Metadata of the article that will be visualized in OnlineFirst

The Splitting Problem for Coalgebras: A Direct Approach

Miodrag-Cristian Iovanov

Accepted: 20 August 2006
© Springer Science + Business Media B.V. 2006

Abstract

In this note we give a new and elementary proof of a result of Năstăsescu 1 and Torrecillas (J. Algebra, 281:144-149, 2004) stating that a coalgebra C is finite 2 dimensional if and only if the rational part of any right module M over the dual 3 algebra C^{*} is a direct summand in M (the splitting problem for coalgebras).4

Key words torsion theory • splitting • coalgebra 5
Mathematics Subject Classifications (2000) 16W30•16S $90 \cdot 16 \mathrm{Lxx} \cdot 16 \mathrm{Nxx} \cdot 18 \mathrm{E} 40$

Introduction

Let \mathcal{C} be an Abelian category and \mathcal{A} a closed subcategory of \mathcal{C}. Then we can define 8 the torsion functor $\mathcal{I}: \mathcal{C} \rightarrow \mathcal{A}$ which takes every $X \in \mathcal{C}$ to the subobject $\mathcal{T}(X)$ of 9 X that equals the sum of all subobjects of X that belong to \mathcal{A}; we say that $\mathcal{T}(X)$ is 10 the \mathcal{A}-torsion part of X. Then the following general question naturally arises: when 11 is the \mathcal{A}-torsion part $T(X)$ a direct summand in X for every object X in \mathcal{C} (or in a 12 subclass of \mathcal{C}). This is called the splitting problem of \mathcal{C} with respect to \mathcal{A}. In the case 13 of the category of modules $\mathcal{C}={ }_{R} \mathcal{M}$ over a commutative ring R one can consider the 14 splitting problem with respect to the subcategory of all torsion modules; Kaplansky 15 proves that the torsion part of every finitely generated module over a commutative 16 domain R is a direct summand in that module if and only if R is Prüfer (see [5] and 17 [6]) and Rotman [10] proves that if this happens for every R-module then R is a field. 18

[^0]Other general results are proved by Teply (see [11-13]). A canonical subcategory of any category \mathcal{C} is the Dickson subcategory, which is defined to be the smallest localizing subcategory of \mathcal{C} that contains all simple subobjects of \mathcal{C}. This category coincides with the class of all semiartinian objects of \mathcal{C}. Then the splitting problem with respect to the Dickson subcategory of \mathbb{C} is a general question that makes sense for any category \mathcal{C}. One can ask whether the splitting with respect to the Dickson subcategory implies that \mathcal{C} actually coincides to this subcategory. In the case of the category of modules over an arbitrary ring R this is a classical open problem.

Let C be a coalgebra over a field k. The category of left (resp. right) C-comodules is a full subcategory of the category of right (resp. left) modules over the dual algebra C^{*} Năstăsescu and Torrecillas [8] have shown that the rational part of every right C^{*}-module M is a direct summand in M if and only if C is finite dimensional. In this case, the category of rational right C^{*}-modules is equal to the category of right C^{*}-modules, and also to the Dickson subcategory of $\mathcal{M}_{C^{*}}$.

The aim of this note is to give a new and elementary proof of this result, based on general results on modules and comodules, and an old result of Levitzki, stating that a nil ideal in a right noetherian ring is nilpotent. The proof of Năstăsescu and Torrecillas involve several techniques of general category theory (such as localization), some facts on linearly compact modules and is based on general nontrivial and profound results of Teply regarding the general splitting problem (see [11-13]). We first prove that if C has the splitting property, that is, the rational part of every right C^{*}-module is a direct summand, then C has only a finite number of isomorphism types of simple (left or right) comodules. We then observe that the injective envelope of every right comodule contains only finite dimensional proper subcomodules. This immediately implies that C^{*} is right noetherian. Then, using a quite common old idea from Abelian group theory we use the hypothesis for a direct product of modules to obtain that every element of J, the Jacobson radical of C^{*}, is nilpotent. Using a well known result in noncommutative algebra due to Levitzki, we conclude that J is nilpotent wich combined with the above mentioned key observation immediately yields that C is finite dimensional.

1 The Splitting Problem

We first fix some notations and conventions. Denote by ε the counit of the coalgebra C and by Δ its comultiplication. We use the Sweedler notation convention $\Delta(c)=$ $c_{1} \otimes c_{2}$ for $c \in C$ and the sum sign is omitted. For any $f \in C^{*}$, denote by $\bar{f}: C \rightarrow C$ the right comodule morphism $\bar{f}(x)=f\left(x_{1}\right) x_{2}$; then \bar{f} is a morphism of right C comodules. As a key technique, we make use of the algebra isomorphism $C^{*} \simeq$ $\operatorname{Hom}\left(C^{C}, C^{C}\right)$ given by $f \mapsto \bar{f}$ (with inverse $\alpha \mapsto \varepsilon \circ \alpha$), where $\operatorname{Hom}\left(C^{C}, C^{C}\right)$ is a ring with multiplication given by opposite composition. Also for a right C-comodule M we have an isomorphism $\operatorname{Hom}^{C}(M, C) \simeq M^{*}, f \mapsto \varepsilon \circ f$.

For a coalgebra C denote by C_{0} the coradical of C. In what follows, we will assume that the coalgebra C has the splitting property for the right C^{*}-modules, that is, the rational part of every right C^{*} module is a direct summand in that module.

Lemma 1.1 If T is a simple right comodule and $E(T)$ is the an injective envelope of T, then $E(T)$ contains only finite dimensional proper subcomodules.
Springer

Appl Categor Struct

Proof Let $K \subsetneq E(T)$ be an infinite dimensional subcomodule. Then there is a 63 subcomodule $K \subsetneq F \subset E(T)$ such that F / K is finite dimensional. We have an exact 64 sequence of right C^{*}-modules:

$$
0 \rightarrow(F / K)^{*} \rightarrow F^{*} \rightarrow K^{*} \rightarrow 0
$$

As F / K is a finite dimensional rational left C^{*} module, $(F / K)^{*}$ is a rational right C^{*} - 66 module; thus $A=\operatorname{Rat} F^{*} \neq 0$. Denote by $M=T^{\perp}=\left\{u \in F^{*}|u|_{T}=0\right\} \subset F^{*}$. We 67 first show that F^{*} is generated by any element $u \in F^{*} \backslash M$. Indeed for $u \in F^{*} \backslash M$; 68 define $v \in \operatorname{Hom}^{C}(F, C)$ by $v(x)=u\left(x_{1}\right) x_{2}, \forall x \in F$. Then $\left.v\right|_{T} \neq 0$ as $u=\varepsilon \circ v$ and $u \notin 69$ M. We have that v is injective, because T is an essential submodule of $F \subseteq E(T) 70$ and $T \nsubseteq \operatorname{Ker}(v)$. As C is an injective right C comodule and v is injective, we have a 71 commutative diagram:

where the vertical lines are isomorphisms. We see that $\operatorname{Hom}^{C}(F, C)$ is generated by 73 v as $\operatorname{Hom}^{C}(C, C) \simeq C^{*}$ is generated by 1_{C}, following that F^{*} is generated by $v^{*}(\varepsilon)=74$ $\varepsilon \circ v=u$. Now if $F^{*}=A \oplus B$ as right C^{*}-modules, we see that A is finitely generated 75 as F^{*} is, so it must be finite dimensional because it is a rational right C^{*}-module. Thus 76 $A \neq F^{*}$ by the initial assumption. But now note that $A \subseteq M$, as otherwise if there 77 is $a \in A \backslash M$ and as a generates F^{*} we would have $A=F^{*}$. Also $B \neq F^{*}$ because 78 $A \neq 0$ so by the same argument $B \subseteq M$, and therefore $F^{*}=A+B \subseteq M$ which is a 79 contradiction $\left(\left.\varepsilon\right|_{F} \notin M\right)$.

Let $\left(S_{i}\right)_{i \in I}$ be the set of representatives for the simple left comodules. We may 81 assume that each S_{i} is a subcomodule of C (see for example [3, 2.4.14]). Let 82 $C_{i}=\sum_{S \subseteq C, S \simeq S_{i}} S$. Note that C_{i} is a left subcomodule as well as a right subcomodule 83 (thus a subcoalgebra) of C. Then $C_{0}=\sum_{i \in I} C_{i}$ because the S_{i} 's form a complete set 84 of representatives for the simple left C-comodules and C_{0} is essential in C (see, 85 for example, [3, 2.4.12]). Also the sum is direct because the S_{i} 's are pairwise non- 86 isomorphic. Let E_{i} be an injective envelope of the right comodule C_{i}; then $C=\bigoplus_{i \in I} E_{i} 87$ (see [3, 2.4.16]). We can identify C^{*} with the direct product $\prod_{i \in I} E_{i}^{*}$ where each $E_{i}^{*} 88$ is identified with the set of all elements of C^{*} that are zero on all E_{j} 's with $j \neq i$. 89 Note that for $c^{*}=\left(\left(c_{i}^{*}\right)_{i \in I}\right) \in C^{*}$ and $c_{j} \in C_{j}$ we have $c_{j 1} \otimes c_{j 2} \in C_{j} \otimes C_{j}$ and then 90 $c_{j} \cdot c^{*}=c^{*}\left(c_{j 1}\right) c_{j 2}=\sum_{i \in I} c_{i}^{*}\left(c_{j 1}\right) c_{j 2}=c_{j}^{*}\left(c_{j 1}\right) c_{j 2}=c_{j} \cdot c_{j}^{*}$.

Recall that a coalgebra C is almost connected if C_{0} is finite dimensional. As the 92 right comodule C is quasifinite, this is equivalent to the fact that there is only a finite 93 number of types of simple right comodules.

Proposition 1.2 Let C be a coalgebra such that the rational part of every right 95 C^{*}-module splits off. Then C is almost connected.

Corollary $1.3 C^{*}$ is a right noetherian ring.

108 Proof Let T be a right simple comodule, $E(T) \subseteq C$ an injective envelope of T and

117 is finite by Proposition 1.2. Therefore, if for each $i \in F E\left(T_{i}\right)$ is an injective envelope
118 of T_{i} contained in C, then $C^{*}=\bigoplus E\left(T_{i}\right)^{*}$ as right C^{*}-modules so $C_{C^{*}}^{*}$ is noetherian 119 as each $E\left(T_{i}\right)^{*}$ is.

Put $R=C^{*}$. Note that $J=C_{0}^{\perp}=\left\{f|f|_{C_{0}}=0\right\}$ is the Jacobson radical of R and $\bigcap J^{n}=0$. Also if M is a finite dimensional right R-module, we have $M \cdot J^{n}=0$ for $n \in \mathbb{N}$
some n, because the descending chain of submodules $\left(M J^{n}\right)_{n}$ must be stationary and therefore $M J^{n}=M J^{n+1}=M J^{n} \cdot J$ implies $M J^{n}=0$ by Nakayama lemma.

Proposition 1.4 Any element $f \in J$ is nilpotent.
Proof As C is a finite direct sum of injective envelopes of simple right comodules, it is enough to show that $\left.f^{n}\right|_{E(T)}=0$ for some n for each simple right subcomodule of C and injective envelope $E(T) \subseteq C$. Assume the contrary for some fixed data $T, E(T)$. Let X be a right subcomodule of C such that $C=E(T) \oplus X$ as right C comodules. As $C^{*} \simeq E(T)^{*} \oplus X^{*}$, we identify the any element f of $E(T)^{*}$ with the element of C^{*} equal to f on $E(T)$ and 0 on X. Define

$$
M=\prod_{n \geq 1} \frac{E(T)^{*}}{K_{n}^{\perp}}
$$

where $K_{n}=\operatorname{Ker} \overline{f^{n}} \cap E(T) \neq E(T)$ (because otherwise $f^{n}=0$) and $K_{n}^{\perp}=\{g \in$ $\left.E(T)^{*}|g|_{K_{n}}=0\right\}$. For simplicity, if $f \in E(T)^{*}$ we convey to write f for the element
$f+K_{n}^{\perp}$, the image of f in $E(T)^{*} / K_{n}^{\perp}$. Note that $K_{n} \subseteq K_{n+1}$. Put $\lambda=\left(f^{[n / 2]}\right)_{n \geq 1} \in M 133$ where $[x]$ is the smallest integer greater or equal to x. We have:
$\lambda=\left(f, f^{2}, f^{2}, \ldots, f^{n}, f^{n}, 0, \ldots\right)+\left(0,0, \ldots, 0, f^{n+1}, f^{n+1}, f^{n+2}, \ldots\right)=r_{n}+\mu_{n} \cdot f^{n}$
with $r_{n}=\left(f, f^{2}, f^{2}, \ldots, f^{n}, f^{n}, 0, \ldots, 0 \ldots\right)$ and $\mu_{n}=\left(0,0, \ldots, 0, f, f, f^{2}, \ldots\right)$ (the 135 morphisms are always thought to be 0 on X and they are considered modulo 136 K_{n}^{\perp}). But then $r_{n} \in \prod_{p \leq n} E(T)^{*} / K_{p}^{\perp} \times 0$ which is a rational left C comodule because 137 $E(T)^{*} / K_{p}^{\perp} \simeq K_{p}^{*}$ and K_{p} is finite dimensional by Lemma 1.1. Write $M=\operatorname{Rat}(M) \oplus 138$ Λ as right R modules and $\mu_{n}=q_{n}+\alpha_{n}$ with $q_{n} \in \operatorname{Rat}(M)$ and $\alpha_{n} \in \Lambda$. Then if $\lambda=139$ $r+\mu$ with $r \in \operatorname{Rat}(M)$ and $\mu \in \Lambda$ we have $r+\mu=r_{n}+\mu_{n} \cdot f^{n}=\left(r_{n}+q_{n} \cdot f^{n}\right)+140$ $\alpha_{n} \cdot f^{n}$ which shows that $\mu=\mu_{n} \cdot f^{n}$. Then if $\mu=\left(l_{p}\right)_{p \geq 1}$ and $\mu_{n}=\left(\mu_{n, p}\right)_{p \geq 1}$ we get 141 that $l_{p}=\mu_{n, p} \cdot f^{n} \in\left(\frac{E(T)^{*}}{K_{p}^{\frac{1}{2}}}\right) \cdot J^{n}$ for all p. By the previous remark, $\left(\frac{E(T)^{*}}{K_{p}^{\frac{1}{D}}}\right) \cdot J^{n}=0$ for 142 some n (which depends on p) and this shows that $l_{p}=0$ for any p and thus $\mu=0.143$ Therefore $\lambda \in \operatorname{Rat} M$, so $\lambda \cdot R$ is finite dimensional and again we get $\lambda \cdot R J^{n}=0$ for some n. Hence we get $f^{[p / 2]+n}=0$ in $E(T)^{*} / K_{p}^{\perp}$ so $\left.f^{[p / 2]+n}\right|_{K_{p}}=0, \forall p$, equivalently 145 $\bar{f}^{[p / 2]+n}=0$ on K_{p} (because K_{p} is a right comodule). For $p=2 n+1$ we therefore obtain $K_{2 n+1} \subseteq K_{2 n}$ so $K_{m}=K_{m+1}$ for $m=2 n$. Then if $I=\operatorname{Im}\left(\bar{f}^{m}\right), I \neq 0$ by the 147 assumption $\left(K_{m} \neq E(T)\right)$ and there is a simple subcomodule T^{\prime} of I; then $\left.\bar{f}\right|_{T^{\prime}}=0148$ (because $f \in J=C_{0}^{\perp}$). Take $0 \neq y \in T^{\prime}$; then $y=\bar{f}^{m}(x), x \in E(T)$ and $0=\bar{f}(y)=149$ $\bar{f}^{m+1}(x)$ showing that $x \in K_{m+1}=K_{m}$ and therefore $y=\bar{f}^{m}(x)=0$, a contradiction. 150

Theorem 1.5 If the rational part of every right C^{*}-module splits off, then C is finite 152 dimensional.

Proof For a right C-comodule M denote by $l_{n}(M)$ the n-th term in the Loewy series of the comodule M. We first show that $C_{n}=l_{n}(C)$ is finite dimensional for all n. We proceed by induction on n; for $n=0$ this is Proposition 1.2. Assume the 155 statement for $0,1, \ldots, n-1$. Write $C_{0}=\bigoplus_{i \in F} T_{i}$ with T_{i} simple right C-comodules 157 and $C=\bigoplus_{i \in F} E\left(T_{i}\right)$ with $E\left(T_{i}\right)$ injective envelopes of the T_{i} 's. We know that the 158 set F is finite by Proposition 1.2. We have $C_{n}=\bigoplus_{i \in F} l_{n}\left(E\left(T_{i}\right)\right)$ so it is enough to 159 show that $l_{n}\left(E\left(T_{i}\right)\right)$ is finite dimensional for all $i \in F$. If otherwise, we would have 160 $l_{n}\left(E\left(T_{i}\right)\right)=E\left(T_{i}\right)$ by Proposition 1.1. But then one can write $E\left(T_{i}\right) / l_{n-1}\left(E\left(T_{i}\right)\right)=161$ $l_{n}\left(E\left(T_{i}\right)\right) / l_{n-1}\left(E\left(T_{i}\right)\right)=T \oplus K$ with T simple finite dimensional, so K must be 162 infinite dimensional because $l_{n-1}\left(E\left(T_{i}\right)\right)$ is finite dimensional by the induction hy- 163 pothesis. In this way we can find an infinite dimensional proper subcomodule of $E\left(T_{i}\right) 164$ corresponding to K which is impossible again by Proposition 1.1.

By Corollary $1.3 C^{*}$ is right noetherian and by Proposition 1.4 every element of $J 166$ is nilpotent. Therefore by Levitzki's Theorem (see for example [4, p. 199, Theorem 167 1] or [9, Cor. II.4.1.5]) we have that J is nilpotent, so $J^{n}=0$ for some n. But $C_{n-1}=168$ $\left(J^{n}\right)^{\perp}=\left\{x \in C \mid h(x)=0 \forall h \in J^{n}\right\}$ by [3, Cor. 3.1.10], so $C_{n-1}=C$ and therefore $C 169$ is finite dimensional.

Acknowledgements The author wishes to thank his Ph.D. adviser C. Năstăsescu for very useful remarks on the subject as well as for his continuous support throughout the past years. He also wishes to thank the referee for his/her suggestions.

References

1. Anderson, D., Fuller, K.: Rings and categories of modules. In: Graduate Texts in Mathematics. Springer, Berlin Heidelberg New York (1974)
2. Doi, Y.: Homological coalgebra. J. Math. Soc. Japan 33, 31-50 (1981)
3. Dăscălescu, S., Năstăsescu, C., Raianu, Ş.: Hopf algebras: an introduction. In: Pure and Applied Mathematics, vol. 235. Marcel Dekker, New York (2001)
4. Jacobson, N.: Structure of rings. In: Colloquium Publ. 37. American Mathematical Society, Providence, 1956 (1964)
5. Kaplansky, I.: Modules over Dedekind rings and valuation rings. Trans. Amer. Math. Soc. 72, 327-340 (1952)
6. Kaplansky, I.: A characterization of Prüfer domains. J. Indian Math. Soc. 24, 279-281 (1960)
7. Kaplansky, I.: Infinite Abelian Groups. University Michigan Press, Ann Arbor, MI (1954)
8. Năstăsescu, C., Torrecillas, B.: The splitting problem for coalgebras. J. Algebra 281, 144-149 (2004)
9. Năstăsescu, C.: Rings, Modules, Categories. Romanian Academy Publishing Press, Bucharest (1975)
10. Rotman, J.: A characterization of fields among integral domains. An. Acad. Brasil. Cienc. 32, 193-194 (1960)
11. Teply, M.L.: The torsion submodule of a cyclic module splits off. Canad. J. Math. 24, 450-464 (1972)
12. Teply, M.L.: A History of the Progress on the Singular Splitting Problem. Departamento de Álgebra y Fundamentos, Universidad de Murcia, Murcia, Spain (1984)
13. Teply, M.L.: Generalizations of the simple torsion class and the splitting properties. Canad. J. Math. 27, 1056-1074 (1975)

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

Q1. Please provide complete history dates.
Q2. Please provide citations for References [1, 2, 7].

[^0]: Research supported by a CNCSIS BD-type grant, and by the bilateral project BWS04/04 "New Techniques in Hopf Algebra Theory and Graded Ring Theory" of the Flemish and Romanian governments.

