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Abstract. We study subcoalgebras of path coalgebras that are spanned by

paths (called path subcoalgebras) and subcoalgebras of incidence coalgebras,

and propose a unifying approach for these classes. We discuss the left quasi-

co-Frobenius and the left co-Frobenius properties for these coalgebras. We

classify the left co-Frobenius path subcoalgebras, showing that they are di-

rect sums of certain path subcoalgebras arising from the infinite line quiver or

from cyclic quivers. We investigate which of the co-Frobenius path subcoalge-

bras can be endowed with Hopf algebra structures, in order to produce some

quantum groups with non-zero integrals, and we classify all these structures

over a field with primitive roots of unity of any order. These turn out to be

liftings of quantum lines over certain not necessarily abelian groups.

1. Introduction and Preliminaries

Let K be an arbitrary field. A quadratic algebra is a quotient of a free non-
commutative algebra K < x1, . . . , xn > in n variables by an ideal I gener-
ated by elements of degree 2. The usual commutative polynomial ring is such
an example, with I generated by xixj − xjxi. Quadratic algebras are impor-
tant in many places in mathematics, and one relevant class of such objects con-
sists of Koszul algebras and Koszul duals of quadratic algebras. More generally,
one can consider quotients K < x1, . . . , xn > /I for ideals I generated by ho-
mogeneous elements. Several algebras occur in this way in topology, noncom-
mutative geometry, representation theory, or theoretical physics (see the exam-
ples and references in [7]). Such are the cubic Artin-Schreier regular algebras
C < x, y > /(ay2x+byxy+axy2 +cx3, ax2y+bxyx+ayx2 +xy3) in noncommuta-
tive projective algebraic geometry (see [3]), the skew-symmetrizer killing algebras
C < x1, . . . , xn > /(

∑
σ∈Σp

sgn(σ)xiσ(1) . . . xiσ(p)) (the ideal we factor by has
(
n
p

)
generators, each one corresponding to some fixed 1 ≤ i1 < . . . < ip ≤ n) for a
fixed 2 ≤ p ≤ n, in representation theory (see [6]), or the Yang-Mills algebras
C < ∇0, . . . ,∇n > /(

∑
λ,µ g

(λ,µ)[∇λ[∇µ,∇ν ]]) (with (g(λ,µ))λ,µ an invertible sym-
metric real matrix, and the ideal we factor by has n+ 1 generators, as 0 ≤ ν ≤ n)
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in theoretical physics (see [14]), to name a few. More generally, one could start
with a quiver Γ, and define path algebras with relations by taking quotients of
the path algebra K[Γ] by an ideal (usually) generated by homogeneous elements,
which are obtained as linear combinations of paths of the same length. Note that
the examples above are of this type: the free algebra with n elements can be
thought as the path algebra of the quiver Γ with one vertex 1 (which becomes
the unit in the algebra) and n arrows x1, . . . , xn starting and ending at 1; the
relations are then given by linear combinations of paths of the same length. This
approach, for example, allows the generalization of N-Koszulity to quiver algebras
with relations, see [18].

We aim to study a general situation which is dual to the ones above, but is also
directly connected to it. If Γ is a quiver, the path algebra K[Γ] of Γ plays an
important role in the representation theory of Γ. The underlying vector space of
the path algebra also has a coalgebra structure, which we denote by KΓ and call
the path coalgebra of Γ. One motivation for replacing path algebras by path coal-
gebras is the following: given an algebra A, and its category of finite dimensional
representations, one is often lead to considering the category Ind(A) generated
by all these finite dimensional representations (direct limits of finite dimensional
representations). Ind(A) is well understood as the category of comodules over
the finite dual coalgebra A0 of A (also called the algebra of representative func-
tions on A), and it cannot be regarded as a full category of modules over a ring
unless A is finite dimensional. Such situations extend beyond the realm of pure
algebra, encompassing representations of compact groups, affine algebraic groups
or group schemes, differential affine groups, Lie algebras and Lie groups, infinite
tensor categories etc.

Another reason for which the study of path coalgebras is interesting is that any
pointed coalgebra embeds into the path coalgebra of the associated Gabriel quiver,
see [24], [12]. On the other hand, if X is a locally finite partially ordered set, the
incidence coalgebra KX provides a good framework for interpreting several com-
binatorial problems in terms of coalgebras, as explained by Joni and Rota in [22].
There are several features common to path coalgebras and incidence coalgebras.
They are both pointed, the group-like elements recover the vertices of the quiver,
respectively the points of the ordered set, the injective envelopes of the simple
comodules have similar descriptions, etc. Moreover, as we show later in Section 5,
Proposition 5.1, any incidence coalgebra embeds in a path coalgebra, and in many
situations, it has a basis where each element is a sum of paths of the same length.
We note that this is precisely the dual situation to that considered above: for
algebras, one considers a path algebra with homogeneous relations, that is K[Γ]
quotient out by an ideal generated by homogeneous elements, i.e. sums of paths
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of the same length, with coefficients. For a coalgebra, one considers subcoalge-
bras of the path coalgebra of Γ such that the coalgebra has a basis consisting of
linear combinations of paths of the same length (“homogeneous” elements; more
generally, a coalgebra generated by such elements).

In this paper we study Frobenius type properties for path coalgebras, incidence
coalgebras and certain subcoalgebras of them. Recall that a coalgebra C is called
left co-Frobenius if C embeds in C∗ as a left C∗-module. Also, C is called left
quasi-co-Frobenius if C embeds in a free module as a left C∗-module. The (quasi)-
co-Frobenius properties are interesting for at least three reasons. Firstly, coalge-
bras with such properties have rich representation theories. Secondly, for a Hopf
algebra H, it is true that H is left quasi-co-Frobenius if and only if H is left co-
Frobenius, and this is also equivalent to H having non-zero left (or right) integrals.
Co-Frobenius Hopf algebras are important since they generalize the algebra of rep-
resentative functions R(G) on a compact group G, which is a Hopf algebra whose
integral is the left Haar integral of G. Moreover, more recent generalizations of
these have been made to compact and locally compact quantum groups (whose
representation categories are not necessarily semisimple). Thus co-Frobenius coal-
gebras may be the underlying coalgebras for interesting quantum groups with
non-zero integrals. Thirdly, by keeping in mind the duality with Frobenius alge-
bras in the finite dimensional case, co-Frobenius coalgebras have connections to
topological quantum field theory.

We propose an approach leading to similar results for path coalgebras and in-
cidence coalgebras, and which also points out the similarities between these as
mentioned above. It will follow from our results that a path coalgebra (or an
incidence coalgebra) is left (quasi)-co-Frobenius if and only if the quiver consists
only of isolated points, i.e. the quiver does not have arrows (respectively the or-
der relation is the equality). Thus the left co-Frobenius coalgebras arising from
path coalgebras or incidence coalgebras are just grouplike coalgebras. In order to
discover more interesting left co-Frobenius coalgebras, we focus our attention to
classes of coalgebras larger than just path coalgebras and incidence coalgebras. On
one hand we consider subcoalgebras of path coalgebras which have a linear basis
consisting of paths. We call these path subcoalgebras. On the other hand, we look
at subcoalgebras of incidence coalgebras; any such coalgebra has a basis consisting
of segments. In Section 2 we apply a classical approach to the (quasi)-co-Frobenius
property. It is known that a coalgebra C is left co-Frobenius if and only if there
exists a left non-degenerate C∗-balanced bilinear form on C. Also, C is left quasi-
co-Frobenius if and only if there exists a family (βi)i∈I of C∗-balanced bilinear
forms on C such that for any non-zero x ∈ C there is i ∈ I with βi(x,C) 6= 0. We
describe the balanced bilinear forms on path subcoalgebras and subcoalgebras of
incidence coalgebras. Such a description was given in [15] for the full incidence
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coalgebra, and in [5] for certain matrix-like coalgebras. In Section 3 we use this
description and an approach using the injective envelopes of the simple comodules
to show that a coalgebra lying in one of the two classes is left quasi-co-Frobenius
if and only if it is left co-Frobenius, and to give several equivalent conditions in-
cluding combinatorial ones (just in terms of paths of the quiver, or segments of
the ordered set).
In Section 4 we classify all possible left co-Frobenius path subcoalgebras. We con-
struct some classes of left co-Frobenius coalgebras K[A∞, r] and K[A0,∞, r] start-
ing from the infinite line quiver A∞, and a class of left co-Frobenius coalgebras
K[Cn, s] starting from cyclic quiver Cn. Our result says that any left co-Frobenius
path subcoalgebra is isomorphic to a direct sum of coalgebras of types K[A∞, r],
K[A0,∞, r], K[Cn, s] or K, with special quivers A∞,A0,∞,Cn and r, s being cer-
tain general types of functions on these quivers. For subcoalgebras of incidence
coalgebras we do not have a complete classification in the left co-Frobenius case.
We show in Section 5 that more complicated examples than the ones in the path
subcoalgebra case can occur for subcoalgebras of incidence coalgebras, and a much
larger class of such coalgebras is to be expected. Also, we give several examples
of co-Frobenius subcoalgebras of path coalgebras, which are not path subcoalge-
bras, and moreover, examples of pointed co-Frobenius coalgebras which are not
isomorphic to any one of the above mentioned classes. In Section 6 we discuss the
possibility of defining Hopf algebra structures on the path subcoalgebras that are
left and right co-Frobenius, classified in Section 4. The main reason for asking this
question is the interest in constructing quantum groups with non-zero integrals,
whose underlying coalgebras are path subcoalgebras. We answer completely this
question in the case where K contains primitive roots of unity of any positive or-
der. Thus we determine all possible co-Frobenius path subcoalgebras admitting a
Hopf algebra structure. Moreover, we describe up to an isomorphism all such Hopf
algebra structures. It turns out that they are liftings of quantum lines over cer-
tain not necessarily abelian groups. In particular, this also answers the question
of finding the Hopf algebra structures on finite dimensional path subcoalgebras
and on quotients of finite dimensional path algebras by ideals spanned by paths.
Our results contain, as particular cases, some results of [10], where finite quivers
Γ and finite dimensional path subcoalgebras C of KΓ are considered, such that C
contains all vertices and arrows of Γ. The co-Frobenius coalgebras of this type are
determined, and all Hopf algebra structures on them are described in [10]. These
results follow from our more general Theorem 4.6 and Theorem 6.4. We note that
Hopf algebra structures on incidence coalgebras have been of great interest for
combinatorics, see for example [25], [1]. We also note that the classification of
path coalgebras that admit a graded Hopf algebra structure was done in [13], see
also [17] for a different point of view on Hopf algebra structures on path algebras.
In particular, some of the examples in the classification have deep connections
with homological algebra: the monoidal category of chain s-complexes of vector
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spaces over K is monoidal equivalent to the category of comodules of K[A∞|s], a
subclass of the Hopf algebras classified here ([21, 8]).

We also note that the unifying approach we propose here seems to suggest that in
general for pointed coalgebras interesting methods and results could be obtained
provided one can find some suitable bases with properties resembling those of
paths in quiver algebras or segments in incidence coalgebras.

Throughout the paper Γ = (Γ0,Γ1) will be a quiver. Γ0 is the set of vertices,
and Γ1 is the set of arrows of Γ. If a is an arrow from the vertex u to the vertex
v, we denote s(a) = u and t(a) = v. A path in Γ is a finite sequence of arrows
p = a1a2 . . . an, where n ≥ 1, such that t(ai) = s(ai+1) for any 1 ≤ i ≤ n − 1.
We will write s(p) = s(a1) and t(p) = t(an). Also the length of such a p is
length(p) = n. Vertices v in Γ0 are also considered as paths of length zero, and we
write s(v) = t(v) = v. If q and p are two paths such that t(q) = s(p), we consider
the path qp by taking the arrows of q followed by the arrows of p. We denote by
KΓ the path coalgebra, which is the vector space with a basis consisting of all
paths in Γ, and comultiplication ∆ defined by ∆(p) =

∑
qr=p q ⊗ r for any path

p, and counit ε defined by ε(v) = 1 for any vertex v, and ε(p) = 0 for any path
of positive length. In particular, the arrows x between two vertices v and w, i.e.
s(x) = v, t(x) = w, are the nontrivial elements of Pw,v, the space of (w, v)-skew-
primitive elements: ∆(x) = v⊗x+x⊗w. When we use Sweedler’s sigma notation
∆(p) =

∑
p1 ⊗ p2 for a path p, we always take representations of the sum such

that all p1’s and p2’s are paths.
We also consider partially ordered sets (X,≤) which are locally finite, i.e. the
interval [x, y] = {z| x ≤ z ≤ y} is finite for any x ≤ y. The incidence K-coalgebra
of X, denoted by KX, is the K-vector space with basis {ex,y|x, y ∈ X,x ≤ y},
and comultiplication ∆ and counit ε defined by

∆(ex,y) =
∑

x≤z≤y

ex,z ⊗ ez,y

ε(ex,y) = δx,y

for any x, y ∈ X with x ≤ y, where by δx,y we denote Kronecker’s delta. The
elements ex,y are called segments. Again, when we use Sweedler’s sigma notation
∆(p) =

∑
p1⊗p2 for a segment p, we always take representations of the sum such

that all p1’s and p2’s are segments. Recall that the length of a segment ex,y is the
maximum length n of a chain x = z0 < z1 < · · · < zn = y

For basic terminology and notation about coalgebras and Hopf algebras we refer
to [16] and [23].
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2. Balanced bilinear forms for path subcoalgebras and for

subcoalgebras of incidence coalgebras

In the rest of the paper we will be interested in two classes of coalgebras more
general than path coalgebras and incidence coalgebras. Thus we will study

• Subcoalgebras of the path coalgebra KΓ having a basis B consisting of paths in
Γ. Such a coalgebra will be called a path subcoalgebra. Note that if p ∈ B, then
any subpath of p, in particular any vertex involved in p, lies in B.
• Subcoalgebras of the incidence coalgebra KX. By [15, Proposition 1.1], any such
subcoalgebra has a basis B consisting of segments ex,y, and moreover, if ex,y ∈ B
and x ≤ a ≤ b ≤ y, then ea,b ∈ B.

It is clear that for a coalgebra C of one of these two types, the distinguished basis
B consists of all paths (or segments) which are elements of C. Let C be a coalgebra
of one of these two types, with basis B as above. When we use Sweedler’s sigma
notation ∆(p) =

∑
p1 ⊗ p2 for p ∈ B, we always consider representations of the

sum such that all p1’s and p2’s are in B.
A bilinear form β : C × C → K is C∗-balanced if

(1)
∑

β(p2, q)p1 =
∑

β(p, q1)q2 for any p, q ∈ B

It is clear that (1) is equivalent to the fact that for any p, q ∈ B, the following
three conditions hold.

β(p2, q) = β(p, q1) for those of the p2
′s and the q1

′s such that p1 = q2(2)

β(p2, q) = 0 for those p2
′s for which p1 is not equal to any q2(3)

β(p, q1) = 0 for those q1
′s for which q2 is not equal to any p1(4)

In the following two subsections we discuss separately path subcoalgebras and
subcoalgebras of incidence coalgebras.

2.1. Path subcoalgebras. In this subsection we consider the case where C is a
path subcoalgebra. We note that if Γ is acyclic, then for any paths p and q there
is at most a pair (p1, q2) (in (1)) such that p1 = q2.
Denote by F the set of all paths d satisfying the following three properties
• d = qp for some q, p ∈ B.
• For any representation d = qp with q, p ∈ B, and any arrow a ∈ Γ1, if ap ∈ B
then q must end with a.
• For any representation d = qp with q, p ∈ B, and any arrow b ∈ Γ1, if qb ∈ B
then p starts with b.

Now we are able to describe all balanced bilinear forms on C.
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Theorem 2.1. A bilinear form β : C×C → K is C∗-balanced if and only if there
is a family of scalars (αd)d∈F such that for any p, q ∈ B

β(p, q) =
{
αd, if s(p) = t(q) and qp = d ∈ F
0, otherwise

In particular the set of all C∗-balanced bilinear forms on C is in bijective corre-
spondence to KF .

Proof. Assume that β is C∗-balanced. If p, q ∈ B and t(q) 6= s(p), then β(p, q)s(p)
appears in the left-hand side of (1), but s(p) does not show up in the right-hand
side, so β(p, q) = 0. Let P be the set of all paths in Γ for which there are p, q ∈ B
such that d = qp. Let d ∈ P and let d = qp = q′p′, p, q, p′, q′ ∈ B be two different
decompositions of d, and say that, for example, length(p′) < length(p). Then there
is a path r such that p = rp′ and q′ = qr, and clearly r ∈ B since it is a subpath
of q′ ∈ B. Use (2) for p and q′, for which there is an equality p1 = q′2 = r (and the
corresponding p2 = p′ and q′1 = q), and find that β(p′, q′) = β(p, q). Therefore,
for any d ∈ P (not necessarily in B) and any p, q ∈ B such that d = qp, the scalar
β(p, q) depends only on d. This shows that there is a family of scalars (αd)d∈P
such that β(p, q) = αd for any p, q ∈ B with qp = d.
Let d ∈ P such that d = qp for some p, q ∈ B, and there is an arrow a ∈ Γ1 with
ap ∈ B, but q does not end with a. That is, q is not of the form q = ra for some
path r ∈ B. We use (3) for the paths ap ∈ B and q ∈ B, more precisely, for the
term (ap)1 = a, which cannot be equal to any of the q2’s (otherwise q would end
with a), and we see that β(p, q) = 0, i.e. αd = 0.
Similarly, if d ∈ P, d = qp with p, q ∈ B and there is b ∈ Γ1 with qb ∈ B and p not
of the form br for some path r (i.e. p does not start with b), then we use (4) for p
and qb, and (qb)2 = b, and we find that β(p, q) = 0, i.e. αd = 0. In conclusion, αd
may be non-zero only for d ∈ F .
Conversely, assume that β is of the form indicated in the statement. We show
that (2), (3) and (4) are satisfied. Let p, q ∈ B be such that p1 = q2 = r for
some p1 and q2 (from the comultiplication

∑
p1 ⊗ p2 of p and, respectively, the

comultiplication
∑
q1 ⊗ q2 of q). Then p = rp′ and q = q′r for some p′, q′ ∈ B.

Let d = q′rp′. If d ∈ F , then β(p′, q) = β(p, q′) = αd, while if d /∈ F we have that
β(p′, q) = β(p, q′) = 0 by definition. Thus (2) holds. Now let p, q ∈ B and fix some
p2 (from the comultiplication

∑
p1 ⊗ p2 of p) such that the corresponding p1 is

not equal to any q2. If s(p2) 6= t(q), then clearly β(p2, q1) = 0 by the definition of
β. If s(p2) = t(q), then d = qp2 /∈ F . Indeed, let r be a maximal path such that
p1 = er for some path e and q ends with r, say q = q′r. Note that e has length
at least 1, since p1 is not equal to any of the q2’s. Then the terminal arrow of e
cannot be the terminal arrow of q′, and this shows that d = p2q = (p2r)q′ /∈ F .
Then β(p2, q) = 0 and (3) is satisfied. Similarly, (4) is satisfied. �
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2.2. Subcoalgebras of incidence coalgebras. In this subsection we assume
that C is a subcoalgebra of the incidence coalgebra KX. Let D be the set of all
pairs (x, y) of elements in X such that x ≤ y and there exists x′ with x ≤ x′ ≤ y

and ex,x′ , ex′,y ∈ B. Fix (x, y) ∈ D. Let

Ux,y = {u | x ≤ u ≤ y and ex,u, eu,y ∈ B}

and define the relation ∼ on Ux,y by u ∼ v if and only if there exist a positive
integer n, and u0 = u, u1, . . . , un = v and z1, . . . , zn in Ux,y, such that zi ≤ ui−1

and zi ≤ ui for any 1 ≤ i ≤ n. It is easy to see that ∼ is an equivalence relation
on Ux,y. Let Ux,y/ ∼ be the associated set of equivalence classes, and denote
by (Ux,y/ ∼)0 the set of all equivalence classes C satisfying the following two
conditions.
• If u ∈ C, and v ∈ X satisfies v ≤ u and ev,y ∈ B, then x ≤ v.
• If u ∈ C, and v ∈ X satisfies u ≤ v and ex,v ∈ B, then v ≤ y.

Now we can describe the balanced bilinear forms on C.

Theorem 2.2. A bilinear form β : C×C → K is C∗-balanced if and only if there
is a family of scalars (αC)C∈ ⊔

(x,y)∈D
(Ux,y/∼)0 such that for any et,y, ex,z ∈ B

β(et,y, ex,z) =


αC , if (x, y) ∈ D, z = t ∈ Ux,y and the class

C of z inUx,y/ ∼ is in (Ux,y/ ∼)0

0, otherwise

In particular the set of all C∗-balanced bilinear forms on C is in bijective corre-

spondence to K

⊔
(x,y)∈D

(Ux,y/∼)0

.

Proof. Assume that β is C∗-balanced. Fix some x ≤ y such that Ux,y 6= ∅.
We first note that if x ≤ z ≤ t ≤ y and z, t ∈ Ux,y, then by applying (2) for
p = ez,y, q = ex,t and p1 = q2 = ez,t, we find that β(et,y, ex,t) = β(ez,y, ex,z).
Now let u, v ∈ Ux,y such that u ∼ v. Let u0 = u, u1, . . . , un = v and z1, . . . , zn
in Ux,y, such that zi ≤ ui−1 and zi ≤ ui for any 1 ≤ i ≤ n. By the above
β(eui−1,y, ex,ui−1) = β(eui,y, ex,ui) = β(ezi,y, ex,zi) for any i, and this implies that
β(eu,y, ex,u) = β(ev,y, ex,v). This shows that β(eu,y, ex,u) takes the same value for
any u in the same equivalence class in Ux,y/ ∼.
Now assume that for some u ∈ Ux,y there is v ∈ X, such that v ≤ u, x 
 v and
ev,y ∈ B. Use (3) for p = ev,y, q = ex,u and p1 = ev,u. Note that p1 6= q2 for any
q2. We get that β(eu,y, ex,u) = 0.
Similarly, if u ∈ Ux,y, and there is v ∈ X such that u ≤ v, v 
 y and ex,v ∈ B,
then using (4) for p = eu,y, q = ex,v and q2 = eu,v, we find that β(eu,y, ex,u) = 0.
We have thus showed that β has the desired form.
Conversely, assume that β has the indicated form. We show that it satisfies (2),
(3) and (4). Let p, q ∈ B such that p1 = q2 for some p1 and q2. Then p =
ez,y, q = ex,t and p1 = q2 = ez,t for some x ≤ z ≤ t ≤ y. Clearly t ∼ z, and
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let C be the equivalence class of t in Ux,y/ ∼. Then β(p2, q) = β(et,y, ex,t) and
β(p, q1) = β(ez,y, ex,z), and they are both equal to αC if C ∈ (Ux,y/ ∼)0, and to 0
if C /∈ (Ux,y/ ∼)0. Thus (2) is satisfied.
Let now p = ez,y, p1 = ez,t, p2 = et,y and q = ex,u such that p1 6= q2 for any q2.
Then β(p2, q) = β(et,y, ex,u). If u 6= t, this is clearly 0. Let u = t. Then x 
 z,
otherwise p1 = q2 for some q2. We have that t ∈ Ux,y, but the equivalence class of
t in Ux,y/ ∼ is not in (Ux,y/ ∼)0, since ez,y ∈ B, z ≤ t, but x 
 z. It follows that
β(p2, q) = 0, and (3) holds. Similarly we can show that (4) holds. �

3. Left quasi-co-Frobenius path subcoalgebras and subcoalgebras

of incidence coalgebras

In this section we investigate when a path subcoalgebra of a path coalgebra or a
subcoalgebra of an incidence coalgebra is left co-Frobenius. We keep the notation
of Section 2. Thus C will be either a path subcoalgebra of a path coalgebra KΓ,
or a subcoalgebra of an incidence coalgebra KX. The distinguished basis of C
consisting of paths or segments will be denoted by B. We note that in each of the
two cases B ∩ Cn is a basis of Cn, where C0 ⊆ C1 ⊆ . . . is the coradical filtration
of C. The injective envelopes of the simple left (right) comodules were described
in [26, Lemma 5.1] for incidence coalgebras and in [11, Corollary 6.3] for path
coalgebras. It is easy to see that these descriptions extend to the following.

Proposition 3.1. (i) If C is a path subcoalgebra, then for each vertex v of Γ such
that v ∈ C, the injective envelope of the left (right) C-comodule Kv is (the K-span)
El(Kv) =< p ∈ B|t(p) = v > (and Er(Kv) =< p ∈ B|s(p) = v > respectively).
(ii) If C is a subcoalgebra of the incidence coalgebra KX, then for any a ∈ X

such that ea,a ∈ C, the injective envelope of the left (right) C-comodule Kea,a is
(the K-span) El(Kea,a) =< ex,a|x ∈ X, ex,a ∈ C > (and Er(Kea,a) =< ea,x|x ∈
X, ea,x ∈ C >).

The following shows that we have a good left-right duality for comodules generated
by elements of the basis B.

Lemma 3.2. (i) Let C be a subcoalgebra of the incidence coalgebra KX, and let
ea,b ∈ C. Then (C∗ea,b)∗ ∼= ea,bC

∗ as right C∗-modules (or left C-comodules).
(ii) Let C be a path subcoalgebra of KΓ, and let p be a path in C. Then (C∗p)∗ ∼=
pC∗ as right C∗-modules (or left C-comodules).

Proof. (i) Clearly the set of all segments ea,x with a ≤ x ≤ b is a basis of C∗ea,b.
Denote by e∗a,x the corresponding elements of the dual basis of (C∗ea,b)∗. Since
for c∗ ∈ C∗ and a ≤ x, y ≤ b we have

(e∗a,xc
∗)(ea,y) =

∑
a≤z≤y

c∗(ez,y)e∗a,x(ea,z)

=
{

0, if x 
 y

c∗(ex,y), if x ≤ y
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we get that

(5) e∗a,xc
∗ =

∑
x≤y≤b

c∗(ex,y)e∗a,y

On the other hand ea,bC∗ has a basis consisting of all segments ex,b with a ≤ x ≤ b,
and

(6) ex,bc
∗ =

∑
x≤y≤b

c∗(ex,y)ey,b

Equations (5) and (6) show that the linear map φ : (C∗ea,b)∗ → ea,bC
∗ defined by

φ(e∗a,x) = ex,b, is an isomorphism of right C∗-modules.
(ii) Let p = a1 . . . an and v = s(p). Denote pi = a1 . . . ai for any 1 ≤ i ≤ n, and
p0 = v. Then {p0, p1, . . . , pn} is a basis of C∗p, and let (p∗i )0≤i≤n be the dual basis
of (C∗p)∗. For any 0 ≤ t ≤ j ≤ n denote by pt,j the path such that pj = ptpt,j .
Then a simple computation shows that p∗i c

∗ =
∑
i≤j≤n c

∗(pi,j)p∗j for any i and
any c∗ ∈ C∗.
On the other hand, {pi,n | 0 ≤ i ≤ n} is a basis of pC∗, and it is easy to see
that pi,nc∗ =

∑
i≤r≤n c

∗(pi,r)pr,n for any i and any c∗ ∈ C∗. Then the linear map
φ : (C∗p)∗ → pC∗ defined by φ(p∗i ) = pi,n for any 0 ≤ i ≤ n, is an isomorphism of
right C∗-modules. �

For a path subcoalgebra C let us denote by R(C) the set of vertices v in C such that
the set {p ∈ C | p path and s(p) = v} is finite (i.e. Er(Kv) is finite dimensional)
and contains a unique maximal path. Note that v ∈ R(C) if and only if Er(Kv) is
finite dimensional and local. Indeed, if Er(Kv) is finite dimensional and contains
a unique maximal path p = a1 . . . an, then keeping the notation from the proof of
Lemma 3.2, we have that Er(Kv) = C∗p and C∗pn−1 =< p0, . . . , pn−1 > is the
unique maximal C∗-submodule of C∗p. Conversely, if Er(Kv) is finite dimensional
and local with the unique maximal subcomodule N , then the set (B∩Er(Kv))/N
is nonempty. If p is a path which belongs to this set, Er(Kv) = C∗p. Then clearly
p is the unique maximal path in {q ∈ C | q path and s(q) = v}.
Similarly, denote by L(C) the set of vertices v of C such that El(Kv) is a finite
dimensional local left C-comodule. Also, for each vertex v ∈ R(C) let r(v) denote
the endpoint of the maximal path starting at v, and for v ∈ L(C) let l(v) be the
starting point of the maximal path ending at v.
Similarly, for a subcoalgebra C of the incidence coalgebra KX, let R(C) be the
set of all a ∈ X for which ea,a ∈ C and the set {x ∈ X | a ≤ x, ea,x ∈ C}
is finite and has a unique maximal element, and L(C) be the set of all a ∈ X

for which ea,a ∈ C and the set {x ∈ X|x ≤ a, ex,a ∈ C} is finite and has a
unique minimal element. As before, R(C) (respectively L(C)) consists of those
a ∈ X for which Er(Kea,a) (respectively, El(Kea,a)) are local, hence generated
by a segment. Here r(a) = r(ea,a) for a ∈ R(C) denotes the maximum element
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in the set {x | x ≥ a, ea,x ∈ C} and l(a) for a ∈ L(C) means the minimum of
{x | x ≤ a, ex,a ∈ C}.

Proposition 3.3. (I) Let C be a path subcoalgebra of the path coalgebra KΓ. Then
the following are equivalent.
(a) C is left co-Frobenius.
(b) C is left quasi-co-Frobenius.
(c) R(C) consists of all vertices belonging to C, r(R(C)) ⊆ L(C) and lr(v) = v,
for any vertex v in C.
(d) For any path q ∈ B there exists a path p ∈ B such that qp ∈ F (for F defined
in the previous section).
(II) Let C be a subcoalgebra of the incidence coalgebra KX. Then the following
are equivalent.
(a) C is left co-Frobenius.
(b) C is left quasi-co-Frobenius.
(c) R(C) consists of all a ∈ X such that ea,a ∈ C, r(R(C)) ⊆ L(C) and lr(a) = a,
∀ a ∈ X with ea,a ∈ C.
(d) For any segment ex,z ∈ C there exists y ≥ z such that ez,y ∈ C and the class
of z in Ux,y/ ∼ lies in (Ux,y/ ∼)0.

Proof. (I) (a)⇒(b) is clear.
(b)⇒(c) We apply the QcF characterization of [20] and [21]. If C is left QcF then
for any vertex v ∈ C, there is a vertex u ∈ C such that Er(Kv) ∼= El(Ku)∗.
Hence Er(Kv) is finite dimensional and local (by [19, Lemma 1.4]), so v ∈ R(C)
and Er(Kv) = C∗p for a path p by the discussion preceding this Proposition. Let
t(p) = w. Then it is easy to see that the linear map φ : C∗p → Kw taking p

to w, and any other q to 0, is a surjective morphism of left C∗-modules. Since
Er(Kv) ∼= El(Ku)∗, there is a surjective morphism of left C∗-modules El(Ku)∗ →
Kw, inducing an injective morphism of right C∗-modules (Kw)∗ → El(Ku). Since
(Kw)∗ ∼= Kw as right C∗-modules, and the socle of the comodule El(Ku) is Ku,
we must have w = u, and thus u = r(v). By Lemma 3.2, El(Ku) ∼= Er(Kv)∗ =
(C∗p)∗ ∼= pC∗, so El(Ku) is generated by p, and this shows that p is the unique
maximal path ending at u. Hence, u = r(v) ∈ L(X), and l(u) = v. Thus
l(r(v)) = v.
(c)⇒ (d) Let q ∈ B, and let v = s(q). Since v ∈ R(C), there exists a unique
maximal path d starting at v, and d = qp for some path p. We show that d ∈ F .
Denote t(d) = v′, and let d = q′p′ for some paths q′, p′ in B. Let u = t(q′) = s(p′).
If there is an arrow b (in Γ1) starting at u, such that q′b ∈ B, then q′b is a subpath
of d, since d is the unique maximal path starting at v. It follows that p′ starts with
b. On the other hand, v′ = r(v) ∈ L(C) and l(v′) = lr(v) = v, so d is the unique
maximal path in B ending at v′. This shows that if an arrow a (in Γ1) ends at u,
and ap′ ∈ B, then ap′ is a subpath of d, so the last arrow of q′ is a. We conclude
that d ∈ F .
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(d)⇒(a) Choose a family (αd)d∈F of scalars, such that αd 6= 0 for any d. Associate
a C∗-balanced bilinear form B on C to this family of scalars as in Theorem 2.1.
Then B is right non-degenerate, so C is left co-Frobenius.
(II) (a)⇒(b) is clear; (b)⇒(c) is proved as the similar implication in (I), with
paths replaced by segments.
(c)⇒(d) Let ex,z ∈ C. If r(x) = y, then clearly z ≤ y and ex,y ∈ B, so Ux,y = [x, y].
Then any two elements in Ux,y are equivalent with respect to ∼ (since they are
both ≥ x), so there is precisely one equivalence class in Ux,y/ ∼, the whole of Ux,y.
We show that this class lies in (Ux,y/ ∼)0. Indeed, if u ∈ Ux,y, v ∈ X, v ≤ u and
ev,y ∈ B, then v ∈ {a|ea,y ∈ B}, and since l(y) = l(r(x)) = x, we must have x ≤ v.
Also, if u ∈ Ux,y, v ∈ X, u ≤ v and ex,v ∈ B, then v ∈ {a|ex,a ∈ B}. Then v ≤ y

since r(x) = y.
(d)⇒(a) follows as the similar implication in (I) if we take into account Theorem
2.2. �

As a consequence we obtain the following result, which was proved for incidence
coalgebras in [15].

Corollary 3.4. If C = KΓ, a path coalgebra, or C = KX, an incidence coalgebra,
the following are equivalent
(i) C is co-semisimple (i.e. Γ has no arrows for C = KΓ, and the order relation
on X is the equality for C = KX).
(ii) C is left QcF.
(iii) C is left co-Frobenius.
(iv) C is right QcF.
(v) C is right co-Frobenius.

As an immediate consequence we describe the situations where a finite dimensional
path algebra is Frobenius. We note that the path algebra of a quiver Γ (as well
as the path coalgebra KΓ) has finite dimension if and only if Γ has finitely many
vertices and arrows, and there are no cycles.

Corollary 3.5. A finite dimensional path algebra is Frobenius if and only if the
quiver has no arrows.

Proof. It follows from the fact that the dual of a finite dimensional path algebra
is a path coalgebra, and by Corollary 3.4. �

4. Classification of left co-Frobenius path subcoalgebras

Proposition 3.3 gives information about the structure of left co-Frobenius path
subcoalgebras. The aim of this section is to classify these coalgebras. We first use
Proposition 3.3 to give some examples of left co-Frobenius path subcoalgebras.
These examples will be the building blocks for the classification.
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Example 4.1. Let Γ = A∞ be the quiver such that Γ0 = Z and there is precisely
one arrow from i to i+ 1 for any i ∈ Z.

A∞ : . . . −→ ◦−1 −→ ◦0 −→ ◦1 −→ ◦2 −→ . . .

For any k < l, let pk,l be the (unique) path from the vertex k to the vertex l. Also
denote by pk,k the vertex k. Let r : Z → Z be a strictly increasing function such
that r(n) > n for any n ∈ Z. We consider the path subcoalgebra K[A∞, r] of KA∞
with the basis

B =
⋃
n∈Z
{p | p is a path in A∞, s(p) = n and length(p) ≤ r(n)− n}

= {pk,l | k, l ∈ Z and k ≤ l ≤ r(k)}

Note that K[A∞, r] is indeed a subcoalgebra, since

∆(pk,l) =
l∑

i=k

pk,i ⊗ pi,l, k ≤ l

The counit is given by
ε(pk,l) = δk,l

Note that this can also be seen as a subcoalgebra of the incidence coalgebra of
(N,≤), consisting of the segments ek,l for k ≤ l ≤ r(k).
The construction immediately shows that the maximal path starting from n is
pn,r(n). Note that for each n ∈ Z, pn,r(n) is the unique maximal path into r(n).
If there would be another longer path pl,r(n) into r(n) in K[A∞, r], then l < n.
Then, since pl,r(n) is among the paths in K[A∞, r] which start at l we must have
that it is a subpath of pl,r(l), and so r(l) ≥ r(n). But since l < n, this con-
tradicts the assumption that r is strictly increasing. Therefore, we see that the
conditions of Proposition 3.3 are satisfied: pn,r(n) is the unique maximal path in
the (finite) set of all paths starting from a vertex n, and it is simultaneously the
unique maximal path in the (finite) set of all paths ending at r(n). Therefore if
l : L(C) = Im(r)→ R(C) is the function used in Proposition 3.3 for C = K[A∞, r]
satisfies l(r(n)) = n. This means that K[A∞, r] is a left co-Frobenius coalgebra.
K[A∞, r] is also right co-Frobenius if and only if there is a positive integer s

such that r(n) = n + s for any n ∈ Z. Indeed, if r is of such a form, then
K[A∞, r] is right co-Frobenius by the right-hand version of Proposition 3.3. Con-
versely, assume that K[A∞, r] is right co-Frobenius. If r would not be surjec-
tive, let m ∈ Z which is not in the image of r. Then there is n ∈ Z such that
r(n) < m < r(n + 1). The maximal path ending at m is pn+1,m. Indeed, this
maximal path cannot start before n (since then pn,r(n) would be a subpath of pn,m
different from pn,m), and pn+1,m is a path in K[A∞, r], as a subpath of pn+1,r(n+1).
Hence r(l(m)) = r(n+ 1) 6= m, and then K[A∞, r] could not be right co-Frobenius
by the right-hand version of Proposition 3.3, a contradiction. Thus r must be sur-
jective, and then it must be of the form r(n) = n + s for any n, where s is an
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integer. Since n < r(n) for any n, we must have s > 0. For simplicity we will
denote K[A∞, r] by K[A∞|s] in the case where r(n) = n+ s for any n ∈ Z.

Example 4.2. Let Γ = A0,∞ be the subquiver of A∞ obtained by deleting all
the negative vertices and the arrows involving them. Thus Γ0 = N, the natural
numbers (including 0).

A0,∞ : ◦0 −→ ◦1 −→ ◦2 −→ ◦3 −→ . . .

We keep the same notation for pk,l for 0 ≤ k ≤ l. Let r : N → N be a strictly
increasing function with r(0) > 0 (so then r(n) > n for any n ∈ N), and define
K[A0,∞, r] to be the path subcoalgebra of KA0,∞ with basis {pk,l | k, l ∈ N, k ≤ l ≤
r(k)}. With the same arguments as in Example 4.1 we see that K[A0,∞, r] is a left
co-Frobenius coalgebra. We note that l(0) = 0, and then r(l(0)) = r(0) > 0. By
a right-hand version of Proposition 3.3, this shows that K[A0,∞, r] is never right
co-Frobenius.

Example 4.3. For any n ≥ 2 we consider the quiver Cn, whose vertices are the
elements of Zn = {0, . . . , n− 1}, the integers modulo n, and there is one arrow
from i to i+ 1 for each i.

◦1 // ◦2 // ◦3

��========

Cn : ◦0

??~~~~~~~
◦

����������

. . .

``BBBBBBBB
. . . ◦oo

We also denote by C1 the quiver with one vertex, denoted by 0, and one arrow ◦
��
,

and by C0 the quiver with one vertex and no arrows.
Let n ≥ 1 and s > 0 be integers. Let K[Cn, s] be the path subcoalgebra of the path
coalgebra KCn, spanned by all paths of length at most s. Denote by qk|l the path
(in Cn) of length l starting at k, for any k ∈ Zn and 0 < l ≤ s. Also denote by
qk|0 the vertex k. Since the comultiplication and counit of KCn are given by

∆(qk|l) =
l∑
i=0

qk|i ⊗ qk+i|l−i,

ε(qk|l) = δ0,l

we see that indeed K[Cn, s] =< qk|l | k ∈ Z, 0 ≤ l ≤ s > is a subcoalgebra
of KCn. Clearly qk|s is the unique maximal path in K[Cn, s] starting at k, so
k ∈ R(K[Cn, s]) and r(k) = k + s. Also k + s ∈ L(K[Cn, s]) and the maximal
path ending at k + s is also qk|s, thus lr(k) = k, and by Proposition 3.3 we get
that K[Cn, s] is a left co-Frobenius coalgebra. Since it has finite dimension n(s+1),
it is right co-Frobenius, too. This example was also considered in [10, 1.6].



PATH, INCIDENCE COALGEBRAS AND QUANTUM GROUPS 15

For a path subcoalgebra C ⊆ KΓ, denote by C ∩ Γ the subgraph of Γ consisting
of arrows and vertices of Γ belonging to C.

Lemma 4.4. If C ⊆ KΓ is a left co-Frobenius path subcoalgebra, then C ∩ Γ =⊔
i

Γi, a disjoint union of subquivers of Γ, where each Γi is of one of types A∞,

A0,∞ or Cn, n ≥ 0, and C =
⊕
i

Ci, where Ci, a path subcoalgebra of KΓi, is the

subcoalgebra of C spanned by the paths of B contained in Γi.

Proof. Let v be a vertex in C ∩ Γ. By Proposition 3.3 there is a unique maximal
path p ∈ B starting at v, and any path in B starting at v is a subpath of p.
This shows that at most one arrow in B starts at v (the first arrow of p, if p has
length > 0). We show that at most one arrow in B ends at v, too. Otherwise,
if we assume that two different arrows a and a′ in B end at v, let s(a) = u and
s(a′) = u′ (clearly u 6= u′, since at most one arrow starts at u), and let q and q′

be the maximal paths in B starting at u and u′, respectively. Then q = az and
q′ = a′z′ for some paths z and z′ starting at v. But then z and z′ are subpaths of
p, so one of them, say z, is a subpath of the other one. If w = t(z), then w = r(u),
so w ∈ L(C) and any path in B ending at w is a subpath of q = az. This provides
a contradiction, since a′z is in B (as a subpath of q′) and ends at w, but it is not
a subpath of q.
We also have that if there is no arrow in B starting at a vertex v, then there is no
arrow in B ending at v either. Indeed, the maximal path in B starting at v has
length zero, so r(v) = v, and then v ∈ L(C) and l(v) = v, which shows that no
arrow in B ends at v.
Now taking the connected components of C ∩ Γ (regarded just as an undirected
graph), and then considering the (directed) arrows, we find that C ∩ Γ =

⊔
i

Γi for

some subquivers Γi which can be of the types A∞, A0,∞ or Cn, and this ends the
proof. �

Lemma 4.5. Let C ⊆ KΓ be a left co-Frobenius path subcoalgebra. Let u, v ∈ C∩Γ
be different vertices, and denote by pu and pv the maximal paths starting at u and
v, respectively. Then pu is not a subpath of pv.

Proof. Assume otherwise, so pu is a subpath of pv. We know that pu and pv end
at r(u) and r(v), respectively. Let q be the subpath of pv which starts at v and
ends at r(u). Since pu is a subpath of pv, then q contains pu, too. Then both q

and pu end at r(u), and since by Proposition 3.3 pu is maximal with this property,
we get that q = pu. This means that u = v (as starting points of pa and q), a
contradiction. �

Now we are in the position to give the classification result for left co-Frobenius
path subcoalgebras.
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Theorem 4.6. Let C be a path subcoalgebra of the path coalgebra KΓ, and let B
be a basis of paths of C. Then C is left co-Frobenius if and only if C ∩ Γ =

⊔
i

Γi,

a disjoint union of subquivers of Γ of one of types A∞, A0,∞ or Cn, n ≥ 1, and
the path subcoalgebra Ci of KΓi spanned by the paths of B contained in Γi is of
type K[A∞, r] if Γi = A∞, of type K[A0,∞, r] if Γi = A0,∞, of type K[Cn, s] with
s ≥ 1 if Γi = Cn, n ≥ 1, and of type K if Γi = C0. In this case C =

⊕
i

Ci,

in particular left co-Frobenius path subcoalgebras are direct sums of coalgebras of
types K[A∞, r], K[A0,∞, r], K[Cn, s] or K.

Proof. By Lemma 4.4, C∩Γ =
⊔
i

Γi, and any Γi is of one of the types A∞, A0,∞ or

Cn, n ≥ 0. Moreover, C =
⊕
i

Ci, so C is left co-Frobenius if and only if all Ci’s are

left co-Frobenius (see for example [16, Chapter 3]). If all Ci’s are of the indicated
form, then they are left co-Frobenius by Examples 4.1, 4.2 and 4.3, and then so is
C. Assume now that C is left co-Frobenius. Then each Ci is left co-Frobenius, so
we can reduce to the case where Γ is one of A∞, A0,∞ or Cn, and C ∩ Γ = Γ. As
before, for each vertex v we denote by r(v) the end-point of the unique maximal
path in C starting at v, and by pv this maximal path. Also denote by m(v) the
length of pv.
Case I. Let Γ = Cn. If n = 0, then C ∼= K. If n = 1, then C ∼= K[C1, s], since
m(0) = s > 0 because Γ1 ⊂ C, so there must be at least some nontrivial path
in C. If n ≥ 2, then m(k) ≤ m(k + 1) for any k ∈ Zn, since otherwise pk+1

would be a subpath of pk, a contradiction by Lemma 4.5. Thus m(0) ≤ m(1) ≤
. . .m(n− 1) ≤ m(0), so m(0) = m(1) = . . .m(n− 1) = m(0) = s for some s ≥ 0.
Since C ∩ Γ = Γ, there are non-trivial paths in C, so s > 0, and then clearly
C ∼= K[Cn, s].
Case II. If Γ = A∞ or Γ = A0,∞, then for any n (in Z if Γ = A∞, or in N if
Γ = A0,∞) m(n) ≤ m(n + 1) holds, otherwise pn+1 would be a subpath of pn,
again a contradiction. Now if we take r(n) = n + m(n) for any n, then r is a
strictly increasing function. Clearly r(n) > n, since m(n) = 0 would contradict
C ∩ Γ = Γ. Now it is obvious that C ∼= K[Γ, r]. �

Corollary 4.7. Let C ⊆ KΓ be a left and right co-Frobenius path subcoalgebra.
Then C is a direct sum of coalgebras of the type K[A∞|s], K[Cn, s] or K.

Proof. It follows directly from Theorem 4.6 and the discussion at the end of each
of Examples 4.1, 4.2 and 4.3, concerned to the property of being left and right
co-Frobenius. �

Remark 4.8. (1) We have a uniqueness result for the representation of a left co-
Frobenius path subcoalgebras as a direct sum of coalgebras of the form K[A∞, r],
K[A0,∞, r], K[Cn, s] or K. To see this, an easy computation shows that the dual
algebra of a coalgebra of any of these four types does not have non-trivial central
idempotents, so it is indecomposable as an algebra. Now if (Ci)i∈I and (Dj)j∈J are
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two families of coalgebras with indecomposable dual algebras such that ⊕i∈ICi '
⊕j∈JDj as coalgebras, then there is a bijection φ : J → I such that Dj ' Cφ(j)

for any j ∈ J . Indeed, if f : ⊕i∈ICi → ⊕j∈JDj is a coalgebra isomorphism,
then the dual map f∗ :

∏
j∈J D

∗
j →

∏
i∈I C

∗
i is an algebra isomorphism. Since all

C∗i ’s and D∗j ’s are indecomposable, there is a bijection φ : J → I and some algebra
isomorphisms γj : D∗j → C∗φ(j) for any j ∈ J , such that for any (d∗j )j∈J ∈

∏
j∈J D

∗
j ,

the map f∗ takes (d∗j )j∈J to the element of
∏
i∈I C

∗
i having γj(d∗j ) on the φ(j)-th

slot. Regarding C = (Ci)i∈I as a left C∗-module, and D = ⊕j∈JDj as a left
D∗-module in the usual way, with actions denoted by ·, the relation f(f∗(d∗) ·c) =
d∗ · f(c) holds for any c ∈ C and d∗ ∈ D∗. This shows that f induces coalgebra
isomorphisms Cφ(j) ' Dj for any j ∈ J .
(2) The coalgebras of types K[A∞, r], K[A0,∞, r], K[Cn, s] or K can be easily
classified if we take into account that the sets of grouplike elements are just the
vertices and the non-trivial skew-primitives are scalar multiples of the arrows.
There are no isomorphic coalgebras of two different types among these four types.
Moreover: (i) K[A∞, r] ' K[A∞, r′] if and only if there is an integer h such that
r′(n) = r(n + h) for any integer n; (ii) K[A0,∞, r] ' K[A0,∞, r

′] if and only if
r = r′; (iii) K[Cn, s] ' K[Cm, s′] if and only n = m and s = s′.

5. Examples

It is known (see [24], [12]) that any pointed coalgebra can be embedded in a
path coalgebra. Thus it is expected that there is a large variety of co-Frobenius
subcoalgebras of path coalgebras if we do not restrict only to the class of path
subcoalgebras. The aim of this section is to provide several such examples. We first
explain a simple construction connecting incidence coalgebras and path coalgebras,
and producing examples as we wish.
As a pointed coalgebra, any incidence coalgebra can be embedded in a path coal-
gebra. However, there is a more simple way to define such an embedding for
incidence coalgebras than for arbitrary pointed coalgebras. Indeed, let X be a lo-
cally finite partially ordered set. Consider the quiver Γ with vertices the elements
of X, and such that there is an arrow from x to y if and only if x < y and there
is no element z with x < z < y. With this notation, it is an easy computation to
check the following.

Proposition 5.1. The linear map φ : KX → KΓ, defined by

φ(ex,y) =
∑
p path

s(p)=x,t(p)=y

p

for any x, y ∈ X,x ≤ y, is an injective coalgebra morphism.

Note that in the previous proposition φ(KX) is in general a subcoalgebra of KΓ
which is not a path subcoalgebra. This suggests that when we deal with left co-
Frobenius subcoalgebras of incidence coalgebras, which of course embed themselves



18 S.DĂSCĂLESCU1,∗, M.C. IOVANOV1,2, C. NĂSTĂSESCU1

in KΓ (usually not as path subcoalgebras), structures that are more complicated
than those of left co-Frobenius path subcoalgebras can appear. Thus the classifi-
cation of left co-Frobenius subcoalgebras of incidence coalgebras is probably more
difficult. The next example is evidence in this direction.

Example 5.2. Let s ≥ 2 and X = {an|n ∈ Z} ∪ (∪n∈Z{bn,i|1 ≤ i ≤ s}) with the
ordering ≤ such that an < bn,i < an+1 for any integer n and any 1 ≤ i ≤ s, and
bn,i and bn,j are not comparable for any n and i 6= j.
Let C be the subcoalgebra of KX spanned by the following elements
• the elements ex,x, x ∈ X.
• all segments ex,y of length 1.
• the segments ean,an+1 , n ∈ Z.
• the segments ebn,i,bn+1,i , with n ∈ Z and 1 ≤ i ≤ s.
Then by applying Proposition 3.3, we see that C is co-Frobenius.
If we take the subcoalgebra D of C obtained by restricting to the non-negative part
of X, i.e. D is spanned by the elements ex,y in the indicated basis of C with both
x and y among {an|n ≥ 0} ∪ (∪n≥0{bn,i|1 ≤ i ≤ s}), we see that D is left co-
Frobenius, but not right co-Frobenius.
Now let Γ be the quiver associated to the ordered set X as in the discussion above.

. . . b0,1

  AAAAAAAA b1,1

  AAAAAAAA
. . . bn,1

##HHHHHHHHH
. . .

. . . a0

<<xxxxxxxxx
//

��66666666666666 b0,2
// a1

>>}}}}}}}}
//

��2
2222222222222 b1,2

// a2 . . . an

;;wwwwwwwww
//

��777777777777777 bn,2
// an+1 . . .

. . . . . . . . . . . .

. . . b0,s

EE��������������
b1,s

EE��������������
bn,s

CC���������������
. . .

If φ : KX → KΓ is the embedding described in Proposition 5.1, then φ(C) is a
co-Frobenius subcoalgebra of KΓ. We see that φ(C) is the subspace of KΓ spanned
by the vertices of Γ, the paths of length 1, the paths [bn,ian+1bn+1,i] with n ∈ Z and
1 ≤ i ≤ s, and the elements

∑
1≤i≤s[anbn,ian+1] with n ∈ Z, thus φ(C) is not a

path subcoalgebra. Here we denoted by [bn,ian+1bn+1,i] and [anbn,ian+1] the paths
following the indicated vertices and the arrows between them. By restricting to the
non-negative part of X, a similar description can be given for φ(D), a subcoalgebra
of KΓ which is left co-Frobenius, but not right co-Frobenius.

It is possible to embed some of the co-Frobenius path subcoalgebras in other path
coalgebras as subcoalgebras which are not path subcoalgebras.

Example 5.3. Consider the quiver A∞ with vertices indexed by the integers, with
the path from i to j denoted by pi,j. Consider the path subcoalgebra D = K[A∞|2],
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with basis {pi,i, pi,i+1, pi,i+2|i ∈ Z}. We also consider the quiver Γ below

. . . b0

  AAAAAAAA b1

  AAAAAAAA
. . . bn

$$IIIIIIIII . . .

. . . a0

;;wwwwwwwww
// a1

>>}}}}}}}}
// a2 . . . an

;;wwwwwwwww
// an+1 . . .

Then A∞ is a subquiver of Γ if we identify ai with 2i and bi with 2i + 1 for any
integer i. Thus KA∞ is a subcoalgebra of KΓ in the obvious way, and then so
is D. However, there is another way to embed D in KΓ. Indeed, the linear map
φ : D → KΓ, defined such that

φ(p2i,2i) = ai, φ(p2i+1,2i+1) = bi,

φ(p2i,2i+1) = [aibi], φ(p2i+1,2i+2) = [biai+1],

φ(p2i,2i+2) = [aiai+1] + [aibiai+1],

φ(p2i+1,2i+3) = [biai+1bi+1]

for any i ∈ Z, is an injective morphism of coalgebras. Here we denoted by [aibi],
[aibiai+1], etc, the paths following the respective vertices and arrows. We con-
clude that the subcoalgebra C = φ(D) of KΓ, spanned by all vertices an, bn,
all arrows [anan+1], [anbn], [bnan+1] and the elements [anbnan+1] + [anan+1] and
[bnan+1bn+1], is co-Frobenius. Note that D is not a path subcoalgebra of KΓ. This
can be also seen as the subcoalgebra of the incidence coalgebra of Z with basis
consisting of segments of length at most 2.

Note that in the above example, we can also consider a similar situation but with
all segments en,n+i of the incidence coalgebra of Z which have length less or equal
to a certain positive integer s (i ≤ s); the same properties as above would then
hold for this situation.

Example 5.4. We consider the same situation as above, but we restrict the quiver
Γ to the non-negative part:

b0

  AAAAAAAA b1

  AAAAAAAA
. . . bn

$$HHHHHHHHH . . .

a0

>>}}}}}}}}
// a1

>>}}}}}}}}
// a2 . . . an

>>}}}}}}}}
// an+1 . . .

Equivalently, we consider the subcoalgebra of the incidence coalgebra of N with a
basis of all segments of length less or equal to 2 (or ≤ s for more generality).
This coalgebra is left co-Frobenius but not right co-Frobenius, it is a subcoalgebra
of an incidence coalgebra, and it can also be regarded as a subcoalgebra of a path
coalgebra, but without a basis of paths.

Now we prove a simple, but useful result, which shows that the category of inci-
dence coalgebras is closed under tensor product of coalgebras.
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Proposition 5.5. Let X,Y be locally finite partially ordered sets. Consider on
X × Y the order (x, y) ≤ (x′, y′) if and only if x ≤ y and x′ ≤ y′. Then there is
an isomorphism of coalgebras K(X × Y ) ∼= KX ⊗KY .

Proof. It is clear thatX×Y is locally finite. We show that the natural isomorphism
of vector spaces ϕ : K(X × Y ) → KX ⊗KY , ϕ(e(x,y),(x′,y′)) = ex,x′ ⊗ ey,y′ is a
morphism of coalgebras. This is well defined by the definition of the order relation
on X × Y . For comultiplication we have∑

ϕ(e(x,y),(x′,y′))1 ⊗ (e(x,y),(x′,y′))2 =

=
∑

x≤a≤x′

∑
y≤b≤y′

ex,a ⊗ ey,b ⊗ ea,x′ ⊗ ex′,b

=
∑

(x,y)≤(a,b)≤(x′,y′)

ϕ(e(x,y),(a,b))⊗ ϕ(e(a,b),(x′,y′))

= ϕ((e(x,y),(x′,y′))1)⊗ ϕ((e(x,y),(x′,y′))2)

and it is also easy to see that εKX⊗KY ◦ ϕ = εK(X×Y ). �

Example 5.6. Consider the ordered set (Z×Z,≤), with order given by the direct
product of the orders of (Z,≤) and (Z,≤). Thus (i, j) ≤ (p, q) if and only if i ≤ p
and j ≤ q. We know from Proposition 5.5 that ψ : KZ ⊗ KZ → K(Z × Z),
ψ(ei,p ⊗ ej,q) = e(i,j),(p,q), is an isomorphism of coalgebras.
With the notation preceding Proposition 5.1, the quiver Γ associated to the locally
finite ordered set (Z× Z,≤) is

. . . . . . . . .

. . . // an−1,k+1 //

OO

an,k+1 //

OO

an+1,k+1 //

OO

. . .

. . . // an−1,k //

OO

an,k //

OO

//

OO

an+1,k //

OO

. . .

. . . // an−1,k−1 //

OO

an,k−1 //

OO

an+1,k−1 //

OO

. . .

. . .

OO

. . .

OO

. . .

OO

where we just denoted the vertices by an,k instead of just (n, k). Let φ :
K(Z × Z) → KΓ be the embedding from Proposition 5.1. If we consider the
subcoalgebra K[A∞|1] of KZ, then K[A∞|1] ⊗ K[A∞|1] is a subcoalgebra of
KZ ⊗KZ, so then C = φψ(K[A∞|1] ⊗K[A∞|1]), which is the subspace spanned
by the vertices of Γ, the arrows of Γ, and the elements [an,kan+1,kan+1,k+1] +
[an,kan,k+1, an+1,k+1], is a subcoalgebra of KΓ. Since K[A∞|1] is co-Frobenius,
and the tensor product of co-Frobenius coalgebras is co-Frobenius (see [21, Propo-
sition 4.15]), we obtain that C is a co-Frobenius coalgebra. Alternatively, it can be
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seen that ψ(K[A∞|1] ⊗K[A∞|1]), which is the subspace spanned by the elements
e(n,k),(n,k), e(n,k),(n+1,k), e(n,k),(n,k+1), e(n,k),(n+1,k+1) with arbitrary n, k ∈ Z, is co-
Frobenius by applying Proposition 3.3. C can be seen as both a subcoalgebra of an
incidence coalgebra and of a path coalgebra, but not with a basis of paths. We note
that C is not even isomorphic to a path subcoalgebra. Indeed, if it were so, it should
be isomorphic to some K[A∞|s], since it is infinite dimensional and indecompos-
able. But in C, for any grouplike element g there are precisely two other grouplike
elements h with the property that the set of non-trivial (h, g)-skew-primitive ele-
ments is nonempty, while for any grouplike element g of K[A∞|s] there is only one
such h.

With similar arguments, we can give a more general version of the previous ex-
ample, by considering finite tensor products of coalgebras of type K[A∞|s], as
follows.

Example 5.7. Let D = K[A∞|s1] ⊗K[A∞|s2] ⊗ . . . ⊗K[A∞|sm], where m ≥ 2
and s1, . . . , sm are positive integers. Then D is co-Frobenius as a tensor product
of co-Frobenius coalgebras, and D embeds in the m-fold tensor product KZ⊗KZ⊗
. . .⊗KZ. But this last tensor product is isomorphic to the incidence coalgebra of
the ordered set Zm = Z×Z× . . .×Z, with the direct product order. The image of
D via this embedding is the subcoalgebra E of K(Z×Z× . . .×Z) spanned by all the
segments e(n1,...,nm),(k1,...,km) with n1 ≤ k1 ≤ n1 + s1, . . . , nm ≤ km ≤ nm + sm.
Now if we consider the quiver Γ associated to the ordered set Z × Z × . . . × Z
as in the beginning of this section, we have an embedding of K(Z × Z ×
. . . × Z) in KΓ. Denote the vertices of Γ by an1,...,nm . The image of E

through this embedding is the subcoalgebra C of KΓ spanned by all the ele-
ments of the form S(Γ, (n1, . . . , nm), (k1, . . . , km)), with n1, . . . , nm, k1, . . . , km in-
tegers such that n1 ≤ k1 ≤ n1 + s1, . . . , nm ≤ km ≤ nm + sm, where by
S(Γ, (n1, . . . , nm), (k1, . . . , km)) we denote the sum of all paths in Γ starting at
an1,...,nm and ending at ak1,...,km . Thus C is a co-Frobenius subcoalgebra of KΓ,
which is also isomorphic to a subcoalgebra of an incidence coalgebra. However, C
is not a path subcoalgebra, and not even isomorphic to a path subcoalgebra. Indeed,
for any grouplike element g of E there are precisely m grouplike elements h for
which there are non-trivial (h, g)-skew-primitive elements, while in a co-Frobenius
path subcoalgebra for any grouplike element g there is at most one such h.

Remark 5.8. We note that the co-Frobenius coalgebra C constructed in Example
5.2 is not isomorphic to a coalgebra of the form K[A∞|s1] ⊗ K[A∞|s2] ⊗ . . . ⊗
K[A∞|sm]. Indeed, if g = bn,i there exists exactly one grouplike element h of C
such that there are non-trivial (h, g)-skew-primitive elements (this is h = an+1),
and if g = an there exist s such grouplike elements h (these are bn,1, . . . , bn,s).
On the other hand, in K[A∞|s1]⊗K[A∞|s2]⊗ . . .⊗K[A∞|sm] for any grouplike
element g there exist precisely m such elements h.
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We end with another explicit example, which shows that there are co-Frobenius
subcoalgebras of path coalgebras that are isomorphic neither to a path subcoalge-
bra nor to a subcoalgebra of an incidence coalgebra.

Example 5.9. Let Γ be the graph:

. . . // a0
y0 //

x0

��
a1

y1 //

x1

��
a2

y2 //

x2

��
. . . // an

yn //

xn

��
. . .

and let C be the subcoalgebra of the path coalgebra of Γ having a basis the elements
an, xn, yn and yn+xnyn. This is, in fact, isomorphic to K[C1|1]⊗K[A∞|1], so it is
co-Frobenius. By the classification theorem for co-Frobenius path subcoalgebras and
the structure of the skew-primitive elements of C, we see that C is not isomorphic
to a path subcoalgebra. We note that it is not isomorphic either to a subcoalgebra
of an incidence coalgebra, because in an incidence coalgebra, if g is any grouplike
element, there is no (g, g)- skew-primitive element, while in C for each grouplike
g = an, xn is a (g, g)- skew-primitive.

6. Hopf algebra structures on path subcoalgebras

In this section we discuss the possibility of extending the coalgebra structure of a
path subcoalgebra to a Hopf algebra structure. First of all, it is a simple applica-
tion of Proposition 3.4 to see when a finite dimensional path coalgebra has a Hopf
algebra structure.

Proposition 6.1. If the path coalgebra KΓ is finite dimensional, then it has a
Hopf algebra structure if and only if it is cosemisimple, i.e. Γ has no arrows.

Proof. If the finite dimensional KΓ has a Hopf algebra structure, then it has non-
zero integrals, so it is left (and right) co-Frobenius, and KΓ is cosemisimple by
Proposition 3.4. Conversely, if there are no arrows, then KΓ can be endowed with
the group Hopf algebra structure obtained if we consider a group structure on the
set of vertices. �

Next, we are interested in finding examples of Hopf algebra structures that can be
defined on some path subcoalgebras. At this point we discuss only cases where the
resulting Hopf algebra has non-zero integrals, i.e. it is left (or right) co-Frobenius.
Thus the path subcoalgebras that we consider are among the ones in Corollary
4.7. We ask the following general question.
PROBLEM. Which of the left and right co-Frobenius path subcoalgebras (classi-
fied in Corollary 4.7) can be endowed with a Hopf algebra structure?
In the rest of this section we solve the problem in the case where K is a field
containing primitive roots of unity of any positive order, in particular K has
characteristic zero. We will make this assumption on K from this point on. We just
note that some of the constructions can be also done in positive characteristic, if we
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just require that K contains certain primitive roots of unity and the characteristic
of K is large enough.

Proposition 6.2. (I) Let s > 0 be an integer. Let q be a primitive (s+ 1)th root
of unity in K. Let G be a group such that there exist an element g ∈ Z(G) of
infinite order and a character χ ∈ G∗ such that χ(g) = q. Also let α ∈ K which
may be non-zero only if χs+1 = 1. Consider the algebra generated by the elements
of G (and preserving the group multiplication on these elements), and x, subject
to relations

xh = χ(h)hx for any h ∈ G
xs+1 = α(gs+1 − 1)

(that is, the free or amalgamated product K[x] ∗K[G], quotient out by the above
relations). Then this algebra has a unique Hopf algebra structure such that the
elements of G are grouplike elements, ∆(x) = 1 ⊗ x + x ⊗ g, and ε(x) = 0. We
denote this Hopf algebra structure by H∞(s, q,G, g, χ, α).
(II) Let n ≥ 2 and s > 0 be integers such that s+ 1 divides n. Let q be a primitive
(s+ 1)th root of unity in K. Consider a group G such that there exist an element
g ∈ Z(G) of order n and a character χ ∈ G∗ such that χ(g) = q. Also let α ∈ K
which may be non-zero only if χs+1 = 1. Consider the algebra generated by the
elements of G (and preserving the group multiplication on these elements), and x,
subject to relations

xh = χ(h)hx for any h ∈ G
xs+1 = α(gs+1 − 1)

Then this algebra has a unique Hopf algebra structure such that the elements of G
are grouplike elements, ∆(x) = 1⊗ x+ x⊗ g, and ε(x) = 0. We denote this Hopf
algebra structure by Hn(s, q,G, g, χ, α).

Proof. We consider an approach similar to the one in [4]. For both (I) and (II)
we consider the Hopf group algebra KG, and its Ore extension KG[X,χ], where
χ is the algebra automorphism of KG such that χ(h) = χ(h)h for any h ∈ G.
Since g ∈ Z(G), this Ore extension has a unique Hopf algebra structure such that
∆(X) = 1⊗X+X⊗g and ε(X) = 0, by the universal property for Ore extensions
(see for example [4, Lemma 1.1]). Since (1 ⊗ X)(X ⊗ g) = q(X ⊗ g)(1 ⊗ X),
the quantum binomial formula shows that ∆(Xs+1) = 1 ⊗Xs+1 + Xs+1 ⊗ gs+1,
so then the ideal I = (Xs+1 − α(gs+1 − 1)) is in fact a Hopf ideal of KG[X,χ].
Then we can consider the factor Hopf algebra KG[X,χ]/I, and this is just the
desired Hopf algebra H∞(s, q,G, g, χ, α) in case (I) and Hn(s, q,G, g, χ, α) in case
(II). The condition that α = 0 whenever χs+1 6= 1 guarantees that the map
G→ KG[X,χ]/I taking an element h ∈ G to its class modulo I is injective, thus
G is the group of grouplike elements of this factor Hopf algebra. �
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In the following example we give examples of co-Frobenius path subcoalgebras
that can be endowed with Hopf algebra structures. Moreover, we don’t only in-
troduce one such structure, but a family of Hopf algebra structures on each path
subcoalgebra considered in the example.

Example 6.3. (i) K[A∞|s] can be endowed with a Hopf algebra structure for any
s ≥ 1. Indeed, let q be a primitive (s+ 1)th root of unity in K, and let α ∈ K. We
define a multiplication (on basis elements, then extended linearly) on K[A∞|s] by

pi,i+upj,j+v =


qju
(
u+v
u

)
q
pi+j,i+j+u+v,

if u+ v ≤ s
αqju

(u+v−s−1)q !
(u)q !(v)q !

(pi+j+s+1,u+v+i+j − pi+j,u+v+i+j−s−1),
if u+ v ≥ s+ 1

where
(
u+v
u

)
q

denotes the q-binomial coefficient. Then this multiplication makes
K[A∞|s] an algebra, which together the initial coalgebra structure define a Hopf
algebra structure on K[A∞|s]. Indeed, we can see this by considering the Hopf
algebra H∞(s, q, C∞, c, χ, α), where C∞ is the (multiplicative) infinite cyclic group
generated by an element c, and the character χ is defined by χ(c) = q. Thus
H∞(s, q, C∞, c, χ, α) is generated as an algebra by the elements c and x, subject to
relations xc = qcx and xs+1 = α(cs+1 − 1), and with coalgebra structure such that
∆(c) = c⊗c, ε(c) = 1, and ∆(x) = 1⊗x+x⊗c. Since (1⊗x)(x⊗c) = q(x⊗c)(1⊗x),
we can apply the quantum binomial formula and get that

∆(xu) =
∑

0≤h≤u

(
u

h

)
q

xu−h ⊗ cu−hxh

and then

∆
(

1
(u)q!

cixu
)

=
∑

0≤h≤u

1
(u− h)q!

cixu−h ⊗ 1
(h)q!

ci+u−hxh

for any 0 ≤ u ≤ s and any integer i. Therefore if we denote 1
(u)q !

cixu by Pi,i+u,
this means that ∆(Pi,i+u) =

∑
0≤h≤u Pi,i+h ⊗ Pi+h,i+u, showing that the linear

isomorphism φ : K[A∞|s] → H∞(s, q, C∞, c, χ, α) taking pi,i+u to Pi,i+u for any
0 ≤ u ≤ s and i ∈ Z, is an isomorphism of coalgebras. Now we just transfer
the algebra structure of H∞(s, q, C∞, c, χ, α) through φ−1 and get precisely the
multiplication formula given above.

(ii) Let us consider now the coalgebra C which is a direct sum of a family of copies
of (the same) K[A∞|s], indexed by a non-empty set P . Then C can be endowed
with a Hopf algebra structure. To see this, we extend the example from (i) as
follows. Let G be a group such that there exist an element g ∈ Z(G) of infinite
order and a character χ ∈ G∗ for which q = χ(g) is a primitive (s + 1)th root
of unity, and moreover the factor group G/ < g > is in bijection with the set P
(note that such a triple (G, g, χ) always exists; we can take for instance a group
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structure on the set P , G = C∞ × P , g a generator of C∞, and χ defined such
that χ(g) = q and χ(p) = 1 for any p ∈ P ). For simplicity of the notation, we
can assume that P is a set of representatives for the < g >-cosets of G. Consider
the Hopf algebra A = H∞(s, q,G, g, χ, α), where α is a scalar which may be non-
zero only if χs+1 = 1. Then the subalgebra B of A generated by g and x is a
Hopf subalgebra isomorphic to K[A∞|s] as a coalgebra, and A = ⊕p∈P pB is a
direct sum of subcoalgebras, all isomorphic to K[A∞|s]. Thus A is isomorphic as
a coalgebra to C, and we can transfer the Hopf algebra structure of A to C.

(iii) Assume that n ≥ 2 and s+ 1 divides n. Then K[Cn, s] can be endowed with a
Hopf algebra structure. Indeed, we proceed as for K[A∞|s], but replacing the Hopf
algebra H∞(s, q, C∞, c, χ, α) by Hn(s, q, Cn, c, χ, α), where Cn is a cyclic group of
order n with a generator c (we have the same relations for c and x as in (i), to
which we add cn = 1). Thus the multiplication of K[A∞|s] is given by

qi|uqj|v =


qju
(
u+v
u

)
q
qi+j|u+v,

if u+ v ≤ s
αqju

(u+v−s−1)q !
(u)q !(v)q !

(qi+j+s+1|u+v−s−1 − qi+j|u+v−s−1),
if u+ v ≥ s+ 1

Also, as in (ii), a direct sum of copies of the same K[Cn, s], indexed by an arbitrary
non-empty set P , can be endowed with a Hopf algebra structure isomorphic to some
Hn(s, q,G, g, χ, α) for some q,G, g, χ, α, where q is a primitive (s + 1)th root of
unity, G is a group, g ∈ Z(G) is an element of order n, G/ < g > is in bijection
with P , χ ∈ G∗ is a character such that χ(g) = q, and α ∈ K is a scalar which
may be non-zero only if χs+1 = 1.
The examples given in (iii) appear (for finite sets P ) in [10].

Now we can prove the main result of this section.

Theorem 6.4. Assume that K is a field containing primitive roots of unity of any
positive order (in particular, K has characteristic 0). Then a co-Frobenius path
subcoalgebra C 6= 0 can be endowed with a Hopf algebra structure if and only if it
is of one of the following three types:
(I) A direct sum of copies (indexed by a set P ) of the same K[A∞|s] for some s ≥ 1.
In this case, any Hopf algebra structure on C is isomorphic to a Hopf algebra of
the form H∞(s, q,G, g, χ, α) for some q,G, g, χ, α, where q is a primitive (s+ 1)th
root of unity, G is a group, g ∈ Z(G) is an element of infinite order, G/ < g >

is in bijection with P , χ ∈ G∗ is a character such that χ(g) = q, and α ∈ K is a
scalar which may be non-zero only if χs+1 = 1.
(II) A direct sum of copies (indexed by a set P ) of the same K[Cn, s] for some
n ≥ 2 and s ≥ 1 such that s+ 1 divides n. In this case, any Hopf algebra structure
on C is isomorphic to a Hopf algebra of the form Hn(s, q,G, g, χ, α) for some
q,G, g, χ, α, where q is a primitive (s+ 1)th root of unity, G is a group, g ∈ Z(G)
is an element of order n, G/ < g > is in bijection with P , χ ∈ G∗ is a character
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such that χ(g) = q, and α ∈ K is a scalar which may be non-zero only if χs+1 = 1.
(III) A direct sum of copies of K. In this case, any Hopf algebra structure on C

is isomorphic to a group Hopf algebra KG for some group G.

Proof. By Example 6.3 we see that a coalgebra of type (I) or (II) has a Hopf
algebra structure. Obviously, a coalgebra of type (III) is a grouplike coalgebra
KX for some set X, so then it has a Hopf algebra structure, obtained if we endow
X with a group structure.
Conversely, let C be a co-Frobenius path subcoalgebra which can be endowed with
a Hopf algebra structure. By Corollary 4.7, C is isomorphic to a direct sum of
coalgebras of types K[A∞|s], K[Cn, s] or K. We have that G = G(C), the set
of all vertices of C, is a group with the induced multiplication. We look at the
identity element 1 of this group and distinguish three cases.
Case 1. If 1 is a vertex in a connected component of type K[A∞|s], denote the
vertices of this connected component by (vn)n∈Z such that v0 = 1. Also denote by
an the arrow from vn to vn+1 for any n ∈ Z. If g = v1, then ∆(a1) = 1⊗a1+a1⊗g,
and a1 /∈ C0. Then ∆(ga1) = g ⊗ ga1 + ga1 ⊗ g2, and ga1 /∈ C0, so Pg2,g(C) *
C0. Since the only h ∈ G such that Ph,g(C) is not trivial (i.e. 6= K(h − g), or
equivalently, not contained in C0) is h = v2, we obtain that v2 = g2. Recurrently
we see that vn = gn for any positive integer n, and also for any negative integer n.
Let us take some h ∈ G. Then ∆(ha1) = h ⊗ ha1 + ha1 ⊗ hg and ha1 /∈ C0, so
Phg,h(C) 6= K(hg − h). Hence there is an arrow starting at h and ending at hg in
C; as before, inductively we get that there are in C arrows as follows

... −→
hg−1
◦ −→ ◦ −→

h
◦ −→
hg

◦ −→ ...
hg2

which shows that the vertex h belongs to a connected component D of type
K[A∞|s′] for some s′ ≥ 1. Moreover, ∆(a1h) = h ⊗ a1h + a1h ⊗ gh, we also
have Pgh,h(C) 6= K(gh − h), so there is an arrow from h to gh in C. This shows
that hg = gh, so then g must lie in Z(G).
If we denote by ph,gih the unique path from h to gih, for any h ∈ G and i ≥ 0,
then

∆(p1,gs)− 1⊗ p1,gs − p1,gs ⊗ gs ∈ Cs−1 ⊗ Cs−1

and p1,gs /∈ Cs−1. Then

∆(hp1,gs)− h⊗ hp1,gs − hp1,gs ⊗ hgs ∈ Cs−1 ⊗ Cs−1

and hp1,gs /∈ Cs−1. But it is easy to check that in the path coalgebra KΓ (whose
subcoalgebra is C) the relation ∆(c)−h⊗ c− c⊗hgs ∈ (KΓ)s−1⊗ (KΓ)s−1 holds
if and only if c ∈ (KΓ)s−1 + Kph,hgs . Applying this for c = hp1,gs /∈ Cs−1, we
obtain that hp1,gs = c′ + γph,hgs for some c′ ∈ (KΓ)s−1 and γ ∈ K∗. This shows
that ph,hgs must be in C, so it also lies in D, which implies that s′ ≥ s (otherwise
D cannot have paths of length s).



PATH, INCIDENCE COALGEBRAS AND QUANTUM GROUPS 27

Similarly, since

∆(h−1ph,hgs′ )− 1⊗ h−1ph,hgs′ − h
−1ph,hgs′ ⊗ g

s′ ∈ Cs′−1 ⊗ Cs′−1

and h−1ph,hgs′ /∈ Cs′−1, we obtain that s ≥ s′. In conclusion s′ = s, and C is
a direct sum of coalgebras isomorphic to K[A∞|s]. Moreover, this direct sum is
indexed by a set in bijection with G/ < g >.
In order to uncover the Hopf algebra structures on C, we use the Lifting Method
proposed in [2]. Since C0 = KΓ is a Hopf subalgebra of C, the coradical filtration
C0 ⊆ C1 ⊆ . . . of C is a Hopf algebra filtration, and we can consider the associated
graded space grC = C0 ⊕ C1

C0
⊕ . . ., which has a graded Hopf algebra structure.

Denote H = KΓ, the degree 0 component of grC, and by γ : H → grC the
inclusion morphism. The natural projection π : grC → H is a Hopf algebra
morphism. Then the coinvariants R = (grC)coH with respect to the right H-
coaction induced via π, i.e.

R = {z ∈ grC | (I ⊗ π)∆(z) = z ⊗ 1}

is a left Yetter-Drinfeld module over H, with left H-action defined by h · r =∑
γ(h1)rS(γ(h2)) for any h ∈ H, r ∈ R, and left H-coaction δ(r) =

∑
r(−1) ⊗

r(0) = (π ⊗ I)∆(r). Moreover, R is a graded subalgebra of grC, with grading
denoted by R = ⊕n≥0R(n), and it also has a coalgebra structure with comultipli-
cation ∆R(r) =

∑
r(1) ⊗ r(2) =

∑
r1γπ(S(r2))⊗ r3, and these make R a braided

Hopf algebra in the category H
HY D of Yetter-Drinfeld modules over H. The Hopf

algebra grC can be reconstructed from R by bosonization, i.e. grC ' R#H, the
biproduct of R and H. The multiplication of this biproduct is the smash product
given by (r#h)(p#v) =

∑
r(h1 · p)#h2v, while the comultiplication is the smash

coproduct ∆(r#h) =
∑

(r(1)#(r(2))(−1)h1)⊗ (r(2))(0)#h2.
Since in our case Ci is the span of all paths of length at most i in C, if
z = ĉ ∈ R(n), then c =

∑
i αipi, a linear combination of paths pi of length i,

and
∑
i αip̂i ⊗ t(pi) =

∑
i αip̂i ⊗ 1. Then αi = 0 for any i such that t(pi) 6= 1,

showing that R(i) is spanned by the classes of the paths of length i which end at
1. We conclude that R(i) has dimension 1 for any 0 ≤ i ≤ s, and dim(R) = s+ 1.
By [2, Theorem 3.2] (see also [9, Proposition 3.4]) R is isomorphic to a quantum
line, i.e. R ' Rq(H, v, χ) for some primitive (s+ 1)’th root of unity q, an element
v ∈ G and a character χ ∈ G∗ such that χ(v) = q, and χ(h)hv = χ(h)vh for
any h ∈ G, i.e. v ∈ Z(G) (we use the notation of [9, Section 2]). As an algebra
we have Rq(H, v, χ) = K[y]/(ys+1), and the coalgebra structure is such that the
elements d0 = 1, d1 = y, d2 = y2

(2)q !
, . . . , ys

(s)q !
form a divided power sequence, i.e.

∆(di) =
∑

0≤j≤i dj ⊗ di−j for any 0 ≤ i ≤ s. The H-action on Rq(H, v, χ) is such
that h · y = χ(h)y for any h ∈ G, and the H-coaction is such that y 7→ v ⊗ y.
By [9, Proposition 3.1], there exists a (1, v)-skew-primitive z in C, which is not in
C0, such that vz = qzv, C is generated as an algebra by z and G, and the class
ẑ in C1

C0
corresponds to the element y#1 in Rq(H, v, χ)#H via the isomorphism
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grC ' Rq(H, v, χ)#H. It follows that v must be g−1. Since for h ∈ G both zh

and hz are (h, g−1h)-skew-primitives, we must have zh = λhz + β(g−1h − h) for
some scalars λ and β. But zhg = (λhz+ β(g−1h−h))g = qλhgz+ β(h−hg), and
on the other hand zgh = qgzh = qλghz + qβ(h− hg), showing that β = 0. Thus
zh = λhz, and passing to grC, this gives ẑh = λhẑ. But in Rq(H, v, χ)#H we
have that (1#h)(y#1) = χ(h)(y#1)(1#h), so λ = χ(h). Therefore zh = χ(h)hz.
Replace the generator z by x = gz, which is a (g, 1)-skew-primitive. By the quan-
tum binomial formula we see that ∆(xs+1) = 1 ⊗ xs+1 + xs+1 ⊗ gs+1, so then
xs+1 = α(gs+1 − 1) for some scalar α. Since xs+1h = χ(h)s+1hxs+1, we see that
if χs+1 6= 1, then α must be zero. Now it is clear that C ' H∞(s, q−1, G, g, χ, α).

Case 2. If 1 is a vertex in a connected component D of type K[C1, s], with
s ≥ 1, then let x be the arrow from 1 to 1, which is a primitive element, i.e.
∆(x) = x⊗ 1 + 1⊗ x. Then gx /∈ C0 and ∆(gx) = gx⊗ g + g ⊗ gx for any g ∈ G,
so there is an arrow from gx to gx. This shows that C must be a direct sum of
coalgebras of type K[C1, s

′] (for possible different values of s′). Then looking at
∆(xi)−xi⊗1−1⊗xi, it is easy to show by induction that xi lies in D for any i ≥ 1.
Since x is a non-zero primitive element, the set (xi)i≥1 is linearly independent, a
contradiction to the finite dimensionality of D. Thus this situation cannot occur.
If 1 is a vertex in a connected component of type K[Cn, s], with n ≥ 2, the
proof goes as in Case 1, and leads us to the conclusion that C is a direct sum of
coalgebras isomorphic to K[Cn, s], and that C is isomorphic as a Hopf algebra to
one of the form Hn(s, q,G, g, χ, α). The only difference is that instead of using the
paths ph,gih, we deal with paths denoted by ph|l, and meaning the path of length
l starting at the vertex h. Also, since χ(g) = q, a (s + 1)’th root of unity, and
gn = 1, s+ 1 must divide n.

Case 3. If 1 is a vertex in a connected component of type K, then proceeding as
in Case 1, we can see that there are no arrows in C, so C is a direct sum of copies
of K. Thus C is a grouplike coalgebra, and Hopf algebra structures on C are just
group Hopf algebras. �

We note that the above theorem completely classifies finite dimensional Hopf al-
gebras whose underlying algebras are quotients of finite dimensional path algebras
by ideals generated by paths, or whose underlying coalgebras are path subcoalge-
bras. These are the algebras KG, Hn(s, q,G, g, χ, α) and their duals, because a
finite dimensional Hopf algebra is Frobenius as an algebra and co-Frobenius as a
coalgebra.
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