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Abstract

We investigate when a weak quasi-Hopf algebra H is Frobenius; we show this is not
always true, but it is true if the semisimple base algebra A has all its matrix blocks of
the same dimension. However, if A is a semisimple algebra not having this property,
there is a weak Hopf algebra H with base A which is not Frobenius (and consequently,
it is not Frobenius “over” A either). We give, moreover, a categorical counterpart of
the result that a Hopf algebra is a Frobenius algebra. 1

Introduction

Quasi-Hopf algebras are objects generalizing Hopf algebras, which were introduced in 1990
by Drinfeld. They are associative algebras H, having also a coalgebra structure which is
only coassociative up to conjugation by a nonabelian 3-cocycle and, together with an
antipode S : H → H satisfy appropriate compatibility conditions. Weak Hopf algebras
were introduced and investigated by several authors; [BS], [BNS], [MS], [N], [S].
Finite dimensional Hopf algebras generalize group algebras of finite groups in many ways,
and one of the interesting similar features they have is that they are Frobenius algebras.
This property is also preserved in the infinite dimensional case, in the sense that an
infinite dimensional Hopf algebra having a nondegenerate integral is co-Frobenius (as a
coalgebra). It is then natural to investigate whether the property of being Frobenius
algebra is preserved for generalizations of Hopf algebras. This was shown to be true for
finite dimensional quasi-Hopf algebras; even infinite dimensional co-quasi Hopf algebras
being co-Frobenius in [BC].
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Also the paper [V] seems to show that finite dimensional weak Hopf algebras are Frobenius
algebras. This was done there as a consequence of the integral theory the author develops
for weak Hopf algebras. However, G. Böhm noticed a gap in one of the key ingredients
used for proving this fact on [V, p. 485]. But it remains true that weak Hopf algebras are
quasi-Frobenius, which was proved in [V] as well as [BNS].

In this note, we address this question by using the categorical approach and the more
general language of finite tensor categories. This seems an appropriate approach, since the
quasi-Frobenius property of an algebra is a Morita invariant property, and the Frobenius
property is easily understood as well in terms of dimensions inside the category. This
also allows including all the above mentioned finite dimensional structures (Hopf algebras,
quasi-Hopf algebras) and addresses also the more general weak quasi-Hopf algebras. We
show that a (finite dimensional) weak (or weak quasi) Hopf algebra H is Frobenius if the
dimensions of the matrix blocks of its base algebra A are all equal. In particular, this
recovers the well known results for Hopf and quasi-Hopf algebras. We also show that this
is the best possible result, for if A is a semisimple separable algebra over an algebraically
closed field, and the dimensions of the matrix blocks of A are not all equal, then there
is a weak Hopf algebra with base algebra A which is not Frobenius. This is shown by
constructing a tensor category C together with a tensor functor F : C → Bimod(A) into the
category of A-(A-)bimodules (where A is semisimple); then, applying general Tannakian
reconstruction theory, we find the existence of a corresponding weak Hopf algebra which
is not Frobenius.

1 Preliminaries

Throughout this note, K will be an algebraically closed field of characteristic 0. We recall
the following definition, for example, from [BS],

Definition 1.1 A weak Hopf algebra is a K-vector space H which is both an associative
algebra (H,m, 1) and a coassociative coalgebra (H,∆, ε) together with an antipode S : H →
H such that ∆ : H → H ⊗K H is a morphism of algebras and
(i) ε(ab(1))ε(b(2)c) = ε(abc) = ε(ab(2))ε(b(1)c);
(ii) 1(1) ⊗K 1(2)1′(1) ⊗ 1′(2) = 1(1) ⊗ 1(2) ⊗ 1(3) = 1(1) ⊗ 1′(1)1(2) ⊗ 1′(2), where 1′ = 1 is a
“copy” of 1;
(iii) a(1)S(a(2)) = ε(1(1)a)1(2);
(iv) S(a(1))a(2) = 1(1)ε(a1(2));
(v) S(a(1))a(2)S(a(3)) = S(a).

If the counit is an algebra homomorphism, it is in fact just a Hopf algebra.
It was noted in [BS] that the category of finite dimensional representations of a weak Hopf
algebra H is a monoidal category, and moreover, it has a rigid structure, that is, it has
left and right duals of every object, satisfying appropriate axioms. This has motivated the
introduction of finite tensor categories. We recall the following definitions; we refer the
reader to [BK] or [CE] for technical details.

Definition 1.2 (i) An abelian category C is called finite if there are only finitely many
isomorphism types of simples, each of which has a projective cover, objects have finite
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length and the Hom-spaces are finite dimensional. (Note: This is known to be equivalent
to C ' RepA for a finite dimensional algebra A).
(ii) A category C, which is K-linear abelian monoidal, rigid, all objects have finite length
and the Hom spaces are finite dimensional vector spaces over K is called a finite multi-
tensor category; if 1 is simple then this is called a finite tensor category.
(iii) A functor F : C → D between two monoidal categories is called quasi-tensor if there ex-
ist a natural isomorphism θ : F (X⊗Y ) ∼= F (X)⊗F (Y ) for all X,Y ∈ C, and F (1C) ∼= 1D.
This is called a tensor functor if the isomorphism θ agrees with the associativity and unit
isomorphisms of C and D.

It has been proved in [EO] (see also [HO]) that any finite tensor category is equivalent to
the representation theory of a weak quasi-Hopf algebra (we refer to [MS] for the technical
definition, although the counit is not required to be an algebra homomorphism). This
is done as follows: one first constructs a quasi-tensor functor F : C → Bimod(A) to the
category of finite dimensional A-bimodules of a semisimple algebra A. Then, it is shown
that C is equivalent to the representation category of a certain weak quasi-Hopf algebra
structure on EndK(F ).
Conversely, if C = RepH - the finite dimensional representations (left modules) of H
- for a weak quasi-Hopf algebra H, one defines A = AL = {ε(1(1)a)1(2), a ∈ A} and
AR = {1(1)ε(a1(2)), a ∈ A}; it turns out that AR ' (AL)op and AL and AR are semisimple
and commute with each other; the algebra A is called the base algebra of H. (The
unit object A in H-Mod, with action via projection formula implicit above, is simple,
or irreducible, in many cases; e.g. for H a connected groupoid algebra.) There exists a
functor F : C → A ⊗ Aop−Mod = Bimod(A), which is a quasi-tensor functor. Moreover,
if the algebra H is a weak Hopf algebra, then F is a tensor functor.

In order to distinguish from the categorical duals coming from the rigidity axioms of a
tensor category, we will use V ∨ to denote the K-dual of the K-vector space V .

Definition 1.3 A finite dimensional algebra is called quasi-Frobenius if every (finitely
generated) projective left (or, equivalently, right) A-module is injective, equivalently A is
an injective left (or right) A-module. A K-algebra is called Frobenius if and only if A ' A∨
as left, (or, equivalently, as right) A-modules.

It has been shown in [V, Corollary 3.3] that a weak Hopf algebra is necessarily quasi-
Frobenius; there this result was obtained as a consequence of the integral theory and a
Hopf module isomorphism for weak Hopf modules. This is also an easy consequence of
[EO, Proposition 2.3], which provides a very short proof of this fact. Moreover, this propo-
sition also implies the result for weak quasi-Hopf algebras. We use the tensor category
philosophy to obtain the results about the Frobenius property of weak Hopf algebras and
weak quasi-Hopf algebras. We note that since K is algebraically closed, a finite dimen-
sional quasi-Frobenius algebra A is Frobenius if and only if the socle and cosocle of any
projective indecomposable A-module P have the same dimension [L, 16.7-16.33]. Indeed,
the multiplicity of P in AA is the same as the multiplicity of S, the co-socle P/J(A)P
of P , in A/J(A) - the semisimple residual algebra of A. This is exactly dimK(S) since
K is algebraically closed (S is simple). The multiplicity of P in A∨ is the same as the
multiplicity of Q = P∨ as right A-module in (A∨)∨ = AA. Since P is also injective,
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Q = P∨ is projective as right A-module, and its multiplicity in AA is the dimension of the
co-socle T = Q/QJ(A) of Q. But T∨ is then the socle of P by duality, and we get that
the multiplicity of P in A and A∨ are the same iff dim(T ) = dim(S).

2 Weak Hopf Algebras and Frobenius properties

Let H be a weak quasi-Hopf algebra, and F : C = Rep(H) → Bimod(A) the associated
forgetful functor. Let (Vi)i∈I be the simple objects in C and Pi their respective covers.
The vector space dimension of an H-module M is dimK(F (M)) (this is different from the
categorical or Frobenius-Perron dimension). Then H =

⊕
i∈I

P
dim(F (Vi))
i . Also denote by

(Sj)j=1,p the simple right A-modules; then Sij = S∨i ⊗K Sj are the simple A-bimodules.
Let di = dimK(Si). We recall that each object X of C has an associated matrix Nk

Xj

defined by the left multiplication by X, where Nk
Xj is the multiplicity of Vk in the Jordan-

Hölder series of X ⊗ Lj in C. As in [EO], Section 2.8, for each projective Pi, i ∈ I let
D(i) ∈ I be such that P ∗i ' PD(i) (here ()∗ denotes the categorical dual). Also, there is
an invertible object Vρ of C such that PD(i) = P∗i ⊗ Vρ and VD(i) = V∗i ⊗ Vρ = ∗Vi ⊗ Vρ,
where we convey V∗i = ∗Vi.

Proposition 2.1 Denote [F (X) : Sij ] the multiplicity of Sij. Then

dimK(F (soc(Pk))) =
∑
i,j

[F (VD(k)) : Sij ]didj

dimK(F (cosoc(Pk))) =
∑
i,j

[F (∗Vk) : Sij ]didj

Proof. We have P ∗k → cosoc(P ∗k ) → 0, equivalently, by taking left duals, we get
0 → ∗cosoc(P ∗k ) → ∗(P ∗k ) = Pk so soc(Pk) = ∗cosoc(P ∗k ). Also, dimK(F (∗X)) =
dimK(F (X∗)) = dimK(F (X))∨ = dimK(F (X)) (in Bimod(A) left and right duals are
the same). Therefore

dimK(F (soc(Pk))) = dimK(F (∗cosoc(P ∗k ))) (by duality)
= dimK(F (∗cosoc(PD(k)))) (PD(k) ' P ∗k )
= dimK(F (∗VD(k))) = dimK(F (VD(k)))

=
∑
i,j

[F (VD(k)) : Sij ]didj

The second equality follows similarly. �

If X,Y are objects of C, then the matrix MX = [F (X) : Sij ]i,j=1,n has integer coefficients,
and moreover, MX⊗Y = MXMY . Indeed, if F (X) =

⊕
i,j
αijSij and F (Y ) =

⊕
i,j
βijSij ,

since Sij ⊗A Skl = δjkSil we get F (X)⊗A F (Y ) =
⊕
ijkl

δjkαijβklSijSkl =
⊕
i,l

(
p∑

k=1

αikβkl)Sil.

With this we have:
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Theorem 2.2 Let H be a weak quasi-Hopf algebra with the base algebra A. If the di-
mensions of the simple components of A are all equal, then H is a Frobenius algebra. In
particular, this is true if the base algebra A is commutative, so also when H is a quasi-Hopf
algebra.

Proof. Since VD(k) = ∗Vk ⊗ Vρ, MVD(k)
= M∗Vk ·MVρ . But since Vρ is invertible, MVρ ·

MV −1
ρ

= MV −1
ρ
·MVρ = MVρ⊗V −1

ρ
= M1 = Id, so MVρ is a permutation matrix, since it

has integer coefficients and its inverse MV −1
ρ

has integer coefficients too. So the columns
of, and the elements of MVD(k)

= [F (VD(k)) : Sij ]i,j=1,p are a permutation of the columns
of, and respectively the elements of M∗Vk = [F (∗Vk) : Sij ]. Thus, if d = di = dj for all i, j
(for commutative A, d = 1), using the previous Proposition, one has

dimK(F (soc(Pk))) = d2
∑
i,j

[F (VD(k)) : Sij ] = d2
∑
i,j

[F (∗Vk) : Sij ] = dimK(F (cosoc(Pk)))

and so H is Frobenius. �

Remark 2.3 For the above proposition, we do not need that the characteristic of K is 0,
since for any weak quasi-Hopf algebra, one can build a forgetful functor F : Rep(H) →
Bimod(A).

Example 2.4 Let B be Taft’s Hopf algebra of dimension p2, with generators g, x with
gp = 1, xp = 0, xg = λgx with λ a primitive p’th root of unity, and comultiplication
∆(g) = g ⊗ g, ∆(x) = g ⊗ x+ x⊗ 1, counit ε(g) = 1, ε(x) = 0 and antipode S(g) = g−1,

S(x) = −g−1x. Let x(s)
k =

p−1∑
i=0

λ−ikgixs, where we agree to write all indices modulo p.

Note that

g · x(s)
k = λkx

(s)
k (1)

x · x(s)
k = x

(s+1)
k−1 (2)

Denote Vk the 1-dimensional B-module K with structure x ·α = 0 and g ·α = λkα. These
form a set of representatives for simple left B-modules.
Let Iik = B · xik = K < x

(p−1)
k+1 , xp−2

k+2, . . . , x
(p−i)
k+i+1 > (i = 1, . . . , p) - the K-subspace spanned

by these i elements, which are linearly independent (since they contain different powers
of x). There is a Jordan-Hölder series of Ikk , 0 =⊂ I1

k ⊆ I2
k ⊆ . . . ⊆ Ik−1

k ⊆ Ikk and the
terms of these series are Iik/I

i−1
k ' Vk+i by (1). We have J(B) = B · x - the Jacobson

radical of B. Then J(B) · Ikk = Ik−1
k is the Jacobson radical of Ikk , and so we have a

superfluous morphism Ikk → Vk → 0 (i.e. an epimorphism whose kernel is small). If Pk
is the projective cover of Vk, it follows that Pk projects onto Ikk , so it has dimension at
least p. Since each projective indecomposable Pk occurs in a decomposition of BB, we

have that p2 = dimK(B) ≥
p−1∑
i=0

dimK(Pi) ≥ p · p, therefore dim(Pk) = p for all k and thus

Pk = Ikk . In fact, since Ii−1
k = J(B) · Iik, we can see that each Pk is a chain module (the

Iik are the only submodules). However, we Pk is also injective and has simple socle, and
soc(Pk) = I1

k ' Vk+1. We now build a tensor functor F : Rep(B)→ Bimod(A) in several
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steps.

Rep(B)

F
��

F1 // Rep(Z/p)

F2

��
Bimod(A) Bimod(K[Z/p])F3oo

First, let F1 : Rep(B) → Rep(Z/p) be the forgetful functor, given by the inclusion of
Hopf algebras < 1, g, ..., gp−1 >' K[Z/p] ↪→ B. It is easily checked that this is a tensor
functor. Let F2 : K[Z/p]−mod = Rep(Z/p) → Bimod(K[Z/p]), F2(Vk) =

⊕
i+j=k

V ∗i ⊗K

Vj =
⊕
i
V−i ⊗K (V−i ⊗ Vk) where the second tensor represents the tensor product in

Rep(Z/p), and (−)∗ is the dual in Rep(Z/p). On morphisms f : X → Y , we have

F2(f) =
p−1⊕
i=0

1V ∗i ⊗K (1V−i ⊗f). It can be easily noted that F2 is well defined (the action of

K[Z/p]⊗K[Z/p] on Vi⊗K Vj is on components) and that F2 is a tensor functor: indeed, it
is enough to check this on simple objects F2(Va)⊗K[Z/p] F2(Vb) = (

⊕
i+j=a

V−i⊗ Vj)⊗K[Z/p]

(
⊕

k+l=b

V−k ⊗ Vl) =
⊕

i,j,k,l;i+j=a,k+l=b

δj,−kV−i ⊗ Vl =
⊕

i+l=a+b

V−i ⊗ Vl = F2(Va ⊗ Vb).

Note that this functor can also be seen as the left adjoint of the functor

G : Bimod(Z/p) = Rep(Z/p× Z/p) −→ K[Z/p]−mod = Rep(Z/p)

which is induced by the diagonal map K[Z/p] → K[Z/p] ⊗K[Z/p] coming by the group
morphism Z/p 3 i 7→ (−i, i) ∈ Z/p× Z/p. Indeed, we can easily see that G(V ∗a ⊗K Vb) =
Va+b, so HomBimod(Z/p)(F2(Vk), V ∗a ⊗K Vb) = HomBimod(Z/p)(

⊕
i+j=k

V ∗i ⊗K Vj , V
∗
a ⊗K Vb) =⊕

i+j=k

δi,aδj,bK = δa+b,kK = HomK[Z/p]−mod(Vk, Va+b) = HomK[Z/p]−mod(Vk, GV ∗a ⊗KVb).

Finally, let d1, . . . , dp be positive integers and A =
p⊕
i=1

Mdi(K) and F3 : Bimod(Z/p) →

Bimod(A), F3(V ∗i ⊗ Vj) = S∨i ⊗ Sj = Sij (with Si’s as before). This is actually an
equivalence of tensor categories. Let F = F3 ◦ F2 ◦ F1 : Rep(B) → Bimod(A), which is a
tensor functor. By the above, using tanakian reconstruction, this corresponds to a weak
Hopf algebra H = Taft(d1, . . . , dn) with base A and Rep(H) ' Rep(B), and “forgetful”
functor the above F . This holds in characteristic different from 0, whenever none of the
di are divisible by the characteristic of K.

Proposition 2.5 With the notations above, the weak Hopf algebra H is a Frobenius al-
gebra if and only if d1, . . . , dp are all equal. Also, the algebra H has dimension (

∑
i
di)4.

Thus, if the di’s are not all equal, H is a weak Hopf algebra which is not a Frobenius
algebra.

Proof. By the considerations above we have dimK(F (soc(Pk))) = dimK(F (Vk+1)) =
dimK(

⊕
i+j=k+1

S∨i ⊗ Sj) =
∑

i+j=k+1

didj and also dimK(F (cosoc(Pk))) = dimK(F (Vk)) =∑
i+j=k

didj . H is Frobenius if and only if these two numbers are equal for all k. Let ω be a

root of order p of unity different from 1, and t(x) =
p−1∑
k=0

dkx
k. Then t(ω)2 =

∑
i,j
didjω

i+j =
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p−1∑
k=0

∑
i+j=k

didjω
k = (

∑
i
did−i) · (

∑
k

ωk) = 0 (the indices are always considered mod p).

Therefore, t is divisible by the polynomial
p−1∑
k=0

xp and so they are a multiple of each other.

This implies that all di are equal.
Since every projective indecomposable Pk has each simple object occurring exactly once
in any of its Jordan-Holder series, dimK(H) =

∑
k

dimK(F (Pk)) · dimK(F (soc(Pk))) =∑
k

(
∑
i

dimK(F (Vi))) · dimK(F (Vk)) = (
∑
k

dimk(F (Vk)))2 = (
∑
k

∑
i+j=k

didj)2 = (
∑
k

dk)4. �

However, with the observation above on the characterization of Frobenius algebras, there is
a certain categorical statement which could be interpreted as the analogue of the property
of (quasi) Hopf algebras of being Frobenius:

Proposition 2.6 If C is a finite tensor category, then d+(soc(Pk)) = d+(cosoc(Pk)),
where d+ represents the Frobenius-Perron dimension in C.

Proof. As in Proposition 2.1, soc(Pk) = ∗LD(k), so we compute d+(soc(Pk)) = d+(∗LD(k))
= d+(LD(k)) = d+(∗Lk ⊗ Lρ) = d+(∗Lk)d+(Lρ) = d+(Lk) = d+(cosoc(Pk)). �

Note that proposition 2.6 implies the result that quasi-Hopf algebras are Frobenius alge-
bras (Hausser-Nill).
One can ask whether a weak (quasi-) Hopf algebra H is perhaps Frobenius “over its base
algebra” A; this should naturally be formulated in the terminology of Frobenius exten-
sions. If ϕ : A → B is a morphism (extension) of rings, it is called Frobenius extension
if the forgetful (restriction of scalars) functor BM → AM has isomorphic left and right
adjoints (see [K] for details). We have the extension of algebras A ↪→ H, and one can
ask the question whether this is Frobenius. Since A is semisimple, the unit k → A is a
Frobenius extension, and then if A ↪→ H is Frobenius, k ↪→ H would be Frobenius (by
transitivity of Frobenius extensions). But, as seen above, this is not always the case. This
provides an example of a (finite projective) weak Hopf-Galois extension which is not a
Frobenius extension, since H is such a Galois extension of A [CDG, 2.7].
(Similarly, the extensions A ↪→ H and A ⊗ Aop = AL ⊗ AR ↪→ H are not twisted or
β-Frobenius extensions, although they are QF extensions since the base algebras are sep-
arable.)
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