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Abstract. ”Co-Frobenius” coalgebras were introduced as dualizations of Frobenius al-
gebras. Recently, it was shown in [I] that they admit left-right symmetric characteriza-
tions analogue to those of Frobenius algebras: a coalgebra C is co-Frobenius if and only
if it is isomorphic to its rational dual. We consider the more general quasi-co-Frobenius
(QcF) coalgebras; in the first main result we show that these also admit symmetric char-
acterizations: a coalgebra is QcF if it is weakly isomorphic to its (left, or equivalently
right) rational dual Rat(C∗), in the sense that certain coproduct or product powers of
these objects are isomorphic. These show that QcF coalgebras can be viewed as general-
izations of both co-Frobenius coalgebras and Frobenius algebras. Surprisingly, these turn
out to have many applications to fundamental results of Hopf algebras. The equivalent
characterizations of Hopf algebras with left (or right) nonzero integrals as left (or right)
co-Frobenius, or QcF, or semiperfect or with nonzero rational dual all follow immediately
from these results. Also, the celebrated uniqueness of integrals follows at the same time
as just another equivalent statement. Moreover, as a by-product of our methods, we
observe a short proof for the bijectivity of the antipode of a Hopf algebra with nonzero
integral. This gives a purely representation theoretic approach to many of the basic fun-
damental results in the theory of Hopf algebras. Furthermore, the results on coalgebras
allow the introduction of a general concept of Frobenius algebra, which makes sense for
infinite dimensional and topological algebras, and specializes to the classical notion in
the finite case: this will be a topological algebra A which is isomorphic to its complete
topological dual A∨. We give many examples of co-Frobenius coalgebras and Hopf al-
gebras connected to category theory, homological algebra and the newer q-homological
algebra, topology or graph theory, showing the importance of the concept.

Introduction

A K algebra A over a field K is called Frobenius if A is isomorphic to A∗ as right A-
modules. This is equivalent to there being an isomorphism of left A-modules between A
and A∗. This is the modern algebra language formulation for an old question posed by
Frobenius. Given a finite dimensional algebra with a basis x1, . . . , xn, the left multipli-
cation by an element a induces a representation A 7→ EndK(A) = Mn(K), a 7→ (aij)i,j

(aij ∈ K), where a · xi =
n∑
j=1

aijxj . Similarly, the right multiplication produces a ma-

trix a′ij by writing xi · a =
n∑
j=1

a′jixj , a
′
ij ∈ K, and this induces another representation

A 3 a 7→ (a′ij)i,j . Frobenius’ problem came as the natural question of when the two repre-
sentations are equivalent. Frobenius algebras occur in many different fields of mathematics,
such as topology (the cohomology ring of a compact oriented manifold with coefficients
in a field is a Frobenius algebra by Poincaré duality), topological quantum field theory
(there is a one-to-one correspondence between 2-dimensional quantum field theories and
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commutative Frobenius algebras; see [Ab]), Hopf algebras (a finite dimensional Hopf al-
gebra is a Frobenius algebra), and Frobenius algebras have subsequently developed into a
research subfield of algebra.

Co-Frobenius coalgebras were first introduced by Lin in [L] as a dualization of Frobe-
nius algebras. A coalgebra is left (right) co-Frobenius if there is a monomorphism of
left (right) C∗-modules C ⊆ C∗. However, unlike the algebra case, this concept is not
left-right symmetric, as an example in [L] shows. Nevertheless, in the case of Hopf al-
gebras, it was observed that left co-Frobenius implies right co-Frobenius. Also, a left
(or right) co-Frobenius coalgebra can be infinite dimensional, while a Frobenius algebra
is necessarily finite dimensional. Co-Frobenius coalgebras are coalgebras that are both
left and right co-Frobenius. It recently turned out that this notion of co-Frobenius has
a nice characterization that is analogue to the characterizations of Frobenius algebras
and is also left-right symmetric: a coalgebra C is co-Frobenius if it is isomorphic to its
left (or equivalently to its right) rational dual Rat(∗CC

∗) (equivalently C ' Rat(C∗C∗);
see [I]). This also allowed for a categorical characterization which is again analogue
to a characterization of Frobenius algebras: an algebra A is Frobenius iff the functors
HomA(−, A) (”the A-dual functor”) and HomK(−,K) (”the K-dual functor”) are nat-
urally isomorphic. Similarly, a coalgebra is co-Frobenius if the C∗-dual HomC∗(−, C∗)
and the K-dual HomK(−,K) functors are isomorphic on comodules. If a coalgebra C
is finite dimensional then it is co-Frobenius if and only if C is Frobenius, showing that
the co-Frobenius coalgebras (or rather their dual) can be seen as the infinite dimensional
generalization of Frobenius algebras. One very important example is in again in the
topological situation: the homology of a compact oriented manifold M admits a coal-
gebra structure which is dual to that of the algebra in co-homology, and it becomes a
co-Frobenius coalgebra. For any topological space it can actually be described as follows:
take an n-simplex σ : [0, 1, . . . , n] → M in H∗(M) and introduce the comultiplication

∆(σ) =
n∑
i=0

σ|[0,1,...,i]⊗σ|[i,...,n], which in fact induces at homology level, that is, the formula

can be introduced for cohomology classes. Hence, we can then consider the convolution
product ∗ on the dual algebra ((H∗(M))∗, ∗), and then by the definition of the cup prod-
uct the natural map (H∗(M),∪)→ ((H∗(M))∗, ∗), c 7−→ (σ 7→ c(σ)) obviously becomes a

morphism of rings: (c∗d)(σ) =
∑∑

σ c(σ1)d(σ2) =
n∑
i=0

c(σ|[0,1,...,i])d(σ|[i,...,n]) = (c∪d)(σ).

In the case when M is a compact oriented manifold, this is an isomorphism turning H∗(M)
into a co-Frobenius coalgebra.

Quasi-co-Frobenius (QcF) coalgebras were introduced in [GTN] (further investigated in
[GMN]), as a natural dualization of quasi-Frobenius algebras (QF algebras), which are
algebras that are self-injective, cogenerators and artinian to the left, equivalently, all these
conditions to the right. However, in order to allow for infinite dimensional QcF coalgebras
(and thus obtain more a general notion), the definition was weaken to the following: a
coalgebra is said to be left (right) QcF if it embeds in

∐
I

C∗ (a direct coproduct of copies

of C∗) as left (right) C∗-modules. These coalgebras were shown to bear many properties
that were the dual analogue of the properties of QF algebras. Again, this turned out
not to be a left-right symmetric concept, and QcF coalgebras were introduced to be the
coalgebras which are both left and right QcF. Our first goal is to note that the results and
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techniques of [I] can be extended and applied to obtain a symmetric characterization of
these coalgebras. In the first main result we show that a coalgebra is QcF if and only if C is
”weakly” isomorphic to Rat(C∗C∗) as left C∗-modules, in the sense that some (co)product
powers of these objects are isomorphic, and this is equivalent to asking that C∗ is ”weakly”
isomorphic to Rat(C∗C∗) (its right rational dual) as right C∗-modules. In fact, it is enough
to have an isomorphism of countable powers of these objects. This also allows for a nice
categorical characterization, which states that C is QcF if and only if the above C∗-dual
and K-dual functors are (again) ”weakly” isomorphic. Besides realizing QcF coalgebras
as a left-right symmetric concept which is a generalization of both Frobenius algebras,
co-Frobenius co-algebras and co-Frobenius Hopf algebras, we note that this also provides
this characterization of finite dimensional quasi-Frobenius algebras: A is QF iff A and A∗

are weakly isomorphic in the above sense, equivalently,
∐

NA '
∐

NA
∗.

Thus these results give a nontrivial generalization of Frobenius algebras and of quasi-
Frobenius algebras, and the algebras arising as dual of QcF coalgebras are entitled to be
called Generalized Frobenius Algebras, or rather Generalized QF Algebras.

These turn out to have a wide range of applications to Hopf algebras. In the theory of
Hopf algebras, some of the first fundamental results were concerned with the characteri-
zation of Hopf algebras having a nonzero integral. These are in fact generalizations of well
known results from the theory of compact groups. Recall that if G is a (locally) compact
group, then there is a unique left invariant (Haar) measure and an associated integral

∫
.

Considering the algebra Rc(G) of continuous representative functions on G, i.e. functions

f : G → R such that there are fi, gi : G → K for i = 1, n with f(xy) =
n∑
i=1

fi(x)gi(y),

then this becomes a Hopf algebra with multiplication given by the usual multiplication of

functions, comultiplication given by f 7→
n∑
i=1

fi⊗ gi and antipode S given by the composi-

tion with the taking of inverses S(f)(x) = f(x−1). Then, the integral
∫

of G restricted to
Rc(G) becomes an element of Rc(G)∗ that has the following property: α ·

∫
= α(1)

∫
, with

1 being the constant 1 function. Such an element in a general Hopf algebra is called a left
integral, and Hopf algebras (quantum groups) having a nonzero left integral can be viewed
as (”quantum”) generalizations of compact groups (the Hopf Algebra can be thought of
as the algebra of continuous representative functions on some abstract quantum space).
Among the first the fundamental results in Hopf algebras was (were) the fact(s) that the
existence of a left integral is equivalent to the existence of a right integral, and these are
equivalent to the (co)representation theoretic properties of the underlying coalgebra of
H of being left co-Frobenius, right co-Frobenius, left (or right) QcF, or having nonzero
rational dual. These were results obtained in several initiating research papers on Hopf
algebras [LS, MTW, R, Su, Sw1]. Then the natural question of whether the integral in a
Hopf algebra is unique arose (i.e. the space of left integrals

∫
l or that of right integrals

∫
r

is one dimensional), which would generalize the results from compact groups. The answer
to this question turned out positive, as it was proved by Sullivan in [Su]; alternate proofs
followed afterwards (see [Ra, St]). Another very important result is that of Radford, who
showed that the antipode of a Hopf algebra with nonzero integral is always bijective.

We re-obtain all these results as a byproduct of our co-representation theoretic results
and generalizations of Frobenius algebras; they will turn out to be an easy application of
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these general results. We also note a very short proof of the bijectivity of the antipode by
constructing a certain derived comodule structure on H, obtained by using the antipode
and the so called distinguished grouplike element of H, and the properties of the comodule
HH . The only way we need to use the Hopf algebra structure of H is through the classical
Fundamental theorem of Hopf modules which gives an isomorphism of H-Hopf modules∫
l⊗H ' Rat(H∗H∗); however, we will only need to use that this is a isomorphism of

comodules. We thus find almost purely representation theoretic proofs of all these classical
fundamental results from the theory of Hopf algebras, which become immediate easy
applications of the more general results on the ”generalized Frobenius algebras”. Thus,
the methods and results in this paper are also intended to emphasize the potential of these
representation theoretic approaches.

The next goal of this paper is to give a new interpretation and provide new understanding
of the notion of QcF coalgebra, namely, as the dual of a naturally defined notion of general-
ized (quasi-)Frobenius algebra. This will show that the duality between finite dimensional
(quasi-)Frobenius algebras and finite dimensional (quasi-co-)Frobenius coalgebras can be
fully extended to the infinite dimensional situation and can be understood in this new
generality. This will be a consequence of the above described symmetric characterizations
of QcF coalgebras. More precisely, given a topological algebra A whose topology has a
basis of neighborhoods of 0 consisting of two-sided ideals of finite codimension (which we
call AT-algebra), it will be called generalized Frobenius if A is isomorphic as a left topo-
logical module to a certain continuous dual A∨ of A. Algebras with this kind of topology
occur whenever one is interested in only a certain particular class of finite dimensional
representations of an arbitrary algebra. In particular, any algebra can be thought as an
AT-algebra by endowing it with the topology in which all cofinite ideals are open. It turns
out that these generalized Frobenius algebras are exactly algebras wich are the dual of
some co-Frobenius coalgebra. Moreover, they also have categorical characterizations which
parallel those of finite dimensional Frobenius algebras, and of co-Frobenius coalgebras.

In the last section, we give many examples to show that Frobenius and quasi-co-Frobenius
coalgebras appear from many different mathematical situations and form a wide class.
Also, some of these provide interesting examples of quantum groups. One very important
example comes from homological algebra and from the generalized q-homological algebra
([Kap96]; see [M42a, M42b] for the topological origins): the category of n-chain complexes
(that is, representations of the line quiver · · · → • → • → . . . but with condition that the
n’th power of the differential is 0) is equivalent to the category of left comodules over a
co-Frobenius coalgebra Λn, which is in fact also a Hopf algebra. (see [Par81] for the n = 2
case; also [B]). This makes the category of these n-chain complexes a monoidal category
(and rigid if we restrict to finite dimensional ones), and gives a way to explain, for example,
the total complex of the tensor product bicomplex as a the internal tensor product in the
category, or the total complex of the Hom-complex as the internal Hom in the monoidal
category (see [W, 2.7]). Other examples of categories of comodules over a co-Frobenius
coalgebra include representations of a cyclic quiver 1 → 2 → · · · → p → 1, but with
the condition that a certain fixed number m of compositions of the morphisms (arrows)
in the representation yields 0. Under some conditions (m divides n), this is also a Hopf
algebra. In particular, these are a class of quantum groups which generalize Taft algebras.
Another example with connections to homological algebra is that of the category of double
chain-complexes, or generalizations to m,n-double chain complexes, with dn = 0 on the
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horizontal and dm = 0 on the vertical: these categories are equivalent to the category of
left comodules over Λm⊗Λn. Many examples can be build from (finite or infinite) graphs,
where sometimes easy combinatorics can be employed to decide whether the coalgebra is
co-Frobenius or QcF. Finally, in many situations (for example, over algebraically closed
fields), tensor products of co-Frobenius coalgebras give again examples of co-Frobenius
coalgebras.

1. Quasi-co-Frobenius Coalgebras

Let C be a coalgebra over a field K. We denote by MC (respectively CM) the category
of right (left) C-comodules and by C∗M (respectively MC∗) the category of left (right)
C∗-modules. We use the simplified Sweedler’sσ-notation for the comultiplication ρ : M →
M⊗C of a C-comodule M , ρ(m) = m0⊗m1. We will always use the inclusion of categories
MC ↪→ C∗M, where the left C∗-module structure on M is given by c∗ ·m = c∗(m1)m0.
Let S be a set of representatives for the types of isomorphism of simple left C-comodules
and T be a set of representatives for the simple right comodules. It is well known
that we have an isomorphism of left C-comodules (equivalently right C∗-modules) C '⊕
S∈S

E(S)n(S), where E(S) is an injective envelope of the left C-comodule S and n(S) are

positive integers. Similarly, C '
⊕
T∈T

E(T )p(T ) in MC , with p(T ) ∈ N (we use the same

notation for envelopes of left modules and for those of right modules, as it will always be
understood from the context what type of modules we refer to). Also C∗ '

∏
S∈S

E(S)∗ in

C∗M and C∗ '
∏
T∈T

E(T )∗ in MC∗ . We refer the reader to [A], [DNR] or [Sw] for these

results and other basic facts of coalgebras. We will use the finite topology on duals of
vector spaces: given a vector space V , this is the linear topology on V ∗ that has a basis of
neighbourhoods of 0 formed by the sets F⊥ = {f ∈ V ∗ | f |F = 0} for finite dimensional
subspaces F of V . We also write W⊥ = {x ∈ V | f(x) = 0, ∀f ∈ W} for subsets W of
V ∗. Any topological reference will be with respect to this topology.
For a module M , we convey to write M (I) for the coproduct (direct sum) of I copies of M
and M I for the product of I copies of M . We recall the following definition from [GTN]

Definition 1.1. A coalgebra C is called right (left) quasi-co-Frobenius, or shortly right
QcF coalgebra, if there is a monomorphism C ↪→ (C∗)(I) of right (left) C∗-modules. C is
called QcF coalgebra if it is both a left and right QcF coalgebra.

Recall that a coalgebra C is called right semiperfect if the category MC of right C-
comodules is semiperfect, that is, every right C-comodule has a projective cover. This is
equivalent to the fact that E(S) is finite dimensional for all S ∈ S (see [L]). In fact, this is
the definition we will need to use. For convenience, we also recall the following very useful
results on injective (projective) comodules, the first one originally given in [D] Proposition
4, p.34 and the second one being Lemma 15 from [L]:

[D, Proposition 4] Let Q be a finite dimensional right C-comodule. Then Q is injec-
tive (projective) as a left C∗-module if and only if it is injective (projective) as right
C-comodule.

[L, Lemma 15] Let M be a finite-dimensional right C-comodule. Then M is an injective
right C-comodule if and only if M∗ is a projective left C-comodule.
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We note the following proposition that will be useful in what follows; (i)⇔(ii) was given
in [GTN] and our approach also gives here a different proof, along with the new charac-
terizations.

Proposition 1.2. Let C be a coalgebra. Then the following assertions are equivalent:
(i) C is a right QcF coalgebra.
(ii) C is a right torsionless module, i.e. there is a monomorphism C ↪→ (C∗)I .
(iii) There exist a dense morphism ψ : C(I) → C∗, that is, the image of ψ is dense in C∗.
(iv) ∀S ∈ S, ∃T ∈ T such that E(S) ' E(T )∗.

Proof. (i)⇒(ii) obvious.
(ii)⇔(iii) Let ϕ : C → (C∗)I ' (C(I))∗ be a monomorphism of right C∗-modules. Let
ψ : C(I) → C∗ be defined by ψ(x)(c) = ϕ(c)(x). It is straightforward to see that the fact
that ϕ is a morphism of left C∗-modules is equivalent to ψ being a morphism in MC∗ ,
and that ϕ injective is equivalent to (Imψ)⊥ = 0, which is further equivalent to Imψ is
dense in C∗ (for example, by [DNR] Corollary 1.2.9).
(ii),(iii)⇒(iv) As Imψ ⊆ Rat(C∗C∗), Rat(C∗C∗) is dense in C∗, so C is right semiperfect
by Proposition 3.2.1 [DNR]. Thus E(S) is finite dimensional ∀S ∈ S. Also by (ii) there
is a monomorphism ι : E(S) ↪→

∏
j∈J

E(Tj)∗ with Tj ∈ T , and as dimE(S) < ∞ there is

a monomorphism to a finite direct sum E(S) ↪→
∏
j∈F

E(Tj)∗ (F finite, F ⊆ J). Indeed,

if pj are the projections of
∏
j∈J

E(Tj)∗, then note that
⋂
j∈J

ker pj ◦ ι = 0, so there must be⋂
j∈F

ker pj ◦ ι = 0 for a finite F ⊆ J . Then E(S) is injective also as right C∗-modules (see

for example [DNR], Corollary 2.4.19), and so E(S)⊕X =
⊕
j∈F

E(Tj)∗ for some X. By [I,

Lemma 1.4], the E(Tj)∗’s are local indecomposable, and as they are also cyclic projective
we eventually get E(S) ' E(Tj)∗ for some j ∈ F . This can be easily seen by noting that
there is at least one nonzero morphism E(S) ↪→ E(S) ⊕X =

⊕
j∈F

E(Tj)∗ →
⊕
j∈F

T ∗j → Sk

(one looks at Jacobson radicals) and this projection then lifts to a morphism f : E(S)→
E(Tk)∗ as E(S) is obviously projective; this has to be surjective since E(Tk)∗ is cyclic
local, and then f splits; hence E(S) ' E(Tk)∗⊕Y with Y = 0 as E(S) is indecomposable.
(iv)⇒(i) Any isomorphism E(S) ' E(T )∗ implies E(S) finite dimensional because then
E(T )∗ is cyclic rational; therefore E(T ) ' E(S)∗. Thus for each S ∈ S there is exactly
one T ∈ T such that E(S) ' E(T )∗. If T ′ is the set of these T ’s, then:

C '
⊕
S∈S

E(S)n(S) ↪→
⊕
S∈S

E(S)(N) '
⊕

T∈T ′⊆T
(E(T )∗)(N)

↪→ (
⊕
T∈T

(E(T )∗)p(T ))(N) ⊆ (
∏
T∈T

(E(T )∗)p(T ))(N) = C∗(N)

�

From the above proof, we see that when C is right QcF, the E(S)’s are finite dimensional
projective for S ∈ S, and we also conclude the following result already known from [GTN]
(in fact these conditions are even equivalent); see also [DNR, Theorem 3.3.4].

Corollary 1.3. If C is right QcF, then C is also right semiperfect and projective as right
C∗-module.
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We also immediately conclude the following

Corollary 1.4. A coalgebra C is QcF if and only if the application

{E(S) | S ∈ S} 3 Q 7→ Q∗ ∈ {E(T ) | T ∈ T }

is well defined and bijective.

Definition 1.5. (i) Let C be a category having products. We say that M,N ∈ C are weakly
π-isomorphic if and only if there are some sets I, J such that M I ' NJ ; we write M π∼ N .
(ii) Let C be a category having coproducts. We say that M,N ∈ C are weakly σ-isomorphic
if and only if there are some sets I, J such that M (I) ' N (J); we write M σ∼ N .

The study of objects of a (suitable) category C up to π(respectively σ)-isomorphism is the
study of the localization of C with respect to the class of all π(or σ)-isomorphisms.
Recall that in the category CM of left comodules, coproducts are the usual direct sums

of (right) C∗-modules and the product
C∏

is given, for a family of comodules (Mi)i∈I , by
C∏
i∈I

Mi = Rat(
∏
i∈I

Mi).

For easy future reference, we introduce the following conditions:
(C1) C σ∼ Rat(C∗C∗) in CM (or equivalently, in MC∗).
(C2) C π∼ Rat(C∗C∗) in CM.
(C3) Rat(CI) ' Rat(C∗J) for some sets I, J .
(C2’) C π∼ Rat(C∗C∗) in MC∗ .

Lemma 1.6. Either one of the conditions (C1), (C2), (C3), (C2’) implies that C is QcF
(both left and right).

Proof. Obviously (C2’)⇒(C2). In all of the above conditions one can find a monomor-
phism of right C∗-modules C ↪→ (C∗)J , and thus C is right QcF. Then each E(S) for
S ∈ S is finite dimensional and projective by Corollary 1.3. We first show that C is also
left semiperfect, along the same lines as the proofs of [I], Proposition 2.1 and [I] Propo-
sition 2.6. For sake of completeness, we include a short version of these arguments here.
Let T0 ∈ T and assume, by contradiction, that E(T0) is infinite dimensional. We first
show that Rat(E(T0)∗) = 0. Indeed, assume otherwise. Then, since C∗ =

∏
T∈T

E(T )∗p(T )

and C =
⊕
S∈S

E(S)n(S) as right C∗-modules, it is straightforward to see that either one

of conditions (C1-C3) implies that Rat(E(T0)∗) is injective as left comodule, as a direct
summand in an injective comodule. Thus, as Rat(E(T0)∗) 6= 0, there is a monomorphism
E(S) ↪→ Rat(E(T0)∗) ⊆ E(T0)∗ for some indecomposable injective E(S) (S ∈ S). This
shows that E(S) is a direct summand in E(T0)∗, since E(S) is injective also as right C∗-
module (by the above cited [D, Proposition 4]). But this is a contradiction since E(S) is
finite dimensional and E(T0)∗ is indecomposable by [I, Lemma 1.4] and dimE(T0)∗ =∞.
Next, use [I, Proposition 2.3] to get an exact sequence

0→ H → E =
⊕
α∈A

E(Sα)∗ → E(T )→ 0

with Sα ∈ S. Since the E(Sα)∗’s are injective in C∗M by [L, Lemma 15], we may as-
sume, by [I, Proposition 2.4] that H contains no nonzero injective right comodules. For
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some β ∈ A 6= ∅, put E′ =
⊕

α∈A\{β}
E(Sα)∗. Then one sees that H + E′ = E (otherwise,

since there is an epimorphism E(T ) = E
H →

E
H+E′ , the finite dimensional rational right

C∗-module
(

E
H+E′

)∗
would be a nonzero rational submodule of E(T )∗), and this provides

an epimorphism H → H
H∩E′ '

H+E′

E′ ' E(Sβ)∗. But E(Sβ)∗ is projective, so this epimor-
phism splits, and this comes in contradiction with the assumption on H (the E(Sβ)∗’s are
injective in C∗M). �

Now, we note that if a coalgebra C is QcF, then all the conditions (C1)-(C3) are fulfilled.
Indeed, we have that each E(S) (S ∈ S) is isomorphic to exactly one E(T )∗ (T ∈ T ) and
actually all E(T )∗’s are isomorphic to some E(S). Then:
(C1)

C(N) = (
⊕
S∈S

E(S)n(S))(N) =
⊕
S∈S

E(S)(N) =
⊕
T∈T

E(T )∗(N)

=
⊕
T∈T

E(T )∗(p(T )×N) =
⊕
T∈T

(E(T )∗p(T ))(N) = (RatC∗)(N)

where we use thatRat(C∗) =
⊕
T∈T

E(T )∗p(T ) as right C∗-modules for left and right semiper-

fect coalgebras (see [DNR, Corollary 3.2.17])
(C2)

C∏
N
C = Rat(CN) =

C∏
N

⊕
S∈S

E(S)(n(S))

=
C∏
N

C∏
S∈S

E(S)n(S) (∗)

=
C∏
S∈S

E(S)n(S)×N =
C∏
S∈S

E(S)N =
C∏

T∈T
E(T )∗N

=
C∏

T∈T
E(T )∗N×p(T ) =

C∏
N

C∏
T∈T

E(T )∗p(T )

=
C∏
N
Rat(

∏
T∈T

(E(T )p(T ))∗) =
C∏
N
Rat((

⊕
T∈T

E(T )p(T ))∗)

=
C∏
N
Rat(C∗)

where for (*) we have used [I, Lemma 2.5] and the fact that E(T )∗ are all rational since
E(T ) are finite dimensional in this case (the product in the category of left comodules is

understood whenever
C∏

is written); also

(C3) holds because Rat(CN) =
C∏

T∈T
E(T )∗N by the computations in lines 1 and 3 in the
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above equation and because

Rat(C∗N) = Rat(
∏
N

∏
T∈T

E(T )∗p(T )) =
C∏

T∈T
E(T )∗p(T )×N =

C∏
T∈T

E(T )∗N

Combining all of the above we obtain the following nice symmetric characterization which
extends the one of co-Frobenius coalgebras from [I] and those of co-Frobenius Hopf algebras
and Frobenius Algebras.

Theorem 1.7. Let C be a coalgebra. Then the following assertions are equivalent.
(i) C is a QcF coalgebra.
(ii) C σ∼ Rat(C∗C∗) or C π∼ Rat(C∗C∗) in CM or Rat(CI) ' Rat(C∗J) in CM (or MC∗)
for some sets I, J .

(iii) C(N) ' (Rat(C∗))(N) or
C∏
N
C '

C∏
N
Rat(C∗) or Rat(CN) ' Rat(C∗N) as left C-

comodules (right C∗-modules)
(iv) The left hand side version of (i)-(iii).
(v) The association Q 7→ Q∗ determines a duality between the indecomposable injective
left comodules and indecomposable injective right comodules.

We note the connection to a recent characterization of quasi-Frobenius (co)algebras from
[INV06], and how these results allow a generalization of this. For two objects X,Y of a
category C with coproducts, in [INV06] X is said to divide Y (X|Y ) if Y n ∼= X ⊕ Z for
some Z, and X and Y are said to be similar if X|Y and Y |X. We say that X weakly
divides Y and write if there is some set I and an object Z of C such that Y (I) ∼= X ⊕ Z
(note that this is equivalent to asking there are sets I, J and an object Z with Y (I) =
X(J) ⊕ Z), and call X and Y weakly similar if X|wY and Y |wX. We note that [INV06,
Theorem 7.5] applied for coalgebras characterizes quasi-Frobenius coalgebras, which are
precisely the finite dimensional quasi-co-Frobenius coalgebras (see (iv), (v)); this is a left
and right symmetric concept, equivalent . Then we have the following generalization valid
for arbitrary coalgebras:

Theorem 1.8. The following are equivalent for a coalgebra C:
(i) C is quasi-co-Frobenius.
(ii) C and Rat(C∗C∗) are weakly similar.
(iii) C and Rat(C∗C∗) are weakly similar.

Proof. If C is QcF then C(N) ∼= Rat(C∗C∗) easily implies (ii), and (iii) follows similarly.
If C and Rat(C∗C∗) are weakly similar, then since Rat(C∗C∗) is a direct summand in some
C(I), it follows that Rat(C∗C∗) is an injective comodule (since coproducts of injective co-
modules is injective), and so Rat(C∗C∗) ∼=

⊕
S∈S

E(S)(IS) (structure of injective left comod-

ules). Also, since C is a direct summand of Rat(C∗C∗), it follows that Rat(C∗C∗) contains
all types of indecomposable simples, so IS 6= ∅ for all S ∈ S. Hence, if I := max{IS |S ∈
S} ∪ {N}, then Rat(C∗C∗)(I) =

⊕
S∈S

E(S)(IS)×I =
⊕
S∈S

E(S)(I) ∼=
⊕
S∈S

E(S)n(S)×I = C(I) so

C is QcF. �

1.1. Categorical characterization of QcF coalgebras. We give now a characteriza-
tion similar to the functorial characterizations of co-Frobenius coalgebras and of Frobenius
algebras. For a set I let ∆I : CM −→ (CM)I be the diagonal functor and let FI be the
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composition functor

FI : CM ∆I−→ (CM)I
⊕
I−→ CM

that is FI(M) = M (I) for any left C-comodule M .

Theorem 1.9. Let C be a coalgebra. Then the following assertions are equivalent:
(i) C is QcF.
(ii) The functors HomC∗(−, C∗)◦FI and Hom(−,K)◦FJ from CM = Rat(MC∗) to KM
are naturally isomorphic for some sets I, J .
(iii) The functors HomC∗(−, C∗) ◦ FN and Hom(−,K) ◦ FN are naturally isomorphic.
(iv) The functors HomC∗(−, C∗) and Hom(−,K) from CM = Rat(MC∗) to KM are
weakly similar.
(v) The right hand side version (left-right symmetric) of (ii)-(iv).

Proof. Since for any left comodule M , there is a natural isomorphism of left C∗-modules
HomC∗(M,C) ' Hom(M,K), then for any sets I, J and any left C-comodule M we have
the following natural isomorphisms:

Hom(M (I),K) ' HomC∗(M (I), C) ' HomC∗(M,CI) ' HomC∗(M,Rat(CI))

HomC∗(M (J), C∗) ' HomC∗(M, (C∗)J) ' Hom(M,Rat(C∗)J)

Therefore, by the Yoneda Lemma, the functors of (ii) are naturally isomorphic if and only
if Rat(CI) ' Rat(C∗J) as right C∗-modules. Thus, by Theorem 1.7 (ii), these functors
are isomorphic if and only if C is QcF. Moreover, in this case, by the same theorem the
sets I, J can be chosen countable.
(iv) follows from Theorem 1.8 again by the application of the Yoneda Lemma, and (v)
follows by the symmetry of (i). �

Remark 1.10. The above theorem states that C is QcF if and only if the functors C∗-
dual Hom(−, C∗) and K-dual Hom(−,K) from CM to KM are isomorphic in a ”weak”
meaning, in the sense that they are isomorphic only on the objects of the form M (N) in a
way that is natural in M , i.e. they are isomorphic on the subcategory of CM consisting of
objects M (N) with morphisms f (N) induced by any f : M → N . If we consider the category
C of functors from CM to KM with morphisms the classes (which are not necessarily sets)
of natural transformations between functors, then the isomorphism in (ii) can be restated
as (HomC∗(−, C∗))I ' (Hom(−,K))J in C, i.e. the C∗-dual and the K-dual functors are
weakly π-isomorphic objects of C. This is also the setting of statement (iv) in the above
theorem.

2. Applications to Hopf Algebras

Before giving the main applications to Hopf algebras, we start with two easy propositions
that will contain the main ideas of the applications. First, for a QcF coalgebra C, let
ϕ : S → T be the function defined by ϕ(S) = T if and only if E(T ) ' E(S)∗ as left
C∗-modules; by the above Corollary 1.4, ϕ is a bijection.

Proposition 2.1. (i) Let C be a QcF coalgebra and I, J sets such that C(I) ' (Rat(C∗))(J)

as right C∗-modules. If one of I, J is finite then so is the other.
(ii) Let C be a coalgebra. Then C is co-Frobenius if and only if C ' Rat(C∗C∗) as left
C∗-modules and if and only if C ' Rat(C∗C∗) as right C∗-modules.
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Proof. (i) C is left and right semiperfect (Corollary 1.3), so using again [DNR, Corollary
3.2.17] we have Rat(C∗C∗) =

⊕
T∈T

E(T )∗p(T ) =
⊕
S∈S

E(S)p(ϕ(S)) and we get
⊕
S∈S

E(S)n(S)×I '⊕
S∈S

E(S)p(ϕ(S))×J . From here, since the E(S)’s are indecomposable injective comodules

we get an equivalence of sets n(S)× I ∼ p(ϕ(S))× J (or directly, by evaluating the socle
of these comodules). This finishes the proof, as n(S), p(ϕ(S)) are finite.
(ii) If C is co-Frobenius, C is also QcF and a monomorphism C ↪→ Rat(C∗C∗) of right
C∗-modules implies

⊕
S∈S

E(S)n(S) ↪→
⊕
T∈T

E(T )∗p(T ) '
⊕
S∈S

E(S)p(ϕ(S)) and we get n(S) ≤

p(ϕ(S)) for all S ∈ S; similarly, as C is also left co-Frobenius we get n(S) ≥ p(ϕ(S)) for
all S ∈ S. Hence n(S) = p(ϕ(S)) for all S ∈ S and this implies C =

⊕
S∈S

E(S)n(S) '⊕
T∈T

E(T )p(T ) = Rat(C∗C∗). Conversely, if C ' Rat(C∗C∗) by the proof of (i), when I and

J have one element we get that n(S) = p(ϕ(S)) for all S ∈ S which implies that we also
have C =

⊕
T∈T

E(T )p(T ) '
⊕
S∈S

E(S)∗n(S) = Rat(C∗C∗) so C is co-Frobenius. �

The above Proposition 2.1 (ii) shows that the results of this paper are a generalization of
the results in [I]. The following two propositions are not necessary in their full generality
for the applications to Hopf algebras; however, they show precisely what is the difference
between the QcF and co-Frobenius properties. Note that their (dual) version for finite
dimensional QF and Frobenius algebras is also true.

Proposition 2.2. With the above notations, let C be a QcF coalgebra and let ϕ : S → T
be such that ϕ(S) = T if and only if E(S) ∼= E(T )∗ (this is bijective by Theorem 1.7).
Then C is co-Frobenius if and only if n(σ(T )) = p(T ) for all T ∈ T .

Proof. Since C =
⊕
S∈S

E(S)n(S) and Rat(C∗C∗) =
⊕
T∈T

(E(T )∗)p(T ) as right C∗-modules

(again for example, from [DNR, Corollary 3.2.17]), it follows that they are isomorphic
if and only if the indecomposable injective summands have the same multiplicity in
both. The multiplicity of E(S) in C is n(S) and the multiplicity of E(S) = E(ϕ(S))∗

in Rat(C∗C∗) is p(ϕ(S)). Hence, the conclusion follows. �

Since T is the socle of E(T ) and σ(T )∗ is the “cosocle” of E(T ), the above proposition
says that a QcF coalgebra is co-Frobenius if the multiplicities of the socle and the cosocle
of any indecomposable injective (left, or equivalently, right) comodule are equal.

Corollary 2.3. If C is a coalgebra and Ck ∼= (Rat(C∗C∗))
l for some natural numbers k, l,

then k = l = 1 and C is co-Frobenius.

Proof. As in the previous propositions, we get that k·n(S) = l·p(ϕ(S)) for all S. Note that
for any T ∈ T , p(T ) = n(T ∗). Indeed, it is enough to consider their multiplicities in C0, and
then it is enough to consider their multiplicities in the simple subcoalgebra E of C0 in which
they are included (same for both). Since E∗ = Mp(T )(End(T )) = Mn(T ∗)(End(T ∗)op), we
get the same multiplicity of T and its dual T ∗. Thus we have k · n(S) = l · n(ϕ(S)∗),
i.e. k

l · n(S) = n(λ(S)), where λ : S → S, λ(S) = ϕ(S)∗ is bijective. We therefore get

n(λi(S)) =
(
k
l

)i · n(S), for any i ∈ Z. If k > l we get 1 ≤ n(λi(S)) → 0 for i → −∞ and
if k < l we get 1 ≤ n(λi(S)) → 0 for i → ∞. Therefore, we can only have k = l, and
n(S) = p(ϕ(S)). Consequently, by Proposition 2.2 C is co-Frobenius. �
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Hence, for a QcF coalgebra either C ∼= Rat(C∗) or otherwise we need at least countable
sets I, J such that C(I) ∼= (Rat(C∗))(J) (and I = J = N is then always a possible choice).
Let H be a Hopf algebra over a base field k. Recall that a left integral for H is an
element λ ∈ H∗ such that α · λ = α(1)λ, for all α ∈ H∗. The space of left integrals for
H is denoted by

∫
l. The right integrals and the space of right integrals

∫
r are defined

by analogy. For basic facts on Hopf algebras we refer to [A], [DNR], [M] and [Sw]. The
Hopf algebra structure will come into play only through a basic Theorem of Hopf algebras,
the fundamental theorem of Hopf modules which yields the isomorphism of right H-Hopf
modules

∫
l⊗H ' Rat(H∗H∗). This isomorphism is given by t ⊗ h 7→ t ↽ h = S(h) ⇀ t,

where for x ∈ H, α ∈ H∗, x ⇀ α is defined by (x ⇀ α)(y) = α(yx) and α ↽ x =
S(x) ⇀ α. Yet, we will only need that this is an isomorphism of right H-comodules (left
H∗-modules). Similarly, H ⊗

∫
r ' Rat(H

∗
H∗).

Theorem 2.4. (Lin, Larson, Sweedler, Sullivan)
If H is a Hopf algebra, then the following assertions are equivalent.
(i) H is a right co-Frobenius coalgebra.
(ii) H is a right QcF coalgebra.
(iii) H is a right semiperfect coalgebra.
(iv) Rat(H∗H∗) 6= 0.
(v)

∫
l 6= 0.

(vi) dim
∫
l = 1.

(vii) The left hand side version of the above.

Proof. (i)⇒(ii)⇒(iii) is clear and (iii)⇒(iv) is a property of semiperfect coalgebras (see
[DNR, Section 3.2]).
(iv)⇒(v) follows by the isomorphism

∫
l⊗H ' Rat(H∗H

∗) and (vi)⇒(v) is trivial.
(v)⇒(i), (vi) and (vii). Since

∫
l⊗H ' Rat(H∗H

∗) inMH , we have Hdim(
∫

l) ' Rat(H∗H∗)
so by Theorem 1.7 H is QcF (both left and right); it then follows that

∫
r 6= 0 (by the left

hand version of (ii)⇒(v)) and Hdim(
∫

r) ' Rat(H∗H∗). We can now apply Propositions 2.1
and 2.3 to first get that dim

∫
l < ∞, dim

∫
r < ∞ and then that H is co-Frobenius (both

left and right) so (i) and (vii) hold. Again by Proposition 2.3 we get that, more precisely,
dim

∫
l = dim

∫
r = 1. �

The following corollary was the initial form of the result proved by Sweedler [Sw1]

Corollary 2.5. The following are equivalent for a Hopf algebra H:
(i) H∗ contains a finite dimensional left ideal.
(ii) H contains a left coideal of finite codimension.
(iii)

∫
l 6= 0.

(iv) Rat(H∗) 6= 0.

Proof. (i)⇔(ii) It can be seen by a straightforward computation that there is a bijective
correspondence between finite dimensional left ideals I of H∗ and coideals K of finite
codimension in H, given by I 7→ K = I⊥. Moreover, it follows that any such finite
dimensional ideal I of H∗ is of the form I = K⊥ with dim(H/K) < ∞, so I = K⊥ '
(H/K)∗ is then a rational left H∗-module, thus I ⊆ Rat(H∗). This shows that (ii)⇒(iv)
also holds, while (iii)⇒(ii) is trivial. �

The bijectivity of the antipode. Let t be a nonzero left integral for H. Then it is
easy to see that the one dimensional vector space kt is a two sided ideal of H∗. Also,
by the definition of integrals, kt ⊆ Rat(H∗H∗) = Rat(H∗H∗) (since H is semiperfect as a
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coalgebra). Thus kt also has a left comultiplication t 7→ a ⊗ t, a ∈ H and then by the
coassociativity and counit property for Hkt, a has to be a grouplike element. This element
is called the distinguished grouplike element of H. In particular t · α = α(a)t, ∀α ∈ H∗.
See [DNR, Chapter 5] for some more details.

For any right H-comodule M denote aM the left H-comodule structure on M with co-
multiplication

M 3 m 7→ ma
−1 ⊗ma

0 = aS(m1)⊗m0

(S denotes the antipode). It is straightforward to see that this defines an H-comodule
structure.

Proposition 2.6. The map p : aH → Rat(H∗), p(x) = x ⇀ t is a surjective morphism
of left H-comodules (right H∗-modules).

Proof. Since the above isomorphism H '
∫
l⊗H ' Rat(H∗) is given by h 7→ t ↽ h =

S(h) ⇀ t, we get the surjectivity of p. We need to show that p(x)−1⊗p(x)0 = xa−1⊗p(xa0)
and for this, having the left H-comodule structure of Rat(H∗) in mind, it is enough to
show that for all α ∈ H∗, p(x)0α(p(x)−1) = p(x) · α = α(xa−1)p(xa0). Indeed, for g ∈ H we
have:

((x ⇀ t) · α)(g) = t(g1x)α(g2) = t(g1x1ε(x2))α(g2)
= t(g1x1)α(g2x2S(x3)) = t(g1x1)(α ↽ x3)(g2x2)
= t((gx1)1)(α ↽ x2)((gx1)2) = (t · (α ↽ x2))(gx1)
= (α ↽ x2)(a)t(gx1) (a is the distinguished grouplike of H)
= α(aS(x2))(x1 ⇀ t)(g)

and this ends the proof. �

Let π be the composition map aH
p−→ Rat(H∗H∗)

∼−→ H⊗
∫
r ' H, where the isomorphism

H⊗
∫
r ' H

∗
H∗ is the left analogue of

∫
l⊗H ' Rat(H∗H

∗). Since HH is projective in HM,
this surjective map splits by a morphism of left H-comodules ϕ : H ↪→ aH, so πϕ = IdH .
Then we can find another proof of:

Theorem 2.7. The antipode of a co-Frobenius Hopf algebra is bijective.

Proof. Since the injectivity of S is immediate from the injectivity of the map H 3
x 7→ t ↽ x ∈ H∗, as noticed by Sweedler [Sw1], we only observe the surjectivity.
The fact that ϕ is a morphism of comodules reads ϕ(x)a−1 ⊗ ϕ(x)a0 = x1 ⊗ ϕ(x2), i.e.
aS(ϕ(x)2) ⊗ ϕ(x)1 = x1 ⊗ ϕ(x2), and since a = S(a−1) = S2(a), by applying Id ⊗ επ we
get S(a−1)S(ϕ(x)2)επ(ϕ(x)1) = x1επϕ(x2) = x1ε(x2) = x, so x = S(επ(ϕ(x)1)ϕ(x)2a

−1).
�

3. Generalized Frobenius Algebras

In this section, we apply these results to K-algebras, and introduce and characterize the
notion of Generalized Frobenius Algebra. For this we will first explain the natural setting
of the problem.
Let A be a topological algebra. We say that the topology is of “algebraic type” if the
topology of A is A-linear and the topology of A has a basis of neighborhoods of 0 consisting
of two-sided ideals of finite codimension. Here the field K is considered to have the
discrete topology. Let us call such an algebra a topological algebra of algebraic type, or
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AT-algebra for short. This is important since it captures the following type of situation:
given an arbitrary K-algebra, one might be interested in the study of a certain subcategory
C (closed under finite sums, quotients and subobjects) of the category Rep(A) of finite
dimensional (left) A-modules (representations). Then, we can introduce a topology γ on
A generated by a basis of 0 consisting of ideals of A which are annihilators of objects of
C. The category C can then be viewed as the category of finite dimensional topological
A-modules. In this respect, for an AT-algebra it is natural to introduce the category
A−Mod consisting of topological left A-modules which have a basis of neighborhoods of
0 consisting of submodules of finite codimension. Call these modules topological modules
of algebraic type. Such modules were considered and studied by P.Gabriel in [G]. The
pseudocompact modules are also introduced (see [G] and [DNR]): they are modules which
are separated, complete and have a basis of neighborhoods of 0 consisting of submodules
of finite codimension. Let A − PSC denote the full subcategory of A −Mod consisting
of pseudocompact A-modules. In an analogous way we can define the right topological
A-modules of algebraic type Mod−A, and the right pseudocompact A-modules PSC−A.
We recall some known facts. For an AT-algebra, denote A0 (also denoted Rc(A)) the set of
continuous functions f : A→ K, that is ker(f) contains an open (and cofinite) ideal of A.
Such function are precisely the representative functions of A: that is, continuous functions
f for which are continuous functions gi, hi : A → K such that f(ab) =

∑
i
fi(a)gi(b).

Equivalently, A0 is spanned by the coefficient functions (ηij)i,j where η : A → End(V )
is a continuous finite dimensional representation of A (that is, its annihilator is open)
and the coefficient functions are being considered with respect to some basis (vi)i of V .
Then, it is well known that A0 is a coalgebra (with comultiplication ∆ : A0 → A0 ⊗ A0,
δ(f) =

∑
i
gi⊗hi and counit ε(f) = f(1)) the category of finite dimensional topological left

A-modules is equivalent to that of finite dimensional right A0-comodules f.d.MA0
. Also,

note that the category of Pseudocompact left A-modules is dual to the category of right
A0-comodules. This follows in the same way as for a pseudocompact algebra (see [DNR,
Section 2.5]).
Using the same ideas as in [G] or [DNR] we in fact have:

Proposition 3.1. The forgetful functor U : A − PSC → A − Mod has a left adjoint
P : A −Mod → A − PSC defined by P (M) = lim

←−
X open

M
X , where the limit is taken over all

the open left submodules X of M (automatically, of finite codimension). The basis of open
neighborhoods of 0 in P (M) is the set KX = ker(P (M)→M/X)X open.

Proof. We need to show that HomA−Mod(P (M), P ) ∼= HomA−Mod(M,U(P )) naturally
in M and P . A continuous morphism f : P (M) → P is given by a compatible family
fY : P (M)→ P

Y with open kernel, that is, with ker(fY ) = KX(Y ), for some X(Y ) cofinite
and open in M . The compatibility condition means that whenever Y ⊆ Y ′, the diagram

P (M)

fY ′ !!CCCCCCCCC

fY // P
Y

��
P
Y ′

is commutative. This is equivalent to KX(Y ) ⊆ KX(Y ′) whenever Y ⊆ Y ′. But, it is not
difficult to see that KX ⊆ KX′ if and only if X ⊆ X ′, for open X,X ′ in M . Thus, the
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compatibility condition is further equivalent to X(Y ) ⊆ X(Y ′) whenever Y ⊆ Y ′. The
existence of the family of morphisms fY : P (M) → P

Y is then equivalent to the existence
of a family fY : P (M)

KX(Y )
→ P

Y , which is further equivalent to the existence of a family of

morphisms of A-modules f ′Y : M
X(Y ) →

P
Y , which are compatible: X(Y ) ⊆ X(Y ′) whenever

Y ⊆ Y ′. This is then equivalent to (the existence of) a family of morphisms of A-modules
f
′
Y : M → P

Y which have open kernels and which are compatible in the sense that the
following diagram is commutative whenever Y ⊆ Y ′:

M

f
′
Y ′ ��========
f
′
Y // P

Y

��
P
Y ′

This defines equivalently a continuous morphism of A-modules f
′

: M → P . The natu-
rality of this bijective correspondence holds as well, and we have proved the proposition.
�

We can now explain the natural setting for a definition of a Generalized Frobenius Algebra
(GFA). Let A be a topological AT-algebra. In the spirit of the classical definition of a
Frobenius algebra and having the previous section in mind, we need to define a suitable
(left, right) dual of A and define the GFA by the property that A is isomorphic to its
left dual. We note that A is an object in A −Mod, so its dual will have to be an object
of this category too. Since A is a topological algebra, A0 is the natural first step in
the construction of this dual, since it consists of the continuous functions on A. A∗ is
canonically endowed with the finite topology, which is in fact the product topology of KA

or equivalently, the topology of point-wise convergence of functions. In order to view A∗

as an object of A−Mod, we will consider the largest subtopology of the finite topology on
A∗ which has a basis of neighborhoods of 0 consisting of left (cofinite) A-modules. Then
A0 ⊆ A∗ is regarded as a subobject of A∗ in A −Mod by using the trace topology. As
usual, it is then natural to look at a completion of this space of continuous functions with
respect to this natural topology on it (which makes A0 an object of the desired category
A−Mod); using the above notations, this is dual is denoted P (A0). We can then introduce
the more general

Definition 3.2. (i) Given an object M ∈ A−Mod, we consider the usual dual M∗ of M as
a right A-module of “algebraic type” (so as an object of Mod−A), with the subtopology of
the finite topology which has a basis of neighborhoods of 0 consisting of open A-submodules.
(ii) Denote Homc(M,K) the set of continuous linear functions on M ; this is an A-
submodule of M (since if ker(f) ⊇ N , N open cofinite A-submodule then ker(a · f) ⊇ N).
(iii) For M ∈ A −Mod we define its dual M∨ ∈ Mod − A by M∨ = P (Homc(M,K)),
where on HomA−Mod(M,K) we consider the trace topology of that described in (i) for M∗.

Note that the open subspaces of M∗ are A-submodules V ⊥ where V ⊥ = {m∗ ∈M∗|m∗|V =
0} and V is a finite dimensional subspace of M . In order for this to be a submodule, we
must have (m∗ · a)(v) = 0, for all a ∈ A, m∗ ∈ V ⊥, v ∈ V , i.e. m∗(a · v) = 0. This means
that a · v ∈ (V ⊥)⊥ = V , so V must be a left submodule of M . Then the open subspaces
of Homc(M,K) are of the form V ⊥ ∩ Homc(M,K), V left finite dimensional submodule
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of M . Thus the dual M∨ of M is given by

M∨ = lim
←−

V f.d.⊆AM

Homc(M,K)
V ⊥ ∩Homc(M,K)

with the limit taken over all finite dimensional submodules V of M .
We motivate the definition (ii) by noting that the usual dual V ∗ of a vector space is always
complete with respect to the finite topology, and it is common to expect the dual of an
object to be a complete object. Also, in our setting, the natural functions on M are not
only the linear functions but the linear continuous functions, and the topology is induced
on M∗ in order to make it an object of the category of right modules of algebraic type.
We can now introduce the Generalized Frobenius Algebras:

Definition 3.3. An AT-algebra is called Generalized Frobenius if A ∼= A∨ as topological
left A-modules (i.e. as objects of A −Mod). An AT-algebra is called Generalized Quasi-
Frobenius if A π∼ A∨ as topological left A-modules. Here, A∨ is the dual of the right module
AA, and A as a left topological AT-module has the topology with a basis neighborhoods of
0 consisting of left open ideals.

Note that the topology of A as a topological left A-module of algebraic type, which has
a basis of neighborhoods of 0 consisting of open left ideals is the same with the topology
of A as an AT-algebra. Indeed, any open (cofinite) ideal of A is a left ideal, and if H is
a left ideal of A which is open, it must contain an open (and cofinite) two-sided ideal I,
since these ideals form a basis of A around 0. Although the following proposition is not
needed in its generality, it explicitly describes the dual of an AT-module.

Proposition 3.4. Let M ∈ A −Mod be a left AT-module. Let M0 =
⋂

N open⊆M
N be the

intersection of all open (and so, cofinite) submodules of M . Then the dual M∨ of M is
given by

M∨ = lim
←−

V f.d.⊆AM

(
V

V ∩M0

)∗
=

(
lim
−→

V f.d.⊆AM

V

V ∩M0

)∗

Proof. Let M0 =
⋂

N open⊆M
N be the intersection of all open (and so, cofinite) submodules

of M . We have an exact sequence of left M -modules:

0→ V ⊥ ∩Homc(M,K)→ Homc(M,K) r→ (
V

V ∩M0
)∗ → 0

where r is the restriction map, f 7→ f |V . The map is well defined since for any f ∈
Homc(M,K), there is N open cofinite with N ⊆ ker(f) so then M0 ⊆ ker(f). This
shows that f |V ∩M0 = 0, so the restriction map r has image contained in the kernel of the
morphism V ∗ → (V ∩M0)∗, which is (V/V ∩M0)∗.
We show that r is surjective. Since V ∩M0 =

⋂
N open⊆M

V ∩N and V ∩N are subspaces of

the finite dimensional space V , there is some N such that V ∩N = V ∩M0. Let f : M → K
be a linear map which cancels on V ∩M0 = V ∩N , thus inducing a map f ∈ (V/V ∩M0)∗.
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Then f extends to a linear map g as in the diagram below:

V

f

��

��

⊆ // M

��

g

||

V
V ∩N

f

��

∼= // V+N
N

⊆ // M
N

g
uulllllllllllllllllll

K

and g from the above picture extends f to M . Moreover, by the diagram, ker(g) contains
N , so g ∈ Homc(M,K). Furthermore, it obvious that the kernel of r is V ⊥ ∩M .

Thus we haveM∨ = lim
←−

V f.d.⊆AM

Homc(M,K)
V ⊥∩Homc(M,K)

= lim
←−

V f.d.⊆AM

(
V

V ∩M0

)∗
=

(
lim
−→

V f.d.⊆AM

V
V ∩M0

)∗
�

Theorem 3.5. Let A be a topological algebra of algebraic type. Then A is a Generalized
(quasi)-Frobenius algebra if and only if A is pseudocompact with A ∼= C∗, where C is a
(quasi-)co-Frobenius coalgebra.

Proof. First, since AΛ ∼= (A∨)Γ as left topological modules, and A∨ is pseudocompact, it
follows that (A∨)Γ is pseudocompact (complete and separated) and then so is AΛ. Since
A can be viewed also as a subspace of AΛ, it follows that A is separated. Since AΛ

is complete, it easily follows that A is also complete. Therefore, it follows that A is a
pseudocompact algebra, and so A ∼= C∗, where

C = A0 = lim
−→

I open ideal

(
A

I
)∗

(see for example [DNR, Section 2.6]).
Now, for the situation when A = C∗ is a pseudocompact algebra, we see that the topolog-

ical right dual of A is C∗(C∗)∨ =

 lim
−→

V f.d.⊆C∗
C∗

V

∗. Here we use the previous proposition

and the fact that the intersection of the open ideals of A = C∗ is 0. Hence, we actually
get that C∗(C∗)∨ = (Rat(C∗C∗))

∗. Therefore, the condition that A = C∗ is Generalized
quasi-Frobenius means (C∗)Λ =∼= (Rat(C∗C∗))

∗Γ as topological modules, which is equiva-
lent to the fact that (C(Λ))∗ ∼= (Rat(C∗C∗)

(Γ))∗ as (pseudocompact) topological modules.
Since the category of left pseudocompact modules over C∗ is dual to that of left comodules
over C, the condition translates equivalently to C(Λ) ∼= Rat(C∗C∗)

(Γ) as left comodules. By
Theorem 1.7 this is equivalent to C being QcF. When the sets Λ,Γ are singletons, we
obtain the characterization of Generalized Frobenius algebras. �

Since any pseudocompact algebra is profinite (=inverse limit of finite dimensional alge-
bras), we get the following nice analogue of the fact that a Frobenius algebra is finite
dimensional.

Corollary 3.6. A generalized (quasi)-Frobenius algebra is profinite.
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3.1. Further remarks. One might introduce a less restrictive “Frobenius” notion which
only involves the category of finite dimensional topological modules. Let us call a topo-
logical AT algebra weakly (quasi)-Frobenius, or a weak (quasi)-Frobenius algebra, if A0

is a (quasi)-co-Frobenius coalgebra or, equivalently, its pseudocompact completion (A0)∗

is a (quasi)-Frobenius AT-algebra (topological algebra of algebraic type). Let us call a
continuous map f : X → Y between two topological spaces a trace map if the topology on
X is induced by that on Y through f ; that is, for any x ∈ X and U open neighborhood
of X, there is V open in Y such that x ∈ f−1(V ) ⊆ U . Then we have:

Proposition 3.7. A is a weak (quasi)-Frobenius AT-algebra if and only if there is a dense
trace morphism of AT-algebras ψ : A→ C∗ for a (quasi)-co-Frobenius coalgebra C.

Proof. We note that the canonical morphism A → (A0)∗ = lim
I open⊆A

A/I is continuous,

dense and trace, and this proves the only if part. Let ψ : A → C∗ be a dense quotient
morphism. For each finite dimensional subcoalgebra E ⊆ C, let IE = ψ−1(E⊥), which is an
open ideal of A. Also, since ψ is a trace, for each I open in A, there is a finite dimensional
subcoalgebra E ⊆ C such that IE ⊆ I. Hence, (IE)E is a basis around 0 for A. Moreover,
by the density, for any c∗ ∈ C∗ and any E, there is a ∈ A such that ϕ(a) |E= c∗ |E , which
shows that the induced morphism A/IE → C∗/E⊥ is an isomorphism. Hence, we have an
isomorphism

(A0)∗ = lim
←−

I open

A/I ∼= lim
←−

E f.d.subcoalgebra⊆C
A/IE

'−→ lim
←−

E f.d.subcoalgebra⊆C
C∗/E⊥ = C∗

Thus, (A0)∗ ∼= C∗ is (quasi)-Frobenius, and we are done. �

We note that for a coalgebra C, being QcF is a categorical property. Indeed, it is not
difficult to see that by Theorem 1.7, C is QcF if and only if it is left and right semiperfect
and projective finite dimensional comodules coincide with injective finite dimensional co-
modules. This can thus be rephrased equivalently that the category of finite dimensional
right (equivalently, left) comodules f.d.MC has enough injectives and projectives, and
injectives and projectives coincide (such a category is called a Frobenius category). C is
co-Frobenius if it further satisfies the socle-cosocle multiplicity condition of Proposition
2.2.
Therefore, an AT-algebra A is weak quasi-Frobenius if the category f.dA − Mod of fi-
nite dimensional topological left A-modules is Frobenius or equivalently, the category
f.d.Mod − A is Frobenius. A is weak Frobenius if either of these categories satisfy the
multiplicity condition of 2.2.

Non-topological Algebras. If A is an arbitrary algebra, we can think of it as an AT-
algebra if we introduce the topology which has a basis of neighborhoods of 0 consisting of
all the ideals of finite codimension. Thus it makes sense to talk about the above Frobenius
type notions. Recall that a coalgebra C is coreflexive if (C∗)0 = C (with the usual topology
on C∗). We refer to [HR74] and [R1] for details on coreflexive coalgebras. Because of the
special topology, we have the following

Proposition 3.8. An algebra A is Generalized (quasi)-Frobenius if and only if A = C∗

where C is (quasi)-co-Frobenius and C0 is coreflexive.

Proof. If A is Generalized (quasi)-Frobenius then A = C∗ with C = A0. So C = A0 =
(C∗)0 is coreflexive, and (quasi)-co-Frobenius. Conversely, if C is quasi-co-Frobenius, then
C is semiperfect. Then, since C0 is coreflexive, it follows that C is coreflexive. This follows,
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for example, from [CNO, 2.5, 2.12] and [HR74, Remark 3.1.2] combined. Therefore, in
C∗ any cofinite ideal I is closed (see for example [R1, 2.10]) and so I = E⊥, for E finite
dimensional subcoalgebra of C. Hence, I is open and the topology on C∗ has all cofinite
ideals as open ideals. �

Note that the extra condition that C0 is coreflexive is not a restrictive one. Indeed, by
the results of [HR74], if K is infinite, C0 is coreflexive if and only if the coalgebra K(S) is
coreflexive. This is true whenever the set of simples S is non-measurable (that is, every
ultrafilter on S which is closed under countable intersections - an Ulam ultrafilter - is
principal). This is a reasonable condition as pointed out in [HR74, Section 3.7] (in fact,
no example of a measurable set is known).

4. Examples in “Nature”

In what follows, we give a large class of examples of co-Frobenius and QcF coalgebras,
and implicitly, of Generalized (quasi)-Frobenius algebras. This section is aimed to provide
examples of such coalgebras appearing in very natural contexts and of importance in
various places, such as representation theory, homological algebra and even topology.
First we remark a standard procedure of “simple object multiplicity change”. Recall
from [Tak77] that if C is a coalgebra, E is a quasi-finite injective cogenerator of MC

and B = coendC(E) then B is a coalgebra and MB is equivalent to MC through the
cotensor functor F (−) = −�BE : MB −→ MC and let G denote its inverse. Also
recall that the cohom functor is defined for two comodules M,N by cohom(M,N) =

lim
−→

N ′f.d.⊆NC

Hom(N ′,M)∗, where the limit ranges over the finite dimensional subcomodules

N ′ of N . Hence coend(E) = lim
−→

E′f.d.⊆EC

Hom(E′, E)∗ and so we see that

coend(E)∗ = ( lim
−→

E′f.d.⊆EC

HomC(E′, E)∗)∗ = lim
←−

E′f.d.⊆EC

HomC(E′, E)∗∗

= lim
←−

E′f.d.⊆EC

HomC(E′, E) = HomC( lim
−→

E′f.d.⊆EC

E′, E) = EndC(E)

Let E =
⊕
T∈T

E(T )h(T ), where h(T ) are positive integers representing the multiplicity of

the injective indecomposable E(T ) in E. Also, EndC(E) =
∏
T∈T

HomC(E(T ), E)h(T ) as

left EndC(E)-modules and it is standard to see that Hom(E(T ), E) are indecomposable
projective local EndC(E)-modules, whose maximal simple quotient is Hom(T,E), with
multiplicity h(T ) in EndC(E). Dually, since B∗ = EndC(E) it follows that in B the
corresponding simple comodule - which is G(T ) - has multiplicity h(T ). Thus, the sim-
ple objects of C were “replaced” by G(T ) in the the new coalgebra B, which is Morita
equivalent to the old one.
Hence, if C is QcF, as noticed above, B will be QcF too, and the multiplicities of the
simple objects in B - (h(T ))T∈T can be chosen arbitrary. As seen in section 2, if we
denote λ : T → T the bijective function given by

λ(T ) = cosocle of E(T ) (which is well defined)(1)

C is co-Frobenius if h(T ) = h(λ(T )) for all T , i.e. iff h is constant on the orbits of the
action of Z on T through n · T → λn(T ). Hence, each function h : T /Z → N defines a
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co-Frobenius coalgebra equivalent to C. Obviously, any function T → Z which is non-
constant on these orbits defines a QcF coalgebra which is not co-Frobenius.

4.1. Examples from Representation theory of “sub”-quiver coalgebras. We now
construct a concrete class of examples. Let Γ be a graph and KΓ the quiver coalgebra.
Recall that it has a basis consisting of the paths in Γ and comultiplication for each path
p = [x(1) . . . x(n)] starting at some a and ending at some b given by p = [x(1) . . . x(n)] D−→
n∑
k=0

[x(1) . . . x(k)]⊗ [x(k) . . . x(n)] (the term for k = 0 being a⊗p and the one for k = n being

p ⊗ b). Write s(p) = a and t(p) = b for the source and target of a path p. The counit is
ε(p) = δ|p|,0. Let h : VΓ → N be an arbitrary function defined on the set VΓ of vertices of Γ,
and let B = {xij |p path from a to b, i = 1, . . . , h(a); j = 1, . . . , h(b)} (i.e. for each arrow x

from a to b we have h(a) · h(b) distinct elements xij). Now for each path p = [x(1) . . . x(n)]
of Γ passing through the vertices a0, a1, . . . , an we define h(a0)h(an) formally distinct
elements of a new set (words in the elements of B) pij , i = 1, . . . , h(a0); j = 1, . . . , h(an).
For a vertex in Γ, we define h(a)2 distinct words “of length 0” aij , i = 1, . . . , h(a); j =
1, . . . , h(a). Now let K[Γ, h] be the vector space with a basis B consisting of all pij
(including those of length 0, i.e. the aij ’s) and introduce a comultiplication and counit as
follows:

∆([x(1) . . . x(n)]ij) =
n∑
k=0

t(x(k))∑
s=1

[x(1) . . . x(k)]i,s ⊗ [x(k) . . . x(n)]s,j

ε(pij) = δ|p|,0δij

This writes for short ∆(pij) =
∑
p

t(p1)=s(p2)∑
s=1

(p1)i,s ⊗ (p2)s,j where D(p) = p1 ⊗ p2 is the

comultiplication D of KΓ. Using this, it is not difficult to check that (K[Γ, h],∆, ε) is a
coalgebra. The following proposition uses standard techniques of localization in coalgebras,
and it shows the concrete example of this phenomenon; it is also a generalization of the
result of [CKQ] describing the injective hulls of simple objects in a path coalgebra (see [Si]
for a similar result for incidence coalgebras of partially ordered sets):

Proposition 4.1. The simple types of right K[Γ, h]-comodules are Ta = K{a1j |j =
1, . . . , h(a)} and the left simple comodules Sa = K{ai1|i = 1, . . . , h(a)}, a vertex in Γ.
Denoting Ta,i = K{aij |j = 1, . . . , h(a)} ∼= Ta and Sb,j = K{bij |i = 1, . . . , h(b)} ∼= Sb, we
have that the injective envelopes of Ta,i and Sb,j in C are

E(Ta,i) = K{pik|s(p) = a, k = 1, . . . , t(p)}; E(Sb,j) = K{pkj |t(p) = b, k = 1, . . . , s(p)}
Moreover, K[Γ, h] is Morita equivalent to KΓ.

The simple objects are obvious and injective envelopes follow immediately because there
is a decomposition of K[Γ, h] into right comodules:

K[Γ, h] =
⊕
a,i

K{pik|s(p) = a, k = 1, . . . , t(p)}

and Ta,i ⊆ K{pik|s(p) = a, k = 1, . . . , t(p)}.
For the last assertion, let e be the idempotent of K[Γ, h]∗ which is equal to ε on all the
the elements p11 for paths p in Γ and 0 on the other elements of B. For C = K[Γ, h]
we consider the coalgebra eCe defined in [Rad82]. It has a comultiplication given by
ece 7−→ ec1e⊗ec2e and counit ece 7−→ εC(ece). It is then easy to see that KΓ ∼= eK[Γ, h]e
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as coalgebras by eK[Γ, h]e 3 epije 7−→ p11 ∈ KΓ. Also, in this situation, Ce is seen to
be an injective cogenerator of MC , and each right indecomposable injective E(Ta) has
multiplicity 1 in E. Moreover, eCe ∼= coend(Ce) (see [Rad82] too) so K[Γ, h] is Morita
equivalent to KΓ ∼= eCe (eCe is the basic coalgebra of C; see also [CM]).

Remark 4.2. Now, for a more general construction, note that we may consider any subcoal-
gebra F of KΓ which has a basis BF of paths (such coalgebras are also called ”monomial”),
and consider a corresponding coalgebra Fh which will be a subcoalgebra of K[Γ, h] which
will have a basis BF,h = {pij |p ∈ BF ; i = 1, ..., s(p); j = 1, ..., t(p)}. Using the same idem-
potent as above, we will find that BF and BF,h are Morita equivalent. If BF is QcF, then
it must be co-Frobenius since the multiplicity of the simples in BF is 1. Then, choos-
ing a suitable function h, as before, we can get various QcF coalgebras which are not
co-Frobenius (provided the function λ from equation (1) is not constant).

4.2. co-Frobenius coalgebras from Homological algebra. We now give several ex-
amples of QcF and co-Frobenius coalgebras (and so, implicitly, of Generalized (quasi)-
Frobenius algebras) which are connected to situations in category theory, homological
algebra and topology. Many of these will be obtained from graphs as above.

Example 4.3. Let Λ be the “line” graph . . .
xn−1 // an−1

xn // an
xn+1 // an+1 // . . . and

Λ1 the subcoalgebra of coalgebra KΛ which has a basis consisting of the paths of length
≤ 1: vertices an and arrows xn. This is the first term of the coradical filtration of KΛ.
The comultiplication and counit are given by

∆ : an → an ⊗ an

∆ : xn → an ⊗ xn + xn ⊗ an+1

ε(an) = 1; ε(xn) = 0

This is co-Frobenius, since we can easily see that E(Tan) ∼= E(San+1)∗ as right comodules
and E(San) ∼= E(Tan−1)∗ as left comodules. This coalgebra is tightly connected to homo-
logical algebra: the category of right Λ1-comodules is equivalent to the category of chain
complexes of K-modules (here, K can be any commutative ring) - see [Par81]. In fact,
this category has a monoidal structure, and Λ1 has a Hopf algebra structure, since it is
isomorphic as coalgebras with the Hopf algebra K < s, t, t−1 > /(s2, st+ ts) with comulti-
plication ∆(t) = t⊗ t and ∆(s) = t−1 ⊗ s+ s⊗ 1, counit ε(s) = 1, ε(t) = 1, and antipode
S(t) = t−1, S(s) = st = −ts. The isomorphism at coalgebra level is obviously provided by
an ↔ tn, xn ↔ tns.

Example 4.4. Let Λp be the subcoalgebra of the quiver algebra of the line graph Λ above,
consisting of paths of length ≤ p. For ease of use, let us denote the path starting at an
and having length k in Λ (the line graph) by pn,k. In this case, with notations as before,
we have the injective hulls of right comodules

E(Tan) = K{an, xn+1, [xn+1xn+2], . . . . . . . . . , [xn+1 . . . xn+p]} = K{pn,i|i ≤ p}

and the hulls of left comodules are

E(San) = K{an, xn−1, [xn−2xn−1], . . . . . . . . . , [xn−p . . . xn−1]} = K{pn−i,i|i ≤ p}.

So we get E(T (an)) ∼= E(San+p)∗ as right comodules and E(San) ∼= E(Tan−p)∗.
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Remark 4.5. This coalgebra is furthermore a Hopf algebra. Assume K contains a primitive
p’th root of unity q and let Hp be the Hopf algebra defined by Hp = K < s, t, t−1 >
/(sp, st−qts) as an algebra and with comultiplication ∆(t) = t⊗t and ∆(s) = t−1⊗s+s⊗1,
counit ε(s) = 1, ε(t) = 1, and antipode S(t) = t−1, S(s) = −ts = −qst. In order to see
this is a Hopf algebra one only needs to show that ∆ can be defined as a morphism of
algebras, and so, one needs to show that K < s, t, t−1 >3 s 7−→ t−1 ⊗ s + s ⊗ 1 ∈ K <
s, t, t−1 > /(sp, st− qts)⊗K < s, t, t−1 > /(sp, st− qts) and K < s, t, t−1 >3 t 7−→ t⊗ t ∈
K < s, t, t−1 > /(sp, st− qts)⊗K < s, t, t−1 > /(sp, st− qts) factor through (sp, st− qts),
that is, equivalently (t−1 ⊗ s+ s⊗ 1)p = 0 and t⊗ t is invertible. This follows in precisely
the same manner as it does in the case of the classical Taft algebras (for t it is obvious); see
[Taf71] or [M]. Similarly, one shows that the antimorphism of algebras S defined this way
on generators on K < s, t, t−1 >→ K < s, t, t−1 > factors through the ideal (sp, st− qts).
Now, using the quantum binomial formula we have

(t−1 ⊗ s+ s⊗ 1)k =
∑
i+j=k

(
k
i

)
q

t−isj ⊗ si

where
(
k
i

)
q

= (k)!q
(i)!q ·(j)!q are the q-binomial coefficients (e.g. see [Kas]). Dividing by

(k)!q which is non-zero if k < p since q is a primitive p’th root of unity, it follows that the
correspondence on bases 1

(k)!q
tn+ksk ↔ pn,k gives an isomorphism of coalgebras Λp−1

∼=
Hp = K < s, t, t−1 > /(sp, st− qts) (the counit compatibility is obvious).

We note that there is a result which is analogue to that from [Par81] pointed out in 4.3,
which generalizes the result of [Par81] and which intimately connects the coalgebra Λp to
the p-homological algebra introduced in [Kap96] with roots in topology [M42a, M42b] and
investigated later by Kassel and Wamst [KW] and Dubois-Violette [D-V] (see also [B],
[ITh]). Let Chp denote the category of p+ 1-chain complexes of K-modules, which are a
sequences of morphisms

. . . // Mn−1
dn // Mn

dn+1 // Mn+1
// . . .

such that dp+1 = 0, i.e. dndn+1 . . . dn+p = 0 for all n. The morphisms of between two
objects M∗ and N∗ in this category are collections of the type fn : Mn → Nn making
all the appropriate diagrams commutative (i.e. f∗d∗ = d∗f∗). This category also has a
monoidal structure with the tensor product of two complexes (X∗) and (Y∗) being obtained
by (X⊗Y )r =

⊕
n+m=r

Xn⊗Ym and with differential d(x⊗y) = qdeg(y)dX(x)⊗y+x⊗dY (y).

In the case p = 2 this coincides to what is usually considered the total complex of a tensor
product of complexes and with the one used in [Par81] p.372, and it is similar to the
tensor product used in [Kap96]. In fact, our tensor product can be obtained from the
tensor product ⊗Kap of [Kap96] by what is in the case p = 2 the usual “sign trick”:
for each p − 1-complex X∗ we can define the complex I(X) = (X∗) but with differential
I(dn) = 1

qndn. Then one easily sees that I is an equivalence of monoidal categories from

(Chp−1,⊗Kap,1) I→ (Chp−1,⊗,1) where 1 = · · · → 0 → (K)0 → 0 → . . . is the unit
object of these categories. We have the following equivalent statement of the main resuls
in [Par81] and [B]:
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Theorem 4.6. There exists an equivalence of categories Chp−1 ' Λp−1M and one of
monoidal categories G : Chp−1 → HpM which commutes with the forgetful functors U :
Chp−1 → KM, U(X∗) =

⊕
n
Xn and V : HpM→ KM: V G ∼= U .

We remark that these inverse equivalences of categories are defined as follows: for a p− 1-
complex (X∗, dX∗) define G(X) =

⊕
n
Xn and for a morphism of complexes f∗ : X∗ → Y∗

define G(f) =
⊕
n
fn. Let us convey to identify the elements pn,k ∈ Λp−1 with 1

(k)!q
tn+ksk ∈

Hp. On G(X) introduce the following left Hp-comodule structure: ρG(X) : X → Hp ⊗X
such that for xn ∈ Xn,

ρG(X)(xn) =
p−1∑
i=0

pn,i ⊗ diX(xn) =
p−1∑
i=0

pn,i ⊗ dX,n+i−1 . . . dX,n+1dX,n(xn)(2)

Conversely, define T : HpM → Chp−1 as follows: if M ∈ HpM let Mn = M · p∗n,0 and
dn+1 : Mn → Mn+1, dn+1(xn) = xn · p∗n,1, where the elements p∗n,k ∈ H∗p are the dual
“basis” for pn,k, that is, p∗n,k(pm,l) = δn,mδk,l. Then let T (M) = ((Mn)n, (dn)n). For
morphisms g : M → T in HpM we have g(x · p∗n,0) = g(x) · p∗n,0 so g(Mn) ⊆ Pn, and we
can define gn : Mn → Pn by gn = g|Mn .

Example 4.7. Let Γ be the circle graph

a1 <<a2 >>. . . . . .
;;ah

ww

for a positive integer h and let p be another positive integer. For each vertex ak denote
again pn,k the path of length k in Γ which starts at an. Then the coalgebra Γp,h which is
the subcoalgebra of KΓ having a basis of the paths {pn,k|k ≤ p} is co-Frobenius (and finite
dimensional). Indeed, again we see that the right injective indecomposables are E(Tan) =
K{pn,k|k ≤ p} and the right injective indecomposables are E(San) = K{pn−k,k|k ≤ p}
(here indices are taken mod h). Then we get that E(Tan) ∼= E(San+p)∗ and we can use
again Theorem 1.7.

Remark 4.8. By standard representation theory of quivers, it follows that the category
of left Γp,h-comodules is equivalent to the category of the representations of the “cyclic”
quiver Γ in the example above, with the condition that the composition of p+1 consecutive
morphisms is 0; that is the category of diagrams of the form

V1

f1

:: V2

f2

>>. . . . . .
:: Vh

fh

ww

and such that fi+pfi+p−1 . . . fi+1fi = 0 for all i, where indices are considered mod h.
Moreover, let us consider the ideal I = (th − 1) of Hp generated by th − 1. We note that
this is a Hopf ideal: ∆Hp(th−1) = th⊗th−1⊗1 = (th−1)⊗th+1⊗(th−1) and SHp(th−1) =
t−h − 1 = t−h(1 − th). Hence, the algebra Hp,h = K < s, t, t−1 > /(sp, st − qts, th − 1) is
a Hopf algebra. Now note that in this Hopf algebra Hp,h, we have s = sth = qhths = qhs

and since s 6= 0, we must have qh = 1, i.e. p|h. If this is the case, applying Bergman’s
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Diamond Lemma we easily see that {sitj |i = 0, . . . , p− 1; j = 0 . . . , h− 1} is a K-basis for
Hp,h. Then, by considerations entirely analogue to those in Theorem 4.6 and before, we
can see that KΓp−1,h

∼= Hp,h as coalgebras.
Note also that, denoting by Chp−1,h the category of such representations of this quiver with
condition fp = 0 (defined similarly to Chp−1), we see that there there is an equivalence of
tensor categories Chp−1,h ' Hp,hM. Note also that this Hopf algebra Hp,h generalizes the
Taft Hopf algebras of dimension p2, only Hp,h will have dimension ph, with p|h.

Remark 4.9. Moreover, the existence of an antipode S of Hp and Hp,h implies that the
categories of finite dimensional comodules over Hp and Hp,h are tensor categories, i.e.
they are rigid (that is, they have left and right duals for objects). This means Chp−1

and Chp−1,h are also tensor categories. By straightforward computation which uses the
equivalence between these categories and those of associated comodules, as well as the
antipode of Hp and Hp,h, we can see that the right dual of a “complex” V in Chp−1 or
Chp−1,h which is bounded and has all Vn’s finite dimensional

V : . . . // Vn−1
dn // Vn

dn+1 // Vn+1
// . . .

is the complex

V ∗ : . . . (V ∗)1−noo (V ∗)−n
(d∗)1−n

oo (V ∗)−n−1
(d∗)−n

oo . . .oo

with (V ∗)n = (V−n)∗ as vector spaces and (d∗)n+1 = −q−n−1(d−n)∗. The left dual of this
object is given by

V ∗ : . . . (∗V )1−noo (∗V )−n
(∗d)1−n

oo (∗V )−n−1
(∗d)−n

oo . . .oo

with (∗V )n = (V−n)∗ as vector spaces and (∗d)n+1 = −qn(d−n)∗ (indices are considered
mod h when we talk about Chp−1,h).

An Application
A well known result on the category of (1)- chain (i.e. usual) complexes (X, d) with d2 = 0
is that any such complex is a direct sum of complexes of the type · · · → 0 → (K)n →
0→ . . . and · · · → 0→ (K)n → (K)n+1 → 0→ . . . . We note how the above equivalences
and a result on coalgebras imply this result and its generalization to p− 1-complexes as a
consequence:

Theorem 4.10. Any (p-1) complex in Chp−1 or Chp−1,h is a direct sum of complexes of
the type · · · → 0 → (K)n+1 →= (K)n+2 → · · · → (K)n+i → 0 → . . . with i = 1, 2, ..., p
(the indices are always mod h when we are talking about Chp−1,h); here (K)i means the
field K is on position i, and the morphisms are identities.

Proof. We see that the injective envelopes of simple left comodules for the coalgebras
Hp,h

∼= Γp−1,h and Hp
∼= Λp−1 are E(San) = K{pn−k,k|k ≤ p} and they are chain

(uniserial) comodules: that is, their lattice of submodules is a chain (see [CT04] or
[I09] for properties). This follows easily by noting that the socle of the left comodule
K{pn−k,k|i ≤ k ≤ p} ∼= E(San)/K{pn−k,k|k < i} has socle K{pn−k,k} which is simple.
Thus, we can apply for example [I09, Proposition 3.2] (in fact, it is not difficult to show
that Hp,h are isomorphic to the p − 1’th term of the coradical filtration of the coalgebra
Kh
σ [X] of [I09, Example 5.5] for σ a cyclic permutation). Then, since for these coalgebras

by [CT04, Proposition 1.13] any left comodule is a direct sum if indecomposable chain
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comodules, which must submodules of the injective envelopes E(San), so they are isomor-
phic to some En,i = K{pn−k,k|0 ≤ k < i} for some i = 1, 2, ..., p. Using the equivalence
of categories proved before in Theorem 4.6 and Remark 4.8, we get that each complex
is a direct sum of chain complexes corresponding to the En,i’s, which are of the form
· · · → 0→ (K)n+1 → (K)n+2 → · · · → (K)n+i → 0→ . . . with i = 1, 2, ..., p. �

4.3. More examples.

Example 4.11. Consider the graph Θ∞ obtained by a “string of diamond diagrams”:

bn−1

""DDDDDDDD
bn

""DDDDDDDD bn+1

##GGGGGGGGG

. . . an−1

;;wwwwwwwww

##HHHHHHHHH
an

>>}}}}}}}}

  BBBBBBBB
an+1

;;wwwwwwwww

##HHHHHHHHH
an+2 . . .

cn−1

<<yyyyyyyy
cn

<<yyyyyyyy
cn+1

;;vvvvvvvvv

for all integers n. We can also obtain a variation of this graph Θh if we “close” the
string of diamonds into a loop of h such diamonds. Consider the path coalgebra C which
is the subcoalgebra of KΘh (h ∈ Z ∪ {∞}) with a basis consisting of the paths of length
0 (vertices) and 1 and also the paths of length 2 (bnan+1bn+1), (cnan+1cn+1) and the
elements (anbnan+1) + (ancnan+1) with (uvw) representing the path through the vertices
u, v, w. This coalgebra is co-Frobenius: the left injective indecomposables are
• E(San) = K{an−1, (an−1bn−1), (an−1cn−1), (an−1bn−1an) + (an−1cn−1an)} (spanned by
the paths in C ending at an),
• E(Sbn) = {bn−1, (bn−1an), bn−1anbn} and
• E(Scn) = {cn−1, (cn−1an), cn−1ancn}
and the right injective indecomposables are
• E(Tan) = K{an, (anbn), (ancn), (anbnan+1) + (ancnan+1)} (spanned by the paths in C
starting at an),
• E(Tbn) = {bn, (bnan+1), bnan+1bn+1} and
• E(Tcn) = {cn, (cnan+1), cnan+1cn+1}.
Then we can see that E(Tan) ∼= E(San+1)∗, E(Tbn) ∼= E(Sbn+1)∗ and E(Tcn) ∼= E(Scn+1)∗

as right C-comodules which show that C is co-Frobenius. Furthermore, we can extend this
example by considering Cp to be the coalgebra with a basis consisting of all paths of length
≤ 2p starting at any bn, cn, all paths of length ≤ 2p−1 starting at any an, and the elements
(anbnan+1bn+1 . . . an+p−1bn+p−1an+p) + (ancnan+1cn+1 . . . an+p−1cn+p−1an+p). We leave
out the details which are similar to the one in the previous examples.
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Example 4.12. A more general example of the same type is obtained by looking at an
infinite string of the following type of diagrams

b
(1,1)
n

// b
(1,2)
n

// . . . // b
(1,k1)
n

""FFFFFFFFF

. . . an

>>|||||||||
//

��3
3333333333333 b

(2,1)
n

// b
(2,2)
n

// . . . // b
(2,k2)
n

// an+1 . . .

. . . . . . . . . . . .

b
(r,1)
n

// b
(r,2)
n

// . . . // b
(r,kr)
n

CC���������������

This quiver ∆∞(k1, . . . , kr) consists of such a diagram between an and an+1 for each n
(r, k1, . . . , kr are fixed). We consider the subcoalgebra C ′ of the full path coalgebra of this
quiver, with a basis consisting of the following: the paths of length ≤ ki + 1 starting at
b
(i,j)
n and passing ONLY through points of the type bi,t∗ (that is, paths which continuing after
an+1 maintain level i), all paths starting at an but not reaching an+1 and the elements zn
which equal the sum of all the paths between an and an+1. As before, one can show this is
a co-Frobenius coalgebra.

Remark 4.13. We note that in all given examples of co-Frobenius and QcF coalgebras,
except Example 4.12, the length of the coradical filtration (Loewy length) of the injective
indecomposables are all equal (see coming examples below too); in 4.12, however, we see
that they can vary if the k1, . . . , kr are different.

It is interesting to note that the above example can be thought as the quotient coalgebra
r⊕
i=1

Λki
/K{pnki,0−pnkj ,0|i 6= j}, with the space spanned by the elements {pnki,0−pnkj ,0|i 6=

j} being a coideal, and a corresponding quotient when we consider the closed “loop” case.

Example 4.14. Let C,D be two QcF coalgebras. Then, by [GMN, Theorem 2.3], C ⊗D
is QcF.

Proposition 4.15. Let C and D be co-Frobenius K-coalgebras such that the endomor-
phism of every C and every D simple left comodule S is 1-dimensional (End(S) = K, in
particular, when K is algebraically closed). Then C ⊗D is co-Frobenius.

Proof. If the condition holds, then C0 =
⊕
S

M c
nS

(K) and D0 =
⊕
S′
M c
mS′

(K) are sums

of comatrix coalgebras. In this case, (C ⊗ D)0 = C0 ⊗ D0 =
⊕

S,S′M
c
nS ·mS′

(K) and
the simple left C ⊗ D-comodules are S ⊗ S′ for S, S′ simple left C and respectively D-
comodules. Also, C =

⊕
S

E(S)nS and D =
⊕
S′
E(S′)nS′ as left comodules easily implies

C ⊗D = (E(S) ⊗ E(S′))nS ·mS′ as left C ⊗D-comodules. Since S ⊗ S′ ⊆ E(S) ⊗ E(S′),
it follows that E(S ⊗ S′) = E(S)⊗E(S′). We also have for each simple C ⊗D-comodule
S⊗S′ that E(S) ∼= E(T )∗ and E(S′) ∼= E(T ′)∗ with T a simple right C-comodule and T ′ a
simple right D-comodule, so E(S⊗S′) = E(S)⊗E(S′) ∼= (E(T )⊗E(T ′))∗ = (E(T⊗T ′))∗.
Therefore, if C and D are co-Frobenius, the multiplicities of S and T in C coincide the
multiplicities of S′ and T ′ in D coincide too. In this case, this means dim(S) = dim(T )
and dim(S′) = dim(T ′) and it follows that dim(S⊗S′) = dim(T ⊗T ′) i.e. the multiplicity



GENERALIZED FROBENIUS ALGEBRAS AND HOPF ALGEBRAS 27

in C⊗D of the socle and cosocle of E(S⊗S′) = E(T ⊗T ′)∗ are the same. By Proposition
2.2 and remark thereafter it follows that C ⊗D is co-Frobenius. �

Example 4.16. Let BiCh be the category of bicomplexes,

. . . . . . . . .

. . . // Xk+1,n−1
dk+1,n //

OO

Xk+1,n
dk+1,n+1//

OO

Xk+1,n+1
dk+1,n+2 //

OO

. . .

(∗) . . . // Xk,n−1
dk,n //

d′k+1,n−1

OO

Xk,n
dk,n+1 //

d′k+1,n

OO

Xk,n+1
dk,n+2 //

d′k+1,n+1

OO

. . .

. . . // Xk−1,n−1
dk−1,n //

d′k,n−1

OO

Xk−1,n
dk−1,n+1//

d′k,n

OO

Xk−1,n+1
dk−1,n+2 //

d′k,n+1

OO

. . .

. . .

OO

. . .

OO

. . .

OO

with the usual conditions that d′k,nd
′
k−1,n = 0, dk,ndk,n−1 = 0 and the squares commute:

dk,nd
′
k,n−1 = d′k,ndk−1,n. This is the category of chain complexes in the abelian category

Ch = Ch1 of chain complexes of vector spaces. The morphisms are considered as usual,
families fk,n : Xk,n → Yk,n making all the appropriate diagrams commutative. Note that
sometimes this category is considered to be such that squares “anticommute”: dk,nd′k−1,n =
−d′k−1,n+1dk−1,n, but the two are equivalent by a usual sign trick (see, for example [W,
1.2.5]). This category is then equivalent to the category of left comodules over the coalgebra
Λ1⊗Λ1. For this it suffices to see that Λ1⊗Λ1 has a basis consisting of elements pn,k⊗pm,l
with 0 ≤ k, l ≤ l and to any bicomplex (Xk,n)k,n we can associate the left Λ1 ⊗ Λ1-
comodule

⊕
k,n

Xk,n with coaction ρ which for uk,n ∈ Xk,n reads ρ(uk,n) = (ak ⊗ an) ⊗

uk,n + (ak ⊗ pn,1) ⊗ d(uk,n) + (pk,1 ⊗ an) ⊗ d′(uk,n) + (pk,1 ⊗ pn,1) ⊗ dd′(uk,n) (note that
dd′ = d′d, with appropriate indices omitted). It is straightforward to check that this is
a comodule structure. Conversely, to each Λ1 ⊗ Λ1-comodule Y we associate a double
chain complex as follows. Denote, as before, c∗ the dual “basis” elements in (Λ1 ⊗ Λ1)∗

corresponding to c ∈ {pn,k ⊗ pm,l|0 ≤ k, l ≤ 1}. We let Yk,n = Y · (ak ⊗ an)∗, and note
that in this situation we have Y =

⊕
k,n

Yk,n. Moreover, for yk,n ∈ Yk,n we let d(yk,n) =

yk,n · (ak ⊗ pn,1)∗ = yk,n · (pk,0 ⊗ pn,1)∗ and d′(yk,n) = yk,n · (pk,1 ⊗ pn,0)∗. The fact that
d2 = 0 and (d′)2 = 0 follows as in the computations in [Par81] and the above examples,
and since (pk,0⊗pn,1)∗ ∗ (pk,1⊗pn,0)∗ = (pk,1⊗pn,0)∗ ∗ (pk,0⊗pn,1)∗ can be tested by direct
application on all the elements of the basis, we get dd′ = d′d.
Since the computation are similar to those in Theorem 4.6 and in [Par81], we live the
details to the reader.

By generalizing the above results, we get the following

Theorem 4.17. Let Chp−1,r−1 be the category of double complexes of the type (∗) from
Example 4.16 such that dp = 0, (d′)r = 0, and the squares commute: dd′ = d′d. Then
Chp−1,r−1 is equivalent to the category of comodules over the Hopf algebra Hp⊗Hr. More-
over, this is an equivalence of monoidal categories.
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Note that even more examples can be obtained by combining the Hopf algebras Hp and
Hp,h; denote Hp,∞ = Hp, so then we have defined Hp,h for h = 1, 2, 3, . . . , and h = ∞
(Hp,h is just a coalgebra if p - h). Then the category of comodules over Hp,h ⊗ Hr,l

can be thought of the category of double chain complexes, with h collumns and l lines,
where whenever h or l is finite, these are thought of as cicles. In these categories, squares
commute, and the relation dp = 0 is needed on the horizontal and (d′)r = 0 on the vertical.
If h is finite and l is infinite, than these diagrams can be represented by an infinite cylinder
with the required properties. When both h, l are finite, these diagrams can be represented
by a torus with appropriate commutation relations. For example, for H3,3 ⊗ Hr,∞, the
category of comodules is tensor equivalent to the category of diagrams of vector spaces of
the following ”cylindrical” shape (some arrows are broken only for easier visualization):

. . . •

�
�
�

���
�
�

// •

�
�
�

���
�
�

// •

�
�
�

���
�
�

// . . .

. . . // •

??~~~~~~~
// •

??~~~~~~~
// •

??~~~~~~~
// . . .

. . . •

__@@@@@@@
// •

__@@@@@@@
// •

__@@@@@@@
// . . .

and with morphisms being collections of pointwise linear maps (f), making all the apropri-
ate diagrams commutative: f∗d∗ = d∗f∗. Similarly, for another example, the category of
corepresentations (comodules) of the Hopf algebra (or coalgebra) Hp,3 ⊗Hr,4 (with p = 3
and r ∈ {2, 4} for Hopf algebras) is tensor equivalent to the category of diagrams of the
following ”torus shape”, with appropriate morphisms:
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[St] D. Ştefan, The uniqueness of integrals (a homological approach), Comm. Algebra 23 (1995), no. 5,

1657-1662.
[Tak] M. Takeuchi, Topological Coalgebras, J. Algebra 97 (1985), 505–539.
[Tak77] M. Takeuchi, Morita theorems for categories of comodules, J. Fac. Sci. Univ. Tokyo Sect. IA Math.

24 (1977), no. 3, 629–644.
[Taf71] E.J.Taft, The Order of the Antipode of Finite-dimensional Hopf Algebra, Proc. Nat. Acad. Sci.

USA, vol. 68, No.11 (Nov 1971), 2631–2633.
[vD] A. van Daele, The Haar measure on finite quantum groups, Proc. Amer. Math. Soc. 125 (1997), no.

12, 3489–3500.
[vD1] A. Van Daele, An algebraic framework for group duality, Adv. Math. 140 (1998), no. 2, 323-366.
[W] C. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Math., vol. 38,

Cambridge Univ. Press, 1994.

Miodrag C Iovanov
University of Southern California
Department of Mathematics, 3620 South Vermont Ave. KAP 108
Los Angeles, California 90089-2532
and
University of Bucharest, Faculty of Mathematics, Str. Academiei 14
RO-010014, Bucharest, Romania
E–mail address: yovanov@gmail.com; iovanov@usc.edu


