that any element in \(K_1 K_2 \) can be written uniquely in the form

\[a + b\alpha_1 + c\alpha_2 + d\alpha_1 \alpha_2, a, b, c, d \in F. \]
we can determine all the fixed subfields of K_1K_2 containing F:

\[
(K_1K_2)^{\{1\}} = K_1K_2 \\
(K_1K_2)^{H_1} = K_2 \\
(K_1K_2)^{H_2} = K_1 \\
(K_1K_2)^{H_3} = F(\alpha_1\alpha_2) = F(\sqrt{-2}) \\
(K_1K_2)^G = F
\]

e. We have already observed that K_1K_2 is the splitting field of $f(x)$ over \mathbb{Q}. Since $[K_1K_2 : \mathbb{Q}] = [K_1K_2 : F][F : \mathbb{Q}]$, we see that $[K_1K_2 : \mathbb{Q}] = 8$. Now let r be the automorphism of K_1K_2 over \mathbb{Q} which maps $\alpha_1 \mapsto \alpha_2 \mapsto -\alpha_1 \mapsto -\alpha_2$. It is easily verified that r is of order 4 (check this!). Let s be the automorphism of K_1K_2 over \mathbb{Q} that permutes $\{\alpha_1, \alpha_2\}$; in particular s is of order 2. Further $rs = sr^{-1}$ since they agree on the generators $\{\alpha_1, \alpha_2\}$. Hence $G(K_1K_2/\mathbb{Q})$ is the dihedral group D_8.