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Abstract  The problem of when the direct product and direct sum of modules are iso-
morphic is discussed. A series of examples where the product and coproduct of
an infinite family of modules are isomorphic is given. One may see that if we
require that the isomorphism of [] and €D be a natural (functorial) one, then

T T
this can only be done for finite sets I. If this is the case for modules, we show
that for comodules over a coalgebra the product and coproduct of a family of
comodules can be isomorphic even via the canonical morphism.
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1. INTRODUCTION

Given a family (M;);er of (left) R modules, we consider the problem of when
the direct sum and direct product of this family are isomorphic. It is obvious
that if we require that the isomorphism is the canonic isomorphism, then we
can easily see that the set must be finite, unless all but a finite part of the
modules are 0. Nevertheless we may ask wether the direct product and direct
sum of a module can be isomorphic via other isomorphisms. We produce a
large class of examples that show that this is possible, so the direct product,
by the categorical point of view (classification of modules) is not necessarily
very different of the direct sum. We also show that in the case of categories
other than categories of modules, namely for comodules over a coalgebra, the
direct sum and direct product of a family of objects can be isomorphic even
through the canonical morphism.

We can ask the more general question of when the two functors [[ and []

icl =
from the direct product category kM’ to gM are isomorphic. It can be shown
(not very difficult) that this is only possible for finite sets I.
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2. EXAMPLES AND RESULTS

Example 2.1. Let K be a field and let (V;);er be vector spaces over K and
V = 11 Vi. Then the direct product and direct sum of the family {V} U{V; |
icl
i € I} are isomorphic.
Proof Denote by A; a set consisting of a basis for V; for each i € I and let A
be a basis for V. Then | | A;LIA is a basis for the coproduct @ V;®&V and ALUA

i€l i€l
is a basis for the direct product [[ VixV =V x V. But card(| | 4;) < card(A)
i€l i€l
because of the natural inclusion of vector spaces @ A; — [] A; so we have
i€l i€l

card(A) < card(|_| A;UA) <card(AU A) = card(A),
i€l
which shows the desired isomorphism. |

Example 2.2. Let A be a simple Artinian ring, that is, A ~ Mp,(A), with
A a skewfield. If (N;)ier is a family of A modules and N = [] Nj, then the
i€l
direct product and direct sum of the family (N) U (N;);er are isomorphic.
Proof Let S denote a simple module. As any module is semisimple isomor-
phic to a direct sum of copies of S (A is semisimple with a single type of simple
module), in order for two modules N ~ S(®) and M ~ S to be isomorphic it
is necessary and sufficient for the sets o and (3 be of the same (infinite) cardi-
nal (by Krull-Remak-Schmidt-Azumaya theorem). Let A; and A be sets such
that N; ~ S() (Vi) and N ~ S, Then N @ N; ~ S @ @ 5A) ~ (@)

i€l i€l
with o = AL || A; and N x [[ N;~ N x N ~ N® with 8 = AU A. Using
i€l i€l
an argument similar to the one in Example 2.1 we obtain that « and 3 are of
the same cardinal and so N® @ N; ~ N x [[ N;. [ |
i€l i€l

A ring is said to have finite representation type if there are only finitely
many non-isomorphic indecomposable modules. It is known that any module
over an Artinian finite representation type ring is a direct sum of indecom-
posable modules. For algebras the converse is also true; in fact for an Artin
algebra (a finite length algebra over a commutative Artinian ring) the follow-
ing are equivalent:

-every module is a direct sum of finitely generated indecomposable modules;

-there is only a finite number of nonisomorphic finitely generated indecompos-
able modules;

-every indecomposable module is finitely generated.

Moreover, these statements are left right symetric, that is, the statement for
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left modules is equivalent to the one for right modules. We refer to [8], [1], [5],
[3] for these facts. For modules over such algebras we can prove a result that
gives a large class of examples of isomorphic direct sum and direct product of
modules.

Theorem 2.1. Let A be a (left) Artinian ring with the property that every
module decomposes as a direct sum of indecomposable finitely generated mod-
ules (for example, A a finite representation type Artin algebra). Then for
every family of (left) A modules (My)nen there is a module M such that the
direct product and direct sum of the family (M) U (M, )nen are isomorphic.

Proof Let {H; | j € J} be aset of representatives of indecomposable finitely
generated A modules (one can see that actually this is a set, not a class!). For
every A module M we have a unique decomposition in the sense of Krull-

Schmidt decomposition theorem M = @ M}, where all M}, are isomorphic to
k
one of the Hj’s (as the generalized Krull-Remak-Schmidt-Azumaya theorem

applies, because the endomorphism rings of finitely generated modules over
Artinian rings - which are finite length modules - are local). Denote by o (M)

the 'exponent’ of H; in M, that is a set (cardinal) such that M ~ Hfj(M) e

@ M; and M; not isomorphic to Hj, VIl € L. Then M ~ N iff a;(M) ~
leL
a;(N),Vj € J. By Krull-Schmidt theorem, o;( M;) ~ || o;(M;). For

leL leL

every family (My,)nen of A modules, let K = {j € J | card(e;;( €D My)) < Ro}
neN

and M' = @ H"™. Take M = [] M, x M. We have card(a;(M,)) <

JjeEK neN
card(a;(M)) as each M, is a direct summand in M (by Krull-Schmidt). Notice
that (M) is infinite for all j: if a;( @ My,) is infinite then card(a;(My))
neN
is nonzero for infinitely many n’s, say for all n € P and so for every finite

set ¥ C P, @ M, is a direct summand in M, showing that card(c;(M)) >
nekr

card(a( @ My)) > card(F). If a;( €D My) is finite then M contains HJ(N)
ner neN
from M’. Then

card(a;(M)) < card(ozj(@ M, & M)) = card( |_| a;(My) Ua;(M))
neN neN

< card( |_| a;(M) Ua;(M)) = card(a; (M) x N) = card (o (M)).
neN
On the other hand we have
card(a;(M)) < card(aj(H M, x M)) < card(a;(M & M))
neN
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= card(a;(M) U a;(M)) = card(a;(M)).

Thus we obtain o;( @ M, ® M) ~ «a;([[ M, x M), so the theorem is
neN neN
proved. Here we have used some well known facts from set theory, such as

a+a = a and a X Xy = N for every transfinite cardinal a, which can be found,
for example, in [11].

We provide now an example from comodule theory, where the canonical
isomorphism from the direct sum to the direct product will be an isomorphism,
but with infinite index set. We refer to [6] for basic facts about coalgebras
and comodules over coalgebras.

Proposition 2.1. Let C = @ C; be a cosemisimple coalgebra, with C; simple
el

C
coalgebras. Then the canonical morphism from @ C; to [ C; is an isomor-
icl icl
C
phism (here C; are right C comodules, and || denotes the direct product in the
category MC of right comodules).

Proof 1t is known (and easy to see) that the direct product of the family

(M))ier of comodules is Rat®([] M;), where [] represents the direct product
leL

of left C* modules. We also have that Rat® (C*) = Rat®([] CF) = @ C; (this

icl icl
is true in a more general setting, for a left and right semiperfect coalgebra; see
[6], Chapter III). If we denote by S; the left simple comodule type associated
to C; (that is, a simple left comodule included in C;) and T; a right simple C;
module, then we have T; ~ S in MY and then also in MY (because there is
only a single type of simple left(right) comodule). Also C; ~ S in CiM and
Ci ~T™ in MY with m = n because T} ~ S} implies that S; and T; have the
same (finite!) dimension. We obtain that C} ~ (S)" ~ T* ~ C; in MY and
also in M®. Therefore we obtain

c
[1¢ =Rat“([[ C:) = Rat“(J[ 7)) = P &5 (in M) =P Ci
i€l i€l i€l i€l =

and it is easy to see that the isomorphism is the canonical morphism from the
direct sum into the direct product. |

Remark 2.1. The above example can be generalized to a more general case,
namely for comodules over for (left and right) co-Frobenius coalgebras.
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