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Abstract

For a ring R, the properties of being (left) selfinjective or being cogenerator for the left
R-modules do not imply one another, and the two combined give rise to the important
notion of PF-rings. For a coalgebra C, (left) self-projectivity implies that C is generator
for right comodules and the coalgebras with this property were called right quasi-co-
Frobenius; however, whether the converse implication is true is an open question. We
provide an extensive study of this problem. We show that this implication does not hold,
by giving a large class of examples of coalgebras having the ”generating property”. In
fact, we show that any coalgebra C can be embedded in a coalgebra C∞ that generates
its right comodules, and if C is local over an algebraically closed field, then C∞ can be
chosen local as well. We also give some general conditions under which the implication
”C-projective (left) ⇒ C generator for right comodules” does work, and such conditions
are when C is right semiperfect or when C has finite coradical filtration. 1

1 Introduction

Let R be a ring or an algebra. There are two very basic properties of the ring, which are
very important for the theory of rings and modules: a homological one, that R is projective
as left or right module and a categorical one, the fact that R generates all its left (and right)
modules. The dual properties, namely when is R injective as left or right R-module on one
hand (i.e. R is selfinjective), and when does R cogenerate its left or its right R-modules,
have been the subject of much study in ring theory (see for example [F2], 4.20-4.23, 3.5 and
references therein). The rings (algebras) that satisfy both conditions are the same as the
PF-rings (pseudo-Frobenius), which are rings R such that every faithful right R-module is
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a generator. There are many known equivalent characterizations of these rings as well as
many connections of these rings with other notions, such as the QF-rings (quasi-Frobenius
rings=artinian rings with annihilator duality between the left and right ideals, equivalently
left and right artinian, cogenerator and self-injective rings), semiperfect rings, perfect rings,
FPF rings or Frobenius algebras. They have been introduced as generalizations of Frobenius
algebras, and they retain much of the module (representation) theoretic properties of these
algebras. The following theorem recalls some equivalent characterizations of PF-rings (see
[F2, 4.20]) and for QF-rings (see also [CR]):

Theorem 1.1 (1)R is right PF if and only if it satisfies either one of the following condi-
tions:
(i) R is an injective cogenerator.

(ii) R =
n⊕
i=1

eiR with e2
i = e2 and eiR is indecomposable injective with simple socle for all i.

(2) R is a QF-ring if and only if every injective right R-module is projective and if and only
if every injective left R-module is projective.

Dually, the analogue questions have be raised in the case of coalgebras and comodules over
coalgebra. We will refer to [A], [DNR], [M] or [S] for various basic definitions and results in
the theory coalgebras and their comodules. Recall that a coalgebra over a field K is defined
by dualizing the categorical diagrams defining the notion of algebra. That is, a coalgebra is
an algebra in the category dual to that of K-vector spaces. Thus, a coalgebra (C,∆, ε) has a
comultiplication ∆ : C → C⊗C and counit ε : C → K satisfying appropriate co-associativity
and co-unit relations. We use Sweedler’s sigma notation which writes ∆(c) =

∑
(c)

c1 ⊗ c2 or

the simplified notation with the summation symbol omitted ∆(c) = c1 ⊗ c2 ∈ C ⊗ C, and
this will always be understood as a summation rather then a single tensor monomial. Then
the coassociativity of C writes c1 ⊗ c21 ⊗ c22 = c11 ⊗ c12 ⊗ c2 and the counit property
ε(c1)c2 = c = c1ε(c2). A right C-comodule (M,ρ) is defined as a vector space with a
comultiplication ρ : M →M ⊗ C and satisfying appropriate compatibility conditions; using
a similar convention ρ(m) = m0⊗m1, these conditions write m00⊗m01⊗m1 = m0⊗m11⊗m12

and m0ε(m1) = m. The category of right C-comodules is be denoted MC , and that of the
similarly defined left comodules is CM. In analogy, we will use the notation RM andMR of
the categories of left, respectively right R-modules over a ring R. The dual C∗ of a coalgebra
is an algebra with the convolution product (fg)(c) = (f ∗ g)(c) = f(c1)g(c2) and any right
C-comodule M is also a left C∗-module by the action c∗ ·m = c∗(m1)m0, where c∗ ∈ C∗,
m ∈M and ρ(m) = m0 ⊗m1 ∈M ⊗ C.

A coalgebra C over a field K is always a cogenerator for its comodules and is also injective
as a comodule over itself. The dual properties in the coalgebra situation, corresponding to
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the selfinjectivity and the cogenerator properties of a ring (or an algebra), are that of a
coalgebra being projective as a right (or left) comodule or being a generator for the right
(or left) comodules. These conditions were studied for coalgebras in [NT1] and [NT2], where
QcF (quasi-co-Frobenius) coalgebras were introduced as the dualization of QF-algebras and
in some respects of PF rings. It is proved there that

Theorem 1.2 The following assertions are equivalent for a coalgebra C.
(i) C embeds in a direct sum of copies of C∗ as left C∗-modules.
(ii) C is a torsionless left C∗-modules i.e. C embeds in a direct product of copies of C∗.
(iii) Every injective right C-comodule is projective.
(iv) C is a projective right C-comodule.
(v) C is a projective left C∗-module.

A coalgebra satisfying these equivalent condition is called left QcF. Moreover, if these hold,
then C is a generator in CM, the category of left C-comodules. This concept is not left-right
symmetric, unlike the algebra counterpart, the QF-algebras (see [DNR, Example 3.3.7] and
[NT1, Example 1.6]). It is shown in [NT2] (see also [DNR, Theorem 3.3.11]) that a coalgebra
is left and right QcF if and only if CC generates right comodules and is projective as right
comodule, equivalently CC is a projective generator in CM and these are further equivalent
to C being a generator for bothMC and CM, characterizations that dualize known charac-
terizations of finite dimensional QF algebras. Other symmetric characterizations which also
generalize the characterizations of Frobenius algebras and co-Frobenius coalgebras [I] and
strongly motivate the consideration of QF algebras and QcF coalgebras as the generalization
of Frobenius algebras are given in [I1]. Though, it remained open whether the fact that C is
a generator for CM is actually enough to imply the fact that C is left QcF, i.e. if it implies
that C is projective as left C∗-module. In fact, the question has been has been studied very
recently in [NTvO], where some partial results are given. Among these, it is shown that the
answer to this question is positive in the case C has finite coradical filtration. The general
question however is left as an open question.

In the case of a ring R, there is no implication between the property of being left self-injective
and that of R being left cogenerator. An example of a ring R which is a non-injective
cogenerator in MR is the K-algebra with basis 1 ∪ {ei | i = 0, 1, 2 . . . } ∪ {xi | i = 0, 1, 2 . . . }
with identity 1 and with eixj = δi,jxj , xjei = δi,i−1xj , eiej = δi,jei and xixj = 0 for
all i, j - see [F1, 24.34.2, p. 215]. Conversely, a ring R which is a right cogenerator, is
right selfinjective if and only if it is semilocal (see again [F1, 24.10-24.11]), and there are
selfinjective rings which are not semilocal, and thus they are not right cogenerators. Such
an example can even be obtained as a profinite algebra, that is, an algebra which is the dual
of a coalgebra - see Example 4.5.
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We will say that a coalgebra has the right generating condition if it generates all its right
comodules. There are two main results in this paper. Firstly, we examine some conditions
under which the right generating condition of a coalgebra implies the fact that C is right
QcF (projective as right C∗-module). Among these, we consider three important conditions
in the theory of coalgebras: semiperfect coalgebras, coalgebras of finite coradical filtration
and coalgebras of finite dimensional coradical (almost connected). We show that

(∗) a coalgebra with the right generating condition and whose indecompusable (injective) left
components are of finite Loewy length is necessarily right QcF (the converse is known to
hold).

Therefore, for a coalgebra C with the right generating condition, the above is an equivalence,
and the coalgebra C being QcF is further equivalent to C being right semiperfect (see [L]). As
a consequence, we see that implication (∗) holds whenever the coalgebra has finite coradical
filtration, and this allows us to reobtain the main result of [NTvO] in a direct short way.
Secondly, we show that every coalgebra C embeds in a coalgebra C∞ that has the right
generating condition (in fact, C∞ will even have any of its finite dimensional right comodules
as a quotient). Thus, starting with a coalgebra C which is not right semiperfect, we will get
a coalgebra C∞ which is not right semiperfect (see [L]) and thus, by well known properties
of coalgebras, C∞ will not be right QcF. Moreover, if we start with a connected coalgebra
(coalgebra having the coradical of dimension 1) over an algebraically closed field, we show
that the coalgebra C∞ can be constructed to be local as well, therefore showing that the
third mentioned condition for coalgebras - the coalgebra having finite dimensional coradical
- is not enough for the right generating condition to imply the QcF property.

2 Loewy series and the Loewy length of modules

We first recall a few well known facts on the Loewy series of modules. Let M be a module
over a ring R. We denote L0(M) = 0, L1(M) = s(M) - the socle of M , the sum of all the
simple submodules of M . The Loewy series of M is defined inductively as follows: if Ln(M)
is defined, Ln+1(M) is such that Ln+1(M)/Ln(M) is the socle of M/Ln(M). More generally,
if α is an ordinal, and (Lβ)β<α were defined, then
• if α = β + 1 is a successor, then one defines Lβ+1(M) such that Lβ+1(M)/Lβ(M) =
s(M/Lβ(M));
• if α is a limit (i.e. not a successor) then one defines Mα =

⋃
β<α

Mβ.

If for some α, M = Mα we say that M has its Loewy length defined and the least ordinal
α with this property will be called the Loewy length of M ; we will write lw(M) = α. It is
known that modules having the Loewy length defined are exactly the semiartinian modules,
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that is, modules M such that s(M/N) 6= 0 for any submodule N of M with N 6= M . We
refer to [N] as a good source for these facts.
We also recall a few well known facts on the Loewy length of modules. Throughout this
paper, only modules of finite Loewy length will be used; however these properties hold in
general for all modules. In the following, whenever we write lw(M) we understand that this
implicitly also means the Loewy length of M is defined (and for our purposes, it will also be
enough to assume that lw(M) is finite).

Proposition 2.1 For any ordinal α (or α non-negative integer) we have:
(i) If N is a submodule of M then Lα(N) ≤ Lα(M) and in fact Lα(N) = N ∩ Lα(M).
(ii) If f : N →M is a morphism of modules, then f(Lα(N)) ⊆ Lα(M).
(iii) If N is a submodule of M then lw(N) ≤ lw(M), lw(M/N) ≤ lw(M) and lw(M) ≤
lw(N) + lw(M/N).
(iv) Lα(

⊕
i∈I

Mi) =
⊕
i∈I

Lα(Mi) and lw(
⊕
i∈I

Mi) = sup
i∈I

lw(Mi).

Let (C,∆, ε) be a coalgebra over an arbitrary field K, A = C∗ and let M be a right C-
comodule with comultiplication ρ : M → M ⊗ C. It is well known that M has its Loewy
length defined and in fact lw(M) ≤ ω0, the first infinite ordinal. The coradical filtration of
C is defined by C0 = L1(C), ... Cn = Ln+1(C). Let J = J(A), the Jacobson radical of A;
by [DNR, Proposition 2.5.3] we have (Jn)⊥ = Cn−1, where for I < A, I⊥ = {c ∈ C|f(c) =
0, ∀f ∈ I} and for X ⊆ C, X⊥ = {c∗ ∈ C∗|c∗(x) = 0, ∀x ∈ X}. Also, if M is a right
C-comodule (so a left A-module), M∗ becomes a right A-module in the usual way by the
”dual action” (m∗ · a)(m) = m∗(am), m∗ ∈M∗, m ∈M, a ∈ A. The following Lemma gives
the connection between the Loewy length of M and M∗ and also provides a way to compute
it for comodules of finite Loewy length.

Lemma 2.2 Let (M,ρ) be a right C-comodule. Then the following are equivalent:
(i) Jn ·M = 0.
(ii) M∗ · Jn = 0.
(iii) Imρ ⊆M ⊗ Cn−1.
(iv) lw(M) ≤ n.

Proof. (i)⇒(ii) is straightforward.
(ii)⇒(i) If f ∈ Jn and m ∈ M , then for all m∗ ∈ M∗, 0 = (m∗ · f)(m) = m∗(f ·m). Since
this is true for all m∗ ∈M∗, we get f ·m = 0.
(iii)⇔(iv) The map ρ : M → M ⊗ C is a morphism of C-comodules by the coassociativity
property. Moreover, M ⊗C '

⊕
i∈I

C, where I is a K-basis of M . Since Cn−1 = Ln(C), using

these isomorphisms, we have that Ln(
⊕
i∈I

C) =
⊕
i∈I

Cn−1 and so Ln(M ⊗ C) = M ⊗ Cn−1.
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Therefore, if (iii) holds, since ρ is also injective (by the counit property) we get lw(M) =
lw(ρ(M)) ≤ lw(M ⊗ Cn−1) = n; conversely, if (iv) holds, then M = Lk(M) for some k ≤ n

so ρ(M) ⊆ Lk(M ⊗ C) ⊆ Ln(M ⊗ C) = M ⊗ Cn−1.

(i)⇒(iii) For m ∈ M , let ρ(m) =
k∑
i=1

mi ⊗ ci ∈ M ⊗ C and by a standard linear algebra

observation we can choose the mi’s to be linearly independent. For all f ∈ Jn, 0 = f ·m =
k∑
i=1

f(ci)mi and thus f(ci) = 0, ∀i, i.e. ci ∈ (Jn)⊥ = Cn−1 for all i = 1, k.

(iii)⇒(i) is true, since Jn ⊆ (Jn⊥)⊥ = C⊥n−1. �

Since the dual of a finite dimensional right C-comodule is a finite dimensional left C-
comodule, we have

Corollary 2.3 If M is a finite dimensional right C-comodule (rational left C∗-module), then
M∗ ∈ CM and lw(M) = lw(M∗).

3 The generating condition

Let S (respectively T ) denote a system of representatives of simple left (respectively right)
C-comodules. Then C '

⊕
S∈S

E(S)n(S) as left C-comodules, with n(S) positive integers and

E(S) the injective envelopes of the comodule S. Similarly, C =
⊕
T∈T

E(T )p(T ) as right C-

comodules. The we obviously have that C generates all the right C-comodules if and only if
(E(T ))T∈T is a system of generators. Recall that a coalgebra C is right (left) semiperfect if
and only if the E(S)’s are finite dimensional for all S ∈ S (resp. the E(T )’s T ∈ T are finite
dimensional; see [L] or [DNR, Chapter 3]). We first give a simple proposition that explains
what is the property that coalgebras with the generating condition are missing to be QcF.

Proposition 3.1 Let C be a coalgebra. Then C is left QcF if and only if C is left semiperfect
and generates its left comodules.

Proof. ”⇒” is already known (see [DNR, Chapter 3]).
”⇐” It is well known that we have C =

⊕
i∈I

E(Ti) a direct sum of right comodules (left

C∗-modules), where Ti are simple comodules, C0 =
⊕
i∈I

Ti is the coradical of C and E(Ti) are

injective envelopes of Ti contained in C. For each Ti, E(Ti) is finite dimensional, so E(Ti)∗

is a finite dimensional right C∗-modules which is rational, that is, it has a left C-comodule
structure. Then there is an epimorphism of right C∗-modules φi : Cni → E(Ti)∗ → 0, where
ni can be taken to be a (finite) number since E(Ti) is finite dimensional. By duality, this
gives rise to a morphism ψi : E(Ti) ' (E(Ti)∗)∗ → (C∗)ni (given by ψi(x)(c) = φi(c)(x)).
Since φi is a surjective morphism of right C∗modules, it is easy to see that ψi is an injective
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morphism of left C∗-modules. We then get a monomorphism of left C∗-modules
⊕
i∈I

ψi :⊕
i∈I

E(Ti) ↪→
⊕
i∈I

(C∗)ni , a coproduct power of C∗, so C is left QcF. �

The next proposition will be the key step in proving the main results of this section.

Proposition 3.2 Suppose C generates MC . If S ∈ S is such that lw(E(S)) = n, then for
each finite dimensional subcomodule N of E(S) with lw(N) = n, there is T ∈ T such that
N ' E(T )∗.

Proof. Note that since N has simple socle, N∗ is a right C-comodule which is local, say
with a unique maximal subcomodule X. This is due to the duality X 7→ X∗ between
finite dimensional left and finite dimensional right C-comodules. Let

⊕
i∈I

E(Ti)
ϕ→ N∗ → 0

be an epimorphism in MC ; then ∃ i ∈ I such that ϕ(E(Ti)) ( X, and then (for example
by Nakayama lemma) we have ϕ(E(Ti)) = N∗. Put T = Ti. We have a diagram of left
A-modules

E(S)∗

r

��

p

zz
E(T ) ϕ

// N∗ // 0

which is completed commutatively by a morphism p, since E(S)∗ is a direct summand in
C∗ = A (the vertical map is the natural one). Let P = Im(p); by (the left hand side version
of) Lemma 2.2, Jn ·E(S)∗ = 0 and so Jn ·P = p(Jn ·E(S)∗) = 0. But P is finitely generated
(even cyclic, since E(S)∗ is so), and P is also a right C-comodule (rational left C∗-module),
and therefore it is finite dimensional. Thus its Loewy length is defined and lw(P ) ≤ n by the
same Lemma. Also, ϕ|P is injective. Indeed, otherwise T ⊆ kerϕ∩P = ker(ϕ|P )(6= 0), since
T is essential in E(T ). Then T = L1(E(T )) = L1(P ) and so lw(P/T ) = lw(P/L1(P )) <
lw(P ) ≤ n (by the definition of Loewy length). But ϕ factors to ϕ : P/T → N∗ and
therefore, using also Corollary 2.3, lw(P/T ) ≥ lw(N∗) = n - a contradiction.
Since ϕ ◦ p = r is surjective, ϕ|P is an isomorphism with inverse θ. This shows that the
inclusion ι : P ↪→ E(T ) splits off (θ ◦ϕ◦ ι = θ ◦ϕP = idp) and since E(T ) is indecomposable,
P = E(T ). Hence ϕ is an isomorphism and E(T ) ' N∗, so N ' E(T )∗ since they are finite
dimensional. �

Proposition 3.3 Suppose C satisfies the right generating condition. Then for each S ∈ S
such that E(S) has finite Loewy length, there exists T ∈ T such that E(S) ' E(T )∗ and
E(S) is finite dimensional.

Proof. Let n = lw(E(S)). First note that there exists at least one finite dimensional
subcomodule N of E(S) such that lw(N) = n: take x ∈ Ln(E(S)) \ Ln−1(E(S)) and put
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N = x · C∗ the left subcomodule (equivalently, right A-submodule) generated by x. Then
Ln−1(N) 6= N since otherwise N ⊆ Ln−1(E(S)), and therefore n ≤ lw(N) ≤ lw(E(S)) = n.
Let N0 = N . Assuming E(S) is not finite dimensional, we can inductively build the sequence
(Nk)k≥0 of finite dimensional subcomodules of E(S) such that Nk/Nk−1 is simple for all k ≥ 1
(simple comodules are finite dimensional). Applying Proposition 3.2 we see that each Nk is
local, since each is the dual of a comodule with simple socle (same argument as above; this
also follows from the more general [I, Lemma 1.4]). Then Nk/N0 has a composition series

0 = N0/N0 ⊆ N1/N0 ⊆ N2/N0 ⊆ · · · ⊆ Nk−1/N0 ⊆ Nk/N0

with each term of the series being local. Then, by duality, Mk = (Nk/N0)∗ has a composition
series

0 = X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xk−1 ⊆ Xk = (Nk/N0)∗

such that Xi ' (Nk/Ni)∗, because of the short exact sequences of left C∗-modules and right
C-comodules 0 → (Nk

Ni
)∗ → (Nk

N0
)∗ → (Ni

N0
)∗ → 0. Therefore, Mk/Xi ' (Ni/N0)∗ has simple

socle (by duality), since Ni/N0 are all local. Therefore, by definition, the above series of Mk

is the Loewy series and so lw(Nk/N0) = lw(Mk) = k. But then k = lw(Nk/N0) ≤ lw(Nk) ≤
lw(E(S)) = n for all k, which is absurd. Therefore E(S) is finite dimensional. This also
shows that the sequence (Nk)k≥0 must terminate with some Nk = E(S), because it can be
continued whenever Nk 6= E(S). Since Nk ' E(T )∗ for some T ∈ T by Proposition 3.2, this
ends the proof. �

Theorem 3.4 Let C be a coalgebra satisfying the right generating condition. Then the
following conditions are equivalent:
(i) The injective envelope (as comodules) of every simple left comodule has finite Loewy
length.
(ii) C is right semiperfect.
(iii) C is right QcF.
These conditions hold in pardicular if C = Cn for some n, i.e. C has finite coradical filtration.

Proof. We note that (iii)⇒(ii)⇒(i) are obvious so we only need to prove (i)⇒(iii). By
Proposition 3.3, ∀S ∈ S, ∃T ∈ T s.t. E(S) ' E(T )∗, so each E(S) is projective as right
C∗-module and it also embeds in C∗. Therefore, C '

⊕
S∈S

E(S)n(S) is projective as right C∗-

module (and then also as left C-comodule). It also follows that since each E(S) embeds in C∗

(it is actually a direct summand), we have an embedding C '
⊕
S∈S

E(S)n(S) ↪→
⊕
S∈S

C∗n(S).

�

Note that the above provide another proof for Proposition 3.1. In particular, it provides a
direct proof for [NTvO, Theorem 4.1]. We also note that the property coming up in the
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above proofs, that the dual of every left indecomposable injective C-comodule is the dual of
a right indecomposable injective, is proved to be equivalent to the coalgebra C being QcF
in [I1], [I2]. We prefer giving the direct argument here.

4 A general class of examples

In this section we construct the general examples of this paper. The first goal is to start
with an arbitrary coalgebra C and build a coalgebra D such that C ⊆ D and D satisfies the
right generating condition.
Let (C,∆, ε) be a coalgebra and (M,ρM ) a finite dimensional right C-comodule. Then
End(MC) - the set of comodule endomorphisms of M (equivalently, endomorphisms of M
as left C∗-module) is a finite dimensional algebra considered with the opposite composi-
tion as multiplication. Considering End(MC) as acting on M on the right, M becomes
a C∗-End(MC) bimodule. Denote (AM , δM , eM ) the finite dimensional coalgebra dual to
End(MC); then it is easy to see that M is an AM -C bicomodule, with the induced left AM -
comodule structure coming from the structure of a right End(MC)-module (this holds since
there is an equivalence of categories MEnd(MC) ' AMM since AM is finite dimensional).
Let rM : M → AM ⊗M be the left AM -comultiplication of M . We will use the following
Sweedler σ-notation:

ρM (m) = m0 ⊗m1 ∈M ⊗ C form ∈M

rM (m) = m(−1) ⊗m(0) ∈ AM ⊗M form ∈M

∆(c) = c1 ⊗ c2 ∈ C ⊗ C for c ∈ C

δM (a) = a(1) ⊗ a(2) ∈ AM ⊗AM for a ∈ AM

Then the compatibility relation between the left AM -comodule and the right C-comodule
structures of M is written in σ-notation as

(∗) m(−1) ⊗m(0)0 ⊗m(0)1 = m0(−1) ⊗m0(0) ⊗m1

We now proceed with the first step of our construction. Let R(C) be a set of representatives
for the isomorphism types of finite dimensional right C-comodules. With the above notations,
let

C ′ = (
⊕

M∈R(C)

AM )⊕ (
⊕

M∈R(C)

M)⊕ C
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and define δ : C ′ → C ′ ⊗ C ′ and e : C ′ → K by

δ(a) = δM (a) = a(1) ⊗ a(2) ∈ AM ⊗AM ⊆ C ′ ⊗ C ′ for a ∈ AM ,M ∈ R(C)

δ(m) = rM (m) + ρM (m) = m(−1) ⊗m(0) +m0 ⊗m1 ∈ AM ⊗M +M ⊗ C ⊆ C ′ ⊗ C ′

(E1) form ∈M,M ∈ R(C)

δ(c) = ∆(c) = c1 ⊗ c2 ∈ C ⊗ C ⊆ C ′ ⊗ C ′ for c ∈ C

(everything is understood as belonging to the appropriate - corresponding component of the
tensor product C ′ ⊗ C ′)

e(a) = eM (a), for a ∈ AM ,M ∈ R(C)

(E2) e(m) = 0, form ∈M,M ∈ R(C)

e(c) = ε(c), c ∈ C

It is not difficult to see that (C ′, δ, e) is a coalgebra. For example, for m ∈M , M ∈ R(C)

(δ ⊗ Id)δ(m) = (δ ⊗ Id)(m(−1) ⊗m(0) +m0 ⊗m1)

= m(−1)(1) ⊗m(−1)2 ⊗m(0) +m0(−1) ⊗m0(0) ⊗m0 +m00 ⊗m01 ⊗m1

and

(Id⊗ δ)δ(m) = (Id⊗ δ)(m(−1) ⊗m(0) +m0 ⊗m1)

= m(−1) ⊗m(0)(−1) ⊗m(0)(0) +m(−1) ⊗m(0)0 ⊗m(0)1 +m0 ⊗m11 ⊗m12

and here the first, second and third terms are equal respectively because of the coassociativity
property of M as left AM -comodule, the compatibility from (*) and the coassociativity
property of M as right C-comodule. Also, we have (e⊗ Id)δ(m) = (e⊗ Id)(m(−1) ⊗m(0) +
m0 ⊗m1) = e(m(−1))⊗m(0) + e(m0)⊗m1 = 1⊗ eM (m(−1))m(0) = 1⊗m etc.
For (M,ρM ) ∈ R(C), since C ⊆ C ′ is an inclusion of coalgebras, M has an induced right
C ′-comodule structure by ρ : M →M ⊗ C ⊆M ⊗ C ′ (the ”co-restriction of scalars”).

Proposition 4.1 (i) Let X(C) = (
⊕

M∈R(C)

AM ) ⊕ (
⊕

M∈R(C)

M). Then X(C) is a right C ′-

subcomodule of C ′ and C ⊕X(C) = C ′ as right C ′-comodules.
(ii) If M ∈ R(C) and ZM = (

⊕
N∈R(C)

AN )⊕ (
⊕

N∈R(C)\{M}
N)⊕C = AM ⊕ (

⊕
N∈R(C)\{M}

AN ⊕

N)⊕ C, then ZM is a right C ′-subcomodule of C ′ and C ′/ZM 'M as right C ′-comodules.

Proof. Using the relations defining δ, we have δ(X(C)) ⊆ X(C)⊗ C ′. Thus (i) follows; for
(ii), let p : C ′ = M ⊕ ZM → M be the projection. We have δ(ZM ) ⊆

⊕
N∈R(C)

(AN ⊗ AN ) ⊕
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⊕
N∈R(C)\{M}

(AN ⊗N +N ⊗C)⊕C ⊆ ZM ⊗C ′. Then for c′ = m+ z ∈ C ′, m ∈M , z ∈ ZM ,

we have (p⊗ IdC′)δ(z) = 0 and so

(p⊗ IdC′)δ(m+ z) = (p⊗ IdC′)(m(−1) ⊗m(0) +m0 ⊗m1)

= p(m0)⊗m1 = m0 ⊗m1

= p(m+ z)0 ⊗ p(m+ z)1 = (ρM ◦ p)(m)

so p is a morphism of right C ′-comodules. Since p = Ker (p) = ZM , (ii) follows. �

We now proceed with the last steps of our construction. Build the coalgebras C(n) inductively
by setting C(0) = C and C(n+1) = (C(n))′ for all n; let δn, εn be the comultiplication and
counit of C(n). We have C(n+1) = C(n)⊕X(C(n)) as C(n+1)-comodules by Proposition 4.1(i).
Let

C∞ =
⋃
n≥1

C(n)

as a coalgebra with δ∞, ε∞ defined as δ∞|C(n) = δn, ε∞|C(n) = εn. We also note that
δ∞(X(C(n))) = δn(X(C(n))) ⊆ X(C(n)) ⊗ C(n) ⊆ X(C(n)) ⊗ C∞ so each X(C(n)) is a right
C∞-subcomodule in C∞ and we therefore actually have

C∞ = C ⊕
⊕
n≥1

X(C(n)) = C(n) ⊕
⊕
k≥n+1

X(C(k)) (1)

as right C∞-comodules. We can now conclude our

Theorem 4.2 The coalgebra C∞ has the property that any finite dimensional right C∞-
comodule is a quotient of C∞. Consequently, C∞ satisfies the right generating condition.

Proof. If (N, ρN ) ∈ MC∞ is finite dimensional, then the coalgebra D associated to N is
finite dimensional (see [DNR, Proposition 2.5.3]; this follows since the image of ρN is finite
dimensional and then the second tensor components in N ⊗C∞ from a basis of ρN (N) span
a finite dimensional coalgebra). If d1, . . . , dk is a basis of D, then there is an n such that
d1, . . . , dk ∈ C(n) i.e. D ⊆ C(n) so ρN : N → N ⊗ D ⊆ N ⊗ C(n) ⊆ N ⊗ C∞. Thus N
has an induced right C(n)-comodule structure and so ∃ M ∈ R(C(n)) such that N ' M as
C(n)-comodules. Thus, by proposition 4.1(ii), there is an epimorphism C(n) → N → 0 of
right C(n)-comodules. Then this is also an epimorphism in MC∞ ; by equation (1) C(n) is
a quotient of C∞ (in MC∞) and consequently N must be a quotient of C∞ as right C∞-
comodules. Since any right C∞-comodule is the sum of its finite dimensional subcomodules,
the statement follows. �
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Example 4.3 Let C be a coalgebra which is not right semiperfect. Then C∞ is not right
semiperfect either, since a subcoalgebra of a semiperfect coalgebra is semiperfect (see [DNR,
Corollary 3.2.11]). Then C∞ cannot be right QcF, since right QcF coalgebras are right
semiperfect (see [DNR, Corollary 3.3.6]; see also [NT1]), so C∞ is not left projective by
Theorem 1.2. But still, C∞ is a generator for the category of right C∞-comodules.

Remark 4.4 It is also possible for a coalgebra to be right generator and not be projective
to the right; indeed, just take a coalgebra C which is right QcF but not left QcF; then C

generates MC but CC is not projective since it is not left QcF (such a coalgebra exists, e.g.
see [DNR, Example 3.3.7]).

Example 4.5 Let A be the algebra dual to the coalgebra C of [DNR, Example 3.3.7 and
Example 3.2.8]. This is left QcF and not right QcF, and C0 is not finite dimensional, and
thus C∗ is not semilocal (C∗/J ' C∗0). By [DNR, Corollary 3.3.9], C∗ is right selfinjective,
and it cannot be a right cogenerator since it is not semilocal.

Another construction

In the following we build another example of a coalgebra with the right generating condition
without being right QcF, but this will be a colocal coalgebra, that is, a coalgebra whose
coradical is a simple (even 1-dimensional) coalgebra. Thus, this will show that another
important condition in the theory of coalgebras, the condition that the coradical is finite
dimensional, is not enough to have that the right generating condition implies that the
coalgebra is right QcF.
Let K be an algebraically closed field and (C,∆, ε) be a colocal pointed K-coalgebra, so the
coradical C0 of C is C0 = Kg, with g a grouplike element: ∆(g) = g⊗ g, ε(g) = 1 (C is also
called connected in this case). Let L(C) be a set of representatives for the indecomposable
finite dimensional right C-comodules. Keeping the same notations as above, we note that
End(MC)op is a local K-algebra, since M ∈ L(C) is indecomposable. Moreover, its residue
field is canonically isomorphic to K since it is a finite dimensional division K-algebra over
the algeraicaly closed field K. Thus, AM are colocal coalgebras and there exists a unique
morphism of coalgebras σM : K → AM , with gM = σM (1) being the unique grouplike of
AM .
Let (C∼, δ, e) = (

⊕
M∈L(C)

(AM ⊕M))⊕C be the coalgebra defined by the same relations (E1)

and (E2) as C ′ above; let I be generated by the elements {g − gM |M ∈ L(C)} as a vector
space (they will even form a K-basis). I is a coideal since δ(g − gM ) = g ⊗ g − gM ⊗ gM =
g⊗(g−gM )+(g−gM )⊗gM and e(g−gM ) = 0. Let Σ∼ = (

⊕
M∈L(C)

KgM )⊕Kg, Σ = Kg ⊂ C

and Σ∨ = Σ∼/I. Let C∨ = C∼/I. With these notations we have
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Proposition 4.6 C∨ is a colocal pointed coalgebra.

Proof. Denote σ : K → C the canonical ”inclusion” morphism σ(1) = g. The dual
algebra of C∨ is (C∨)∗ = (C∼/I)∗ ' I⊥ ⊆ (C∼)∗ = C∗ × (

∏
M∈L(C)

(M∗ × A∗M )). Let

B = I⊥ which is a subalgebra of (C∼)∗ and let JM and J denote the Jacobson radicals of
A∗M and C∗ respectively. Note that B consists of all families (a; (m∗, aM )M∈L(C)) ∈ (C∼)∗

with aM (gM ) = a(g), equivalently, σM (aM ) = σ(a). If two such families add up to the
identity element 1B of B, (a; (m∗, aM )M∈L(C)) + (b; (n∗, bM )M∈L(C)) = (1; (0, 1)M∈L(C)),
then aM + bM = 1 ∈ A∗M and a + b = 1 ∈ A and so a /∈ J or b /∈ J since A is local, say
a /∈ J = Kg⊥ i.e. a(g) 6= 0. Then aM (gM ) = a(g) 6= 0 and so all aM and a are invertible.
Thus (a; (m∗, aM )M∈L(C)) is invertible with inverse (a−1;−(a−1m∗a−1

M , a−1
M )M∈L(C)). This

shows that B = I⊥ is local with Jacobson radical J × (
∏

M∈L(C)

(M∗× JM )) and therefore, by

duality, it is not difficult to see that C∨ is colocal with coradical Σ∨ respectively. �

Remark 4.7 We can easily see that we have a morphism of coalgebras C ↪→ AM⊕M⊕C →
(AM⊕M⊕C)/K ·(g−gM ) which is injective; then, it is also easy to see that C∨ is the direct
limit of the family of coalgebras {C} ∪ {(AM ⊕M ⊕ C)/K(g − gM )}M∈L(C) with the above
morphisms. In fact, the algebra A×M∗ ×A∗M dual to AM ⊕M ⊕C is the upper triangular
”matrix” algebra with obvious multiplication:(

C∗ M∗

0 A∗M

)
We note that C embeds in C∨ canonically as a coalgebra following the composition of
morphisms C ↪→ C∼ → C∼/I = C∨, since g /∈ I so C ∩ I = 0. This allows us to view
each right C-comodule M as a comodule over C∨ (by the ”corestriction” of scalars M →
M ⊗ C →M ⊗ C∼ →M ⊗ C∨). Let pM : C∼ → C∼/I →M be the projection.

Proposition 4.8 (i) pM is a morphism of right C∨-comodules.
(ii) Each M ∈ L(C) is a quotient of C∨/Σ∨.
(iii) C/Σ is a direct summand in C∨/Σ∨ as right C∨-comodules; in fact, if we denote
X∼(C) =

⊕
N∈L(C)

(AN ⊕N) and X∨(C) = (X∼(C) + I)/I we have an isomorphism of right

C∨-comodules:
C∨

Σ∨
' C

Σ
⊕X∨(C)

Proof. (i) By Proposition 4.1 pM it is a morphism of right C∼-comodules, and then it is
also a morphism of C∨-comodules via corestriction of scalars. Since the projection C∼ →
C∼/I = C∨ is a morphism of coalgebras, it is also a morphism of right C∨-comodules, and
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since it also factors through I, we get that pM is a morphism of C∨-comodules.
(ii) follows since pM is a morphism of right C∨-comodules which cancels on Σ∨.
(iii) Note that the coradical Σ of C is identified with Σ∨ by the inclusion C ↪→ C∨. Also
both C and X∼(C) are right C∼-subcomodules of C∼ (just as above for X(C) in C ′), and
then C and X∨(C) are also C∨-subcomodules in C∨. Since we also have an isomorphism of
vector spaces C∨

Σ∨ '
C∼

Σ∼ =
⊕

M∈L(C)

( AM
KgM

⊕M)⊕ C
Kg = C

Σ ⊕X
∨(C) = C

Σ∨ ⊕X
∨(C), the proof

is finished. �

To end the second construction, start with an arbitrary pointed colocal coalgebra over an
algebraically closed field K. Denote C [0] = C and C [n+1] = (C [n])∨ for all n ≥ 0. Put
C∨∞ =

⋃
C [n]. Then we have

Theorem 4.9 The coalgebra C∨∞ is colocal and has the property that any indecomposable
finite dimensional right C∨∞-comodule is a quotient of C∨∞. Consequently, C∨∞ has the right
generating condition.

Proof. Since all the coalgebras C [n] are colocal, say with common coradical Σ, so will be
C∨∞. Let (M,ρ) be a finite dimensional indecomposable C∨∞-comodule. Then, as before,
ρ(M) ⊆ M ⊗ C [n] for some n, since dimM < ∞. So M has an induced structure of a right
C [n]-comodule, and by Proposition 4.8(ii), M is a quotient of C [n+1]/Σ. But Proposition 4.8
together with the construction of C∨∞, ensure that C∨∞

Σ = C[n+1]

Σ ⊕
⊕

k≥n+1

X∨(C [k]). Moreover,

since each X∨(C [k]) is a right C [k]-subcomodule in C [k]/Σ which is in turn a C∨∞-subcomodule
of C∨∞/Σ, it follows that the X∨(C [k]) are actually C∨∞-subcomodules in C∨∞/Σ. Therefore,
C [n+1]/Σ splits off in C∨∞, and so C∨∞ has M as a quotient. The final conclusion follows since
any finite dimensional comodule is a coproduct of finite dimensional indecomposable ones.
�

Example 4.10 Let C be a connected (i.e. pointed colocal) coalgebra which is not right
semiperfect. Then C∨∞ is not right semiperfect but has the right generating condition. Then,
as in example 4.3, C∨∞ is not right QcF. More specifically, we can take C = C[[X]]o, the
divided power coalgebra over the field of complex numbers, which has a basis cn, n ≥ 0 with
comultiplication ∆(cn) =

∑
i+j=n

ci ⊗ cj and counit ε(cn) = δ0,n - the Kroneker symbol.

Remark 4.11 We could have made C∨∞ to also have all its finite dimensional comodules
as quotients. Indeed, for this, it is enough that at each step of the construction - in passing
from C to C∨ - to consider the direct sum constructing C∨ to contain countably many copies
of each right C-comodule M , that is, C∨ = [(

⊕
N

⊕
M∈L(C)

(AM ⊕M))⊕ C]/I. Then any finite

14



dimensional comodule will be decomposed in a direct sum of finitely many indecomposable
comodules, which we will be able to generate as a quotient of only one C [n]/Σ for some n,
since enough of these indecomposable components can be found in C [n]/Σ (in fact, it is easy
to see that X∨(C [n])/Σ =

⊕
N

⊕
M∈L(C[n−1])

AM⊕M has as quotient any finite or countable sum

of M ∈ L(C [n−1])).
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