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Abstract. We provide a very short approach to several fundamental results for Hopf
algebras with nonzero integrals. Besides being short, our approach is the first to prove
the bijectivity of the antipode without using the uniqueness of the integrals of Hopf
algebras and to obtain the uniqueness of integrals as a corollary in a way similar to the
classical theory of the Haar measure on compact groups.

Introduction

One of the fundamental notions of the theory of Hopf algebras is that of an integral,
which is an analog of the Haar integral of a compact group and draws its name from
there. More precisely, if G is a compact group and R(G) is the algebra of continuous
representative functions onG, i.e. the space spanned by the coefficients ηij of all continuous
representations η : G→ GLn(C), then the restriction of the Haar integral to R(G) becomes
an integral in the Hopf algebra sense (see Abe (1977) or Dăscălescu et al. (2001)). In
this respect, a Hopf algebra having a nonzero integral is a generalization of the algebra of
continuous representative functions on a compact group. Integrals for Hopf algebras were
introduced by Sweedler (1969a). In that paper he proves a series of fundamental results
about Hopf algebras with nonzero integrals, including the fact that integrals are unique
and the antipode is bijective when the Hopf algebra is finite dimensional. The questions
about the validity of these results for Hopf algebras with nonzero integrals of possibly
infinite dimension appear explicitly in Sweedler (1969b). These questions were given
affirmative answers: the uniqueness of the integrals was proved by Sullivan (1971), then,
using Sullivan’s result, Radford (1977) proved that the antipode of a Hopf algebra with
nonzero integrals is bijective. Many other proofs for the uniqueness of integrals were found
later. Some of these proofs have a strong homological flavor and use the fact that integrals
are just comodule maps: Ştefan (1995), Beattie et al. (1998), Menini et al. (2001),
Dăscălescu et al. (1999). In contrast with the abundance of proofs for the uniqueness
of integrals, Radford’s proof for the bijectivity of the antipode was virtually the only
one available (with a simplification due to Călinescu (2001)) until very recently, when
alternate proofs were obtained by Iovanov (preprint1) and (preprint2) by using a purely
coalgebraic approach, as a byproduct of a general theory of algebraic “integrals” or infinite
dimensional generalized Frobenius algebras. All proofs for the bijectivity of the antipode
used the uniqueness of integrals, and it was hard to say whether this happened by necessity
or it was just an effect of the order in which the two results were obtained. Moreover, the
classical proof for the uniqueness of Haar measures adapted for Hopf algebras requires the
bijectivity of the antipode (see Van Daele (1998) and Raianu (2000)). In the classical
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case of compact groups, the Hopf algebra of representative continuous functions clearly
has a bijective antipode because it is commutative, and this probably made the causative
relationship between bijectivity and uniqueness harder to understand. The fact that the
antipode of a Hopf algebra with nonzero integrals might not be necessarily bijective was
the only obstacle in proving the uniqueness of the integrals by using the same technique
as in the case of Haar measures.

In this note we find a very short approach to explain the above mentioned results. We
first prove the bijectivity of the antipode without using the uniqueness of the integrals.
This is the first proof constructed in this manner, and it follows by using a technique from
Iovanov (preprint1). We can then just use the classical proof of the uniqueness of the
Haar measure from locally compact groups, as was done in Van Daele (1998) for multiplier
Hopf algebras (see also the chapter on Haar measures in Bourbaki (1963)). Thus, besides
being short, this proof also has the advantage that it shows once more an even stronger
parallel than noted previously between Hopf algebras and locally compact groups.

The Proofs

Let H be a Hopf algebra over the field k. Recall that a left integral λ of the Hopf
algebra H is an element in H∗ such that αλ = α(1)λ for all α ∈ H∗. We also recall that
whenever nonzero left integrals exist, Sweedler (1969b) proved that the antipode S of
the Hopf algebra H is injective, and therefore it has a left inverse Sl. Sweedler proved
the injectivity of the antipode after twisting by S the module structure in a Hopf module
structure on the rational module Rat(H∗). Therefore, it makes sense that when trying to
prove the surjectivity one should consider twisting by S the comodule structure in some
natural Hopf module structure on the rational part. This is precisely what we are going
to do.

For (M,ρ) ∈MH ,
ρ : M −→M ⊗H, ρ(m) = m0 ⊗m1,

we define SM ∈ HM with comodule structure given by

m 7−→ m(−1) ⊗m(0) = S(m1)⊗m0

It is clear that we have a functor F : MH −→ HM, F (M) = SM , and F is the identity
on morphisms.

If x, y ∈ H and α ∈ H∗, we denote (x⇀α)(y) = α(yx) and (α↼x)(y) = α(xy). Then
we have:

Proposition 1. SRat(H∗), with left H-module structure given by

H ⊗ SRat(H∗) −→ SRat(H∗), x⊗ α 7−→ x⇀α, x ∈ H, α ∈ Rat(H∗)

and left H-comodule structure as above is a left H-Hopf module.

Proof. The first problem is that it is not obvious why SRat(H∗) is a left H-module under
the ⇀ action. To see this, let α ∈ Rat(H∗), which means that there exist xαi ∈ H and
gαi ∈ H∗ such that for all β ∈ H∗ and h ∈ H we have

βα(h) = β(h1)α(h2) = β(xαi )gαi (h)(1)
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Now let x ∈ H, denote as before the left inverse of S by Sl, and let us compute

β(x⇀α)(h) = β(h1)(x⇀α)(h2)

= βSl(S(h1))α(h2x)

= βSl(x1S(x2)S(h1))α(h2x3)

= (βSl↼x1)(S((hx2)1))α((hx2)2)

= (βSl↼x1) ◦ S(xαi )gαi (hx2) − by (1)

= β(Sl(x1S(xαi )))(x2⇀gαi )(h)

Therefore, we proved that x⇀α ∈ Rat(H∗).
To finish the proof, we need to show that

(x⇀α)(−1) ⊗ (x⇀α)(0) = x1α(−1) ⊗ x2⇀α(0)

which is
S((x⇀α)1)⊗ (x⇀α)0 = x1S(α1)⊗ x2⇀α0

or

< βS((x⇀α)1)(x⇀α)0, y >=< β(x1S(α1))(x2⇀α0), y >, ∀β ∈ H∗, y ∈ H
We have

< βS((x⇀α)1)(x⇀α)0, y > = < (β ◦ S) ∗ (x⇀α), y > (rt H-com str of Rat(H∗))
= βS(y1)(x⇀α)(y2)
= βS(y1)α(y2x)
= βS(y1)α(y2x2)ε(x1)
= β(ε(x1)S(y1))α(y2x2)
= β(x1S(x2)S(y1)α(y2x3)
= (β↼x1)(S(y1x2))α(y2x3)
= < (β↼x1) ◦ S, (yx2)1 >< α, (yx2)2 >

= < ((β↼x1) ◦ S) ∗ α, yx2 >

= < ((β↼x1) ◦ S)(α1)α0, yx2 >

= β(x1S(α1))α0(yx2)
= < β(x1S(α1))(x2⇀α0), y >,

which ends the proof. �

Let C be a coalgebra and M ∈ CM. The coalgebra CM associated to M is the smallest
subcoalgebra CM of C such that ρ(M) ⊆ CM ⊗ M , i.e. CM = ∩A⊆C,ρ(M)⊆A⊗MA (see
Dăscălescu et al. (2001, p. 102)). With this notation we have:

Proposition 2. If M
f
� N is a surjective morphism of left C-comodules, then CN ⊆ CM .

Proof. Let K = Ker(f). Then clearly CK ⊆ CM . Therefore, K is a CM -subcomodule, so
ρM/K(M/K) ⊆ CM ⊗M/K, i.e. ρN (N) ⊆ CM ⊗N , hence CN ⊆ CM by definition. �

We are now ready to prove
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Theorem 3. If H is co-Frobenius, S is bijective.

Proof. By Proposition 1 and the fundamental theorem of Hopf modules, we have that
SRat(H∗) ' H ⊗ (SRat(H∗))co = H ⊗

∫
l, since it is easy to see that (SRat(H∗))co =

∫
l.

Also, since (Rat(H∗))H '
∫
l⊗H = H(dim

∫
l) in MH , we get SRat(H∗) ' (SH)(dim

∫
l) =⊕

dim
∫

l

SH, using the fact that the functor F clearly commutes with direct sums. Since
Rat(H∗) 6= 0 (equivalently

∫
l 6= 0) we can find a surjection of left H-comodules

π : (SH)(dim
∫

l) ' SRat(H∗) ' H ⊗ (SRat(H∗))co � HH

Then CH ⊆
∑
CSH = CSH by Proposition 2 and the obvious fact that C⊕

i∈I Mi
=∑

i∈I CMi . Obviously, CH = H (by the counit property), and also CSH = S(H), since
∀h ∈ H, S(h) = S(h2)ε(h1) ∈ CSH , because ρSH(h) = S(h2)⊗h1 ∈ H⊗SH. So H ⊆ S(H),
and the proof is complete. �

Corollary 4. If t ∈
∫
l, t 6= 0, then t ◦ S ∈

∫
r, t ◦ S 6= 0.

Proof. Obvious. �

As a consequence of this proof, the proof for the uniqueness of integrals can be translated
verbatim to Hopf algebras from the case of Haar measures, as was done by Van Daele
(1998) for regular multiplier Hopf algebras. This proof could not be used for Hopf algebras
because it requires the bijectivity of the antipode, and until now all proofs of the bijectivity
of the antipode used the uniqueness of integrals. A modified version of the proof below
not requiring the bijectivity of the antipode was given by Raianu (2000).

Corollary 5. The dimension of
∫
l is at most one.

Proof. (Identical to the proof of Van Daele (1998, Theorem 3.7)) Let t1, t2 ∈
∫
l, t2 6= 0.

By Corollary 4 λ = t2 ◦ S ∈
∫
r \{0}. Then for any h ∈ H there is a g ∈ H such that

t1(xh) = t2(xg) ∀x ∈ H.(2)

Indeed, let l,m ∈ H such that λ(l) = 1 and t2(m) = 1. Then

t1(xh) = λ(l)t1(xh)
= λ(x1h1l)t1(x2h2) (t1 ∈

∫
l)

= λ(x1h1l1)t1(x2h2l2S(l3))
= λ(xhl1)t1(S(l2)) (λ ∈

∫
r)

= λ(xe) (e = hl1t1(S(l2))
= λ(xe)t2(m)
= λ(x1e1)t2(x2e2m) (λ ∈

∫
r)

= λ(x1e1m2S
−1(m1))t2(x2e2m3)

= λ(S−1(m1))t2(xem2) (t2 ∈
∫
l)

= t2(xg) (g = em2λ(S−1(m1)).
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We finish the proof by showing that t1 is a scalar multiple of t2. For y ∈ H we have:

t1(y) = λ(l)t1(y)
= λ(l1)t1(yl2) (λ ∈

∫
r)

= λ(S(y1)y2l1)t1(y3l2)
= λ(S(y1))t1(y2l) (t1 ∈

∫
l)

= λ(S(y1))t2(y2g) − by (2)
= λ(g)t2(y),

where the last equality follows from reversing the previous three equalities, and the proof
is complete. �

Remarks 6. a) Note that aside from the bijectivity of the antipode, the proof above uses
only the definition of integrals.
b) To compensate for not being able to use the inverse of S, a special left integral had to
be chosen in Raianu (2000) and it was shown to form a basis of

∫
l. Once we are able to

use the inverse of S, the proof above shows that any non-zero left integral will do.

Following the work of Lin, Larson, Sweedler, and Sullivan, the existence of a nonzero
integral is equivalent to various representation theoretical properties of the Hopf algebra,
such as that of being co-Frobenius as a coalgebra, or having nonzero rational part. As a
final application, we show how our approach may be used to simplify the proof of some of
these results (see Dăscălescu et al. (2001, Theorem 5.3.2)):

Corollary 7. For a Hopf algebra H the following assertions are equivalent:
(1) H is left co-Frobenius
(2) H is left quasi-co-Frobenius
(3) H is left semiperfect
(4) Rat(H∗) 6= 0 (H∗ as a left H∗-module)
(5)

∫
l 6= 0

(6) The right hand version of (1)-(5)

Proof. All implications follow directly from the definitions or from Sweedler’s isomorphism,
with the exception of 5)⇒6) which follows from Corollary 4. �
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Dăscălescu, S., Năstăsescu, C., Raianu, Ş. (2001). Hopf Algebras: an Introduction, Mono-
graphs and Textbooks in Pure and Applied Mathematics 235, Marcel Dekker, Inc.,
New York.
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