
AUTHOR'S PROOF

Metadata of the article that will be visualized in OnlineFirst 
  

1 Article Title The Splitting Problem for Coalgebras: A Direct Approach 

2 Journal Name Applied Categorical Structures 

3 

Corresponding 

Author 

Family Name Iovanov 

4 Particle 

5 Given Name Miodrag-Cristian 

6 Suffix 

7 Organization University of Bucharest 

8 Division Faculty of Mathematics 

9 Address Str. Academiei 14, Bucharest RO-010014, Romania 

10 e-mail yovanov@walla.com 

11 

Schedule 

Received   

12 Revised   

13 Accepted 20 August 2006 

14 Abstract In this note we give a new and elementary proof of a result of Năstăsescu and 
Torrecillas (J. Algebra, 281:144–149, 2004) stating that a coalgebra C is finite 
dimensional if and only if the rational part of any right module M over the dual 
algebra is a direct summand in M (the splitting problem for coalgebras). 

15 Keywords 
separated by ' - ' 

torsion theory - splitting - coalgebra - 16W30 - 16S90 - 16Lxx - 16Nxx - 18E40 

16 Foot note 
information 

Research supported by a CNCSIS BD-type grant, and by the bilateral project 
BWS04/04 “New Techniques in Hopf Algebra Theory and Graded Ring Theory” 
of the Flemish and Romanian governments. 

Page 1 of 1Testsite

2006.Nov.05file://D:\programs\metadata\temp\ACS69050.htm



AUTHOR'S PROOF

UNCORRECTED
PROOF

JrnlID 10485_ArtID 9050_Proof# 1 - 04/11/06

Appl Categor Struct
DOI 10.1007/s10485-006-9050-7

The Splitting Problem for Coalgebras: A Direct
Approach

Miodrag-Cristian Iovanov

Accepted: 20 August 2006 Q1
© Springer Science + Business Media B.V. 2006

Abstract In this note we give a new and elementary proof of a result of Năstăsescu 1
and Torrecillas (J. Algebra, 281:144–149, 2004) stating that a coalgebra C is finite 2
dimensional if and only if the rational part of any right module M over the dual 3
algebra C∗ is a direct summand in M (the splitting problem for coalgebras). 4

Key words torsion theory · splitting · coalgebra 5

Mathematics Subject Classifications (2000) 16W30 · 16S90 · 16Lxx · 16Nxx · 18E40 6

Introduction 7

Let C be an Abelian category and A a closed subcategory of C. Then we can define 8
the torsion functor T : C → A which takes every X ∈ C to the subobject T (X) of 9
X that equals the sum of all subobjects of X that belong to A; we say that T (X) is 10
the A-torsion part of X. Then the following general question naturally arises: when 11
is the A-torsion part T(X) a direct summand in X for every object X in C (or in a 12
subclass of C). This is called the splitting problem of C with respect to A. In the case 13
of the category of modules C = RM over a commutative ring R one can consider the 14
splitting problem with respect to the subcategory of all torsion modules; Kaplansky 15
proves that the torsion part of every finitely generated module over a commutative 16
domain R is a direct summand in that module if and only if R is Prüfer (see [5] and 17
[6]) and Rotman [10] proves that if this happens for every R-module then R is a field. 18
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Other general results are proved by Teply (see [11–13]). A canonical subcategory19
of any category C is the Dickson subcategory, which is defined to be the smallest20
localizing subcategory of C that contains all simple subobjects of C. This category21
coincides with the class of all semiartinian objects of C. Then the splitting problem22
with respect to the Dickson subcategory of C is a general question that makes sense23
for any category C. One can ask whether the splitting with respect to the Dickson24
subcategory implies that C actually coincides to this subcategory. In the case of the25
category of modules over an arbitrary ring R this is a classical open problem.26

Let C be a coalgebra over a field k. The category of left (resp. right) C-comodules27
is a full subcategory of the category of right (resp. left) modules over the dual algebra28
C∗ Năstăsescu and Torrecillas [8] have shown that the rational part of every right29
C∗-module M is a direct summand in M if and only if C is finite dimensional. In30
this case, the category of rational right C∗-modules is equal to the category of right31
C∗-modules, and also to the Dickson subcategory of MC∗ .32

The aim of this note is to give a new and elementary proof of this result, based33
on general results on modules and comodules, and an old result of Levitzki, stating34
that a nil ideal in a right noetherian ring is nilpotent. The proof of Năstăsescu and35
Torrecillas involve several techniques of general category theory (such as localiza-36
tion), some facts on linearly compact modules and is based on general nontrivial and37
profound results of Teply regarding the general splitting problem (see [11–13]). We38
first prove that if C has the splitting property, that is, the rational part of every right39
C∗-module is a direct summand, then C has only a finite number of isomorphism40
types of simple (left or right) comodules. We then observe that the injective envelope41
of every right comodule contains only finite dimensional proper subcomodules. This42
immediately implies that C∗ is right noetherian. Then, using a quite common old idea43
from Abelian group theory we use the hypothesis for a direct product of modules44
to obtain that every element of J, the Jacobson radical of C∗, is nilpotent. Using a45
well known result in noncommutative algebra due to Levitzki, we conclude that J46
is nilpotent wich combined with the above mentioned key observation immediately47
yields that C is finite dimensional.48

1 The Splitting Problem49

We first fix some notations and conventions. Denote by ε the counit of the coalgebra50
C and by � its comultiplication. We use the Sweedler notation convention �(c) =51
c1 ⊗ c2 for c ∈ C and the sum sign is omitted. For any f ∈ C∗, denote by f : C → C52
the right comodule morphism f (x) = f (x1)x2; then f is a morphism of right C53
comodules. As a key technique, we make use of the algebra isomorphism C∗ �54
Hom(CC, CC) given by f �→ f (with inverse α �→ ε ◦ α), where Hom(CC, CC) is a55
ring with multiplication given by opposite composition. Also for a right C-comodule56
M we have an isomorphism HomC(M, C) � M∗, f �→ ε ◦ f .57

For a coalgebra C denote by C0 the coradical of C. In what follows, we will assume58
that the coalgebra C has the splitting property for the right C∗-modules, that is, the59
rational part of every right C∗ module is a direct summand in that module.60

Lemma 1.1 If T is a simple right comodule and E(T ) is the an injective envelope of61
T, then E(T ) contains only finite dimensional proper subcomodules.62
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Proof Let K � E(T ) be an infinite dimensional subcomodule. Then there is a 63
subcomodule K � F ⊂ E(T ) such that F/K is finite dimensional. We have an exact 64
sequence of right C∗-modules: 65

0 → (F/K)∗ → F ∗ → K∗ → 0

As F/K is a finite dimensional rational left C∗ module, (F/K)∗ is a rational right C∗- 66
module; thus A = RatF ∗ 	= 0. Denote by M = T⊥ = {u ∈ F ∗ | u|T = 0} ⊂ F ∗. We 67
first show that F ∗ is generated by any element u ∈ F ∗ \ M. Indeed for u ∈ F ∗ \ M; 68
define v ∈ HomC(F, C) by v(x) = u(x1)x2, ∀x ∈ F. Then v|T 	= 0 as u = ε ◦ v and u /∈ 69
M. We have that v is injective, because T is an essential submodule of F ⊆ E(T ) 70
and T � Ker(v). As C is an injective right C comodule and v is injective, we have a 71
commutative diagram: 72

C∗

�

v∗
�� F ∗

�

�� 0

HomC(C, C)

HomC(v,C )
�� HomC(F, C) �� 0

where the vertical lines are isomorphisms. We see that HomC(F, C) is generated by 73
v as HomC(C, C) � C∗ is generated by 1C, following that F ∗ is generated by v∗(ε) = 74
ε ◦ v = u. Now if F ∗ = A ⊕ B as right C∗-modules, we see that A is finitely generated 75
as F ∗ is, so it must be finite dimensional because it is a rational right C∗-module. Thus 76
A 	= F ∗ by the initial assumption. But now note that A ⊆ M, as otherwise if there 77
is a ∈ A \ M and as a generates F ∗ we would have A = F ∗. Also B 	= F ∗ because 78
A 	= 0 so by the same argument B ⊆ M, and therefore F ∗ = A + B ⊆ M which is a 79
contradiction (ε|F /∈ M). �� 80

Let (Si)i∈I be the set of representatives for the simple left comodules. We may 81
assume that each Si is a subcomodule of C (see for example [3, 2.4.14]). Let 82
Ci = ∑

S⊆C,S�Si

S. Note that Ci is a left subcomodule as well as a right subcomodule 83

(thus a subcoalgebra) of C. Then C0 = ∑

i∈I
Ci because the Si’s form a complete set 84

of representatives for the simple left C-comodules and C0 is essential in C (see, 85
for example, [3, 2.4.12]). Also the sum is direct because the Si’s are pairwise non- 86
isomorphic. Let Ei be an injective envelope of the right comodule Ci; then C = ⊕

i∈I
Ei 87

(see [3, 2.4.16]). We can identify C∗ with the direct product
∏

i∈I
E∗

i where each E∗
i 88

is identified with the set of all elements of C∗ that are zero on all Ej’s with j 	= i. 89
Note that for c∗ = ((c∗

i )i∈I) ∈ C∗ and c j ∈ C j we have cj1 ⊗ cj2 ∈ Cj ⊗ Cj and then 90
cj · c∗ = c∗(cj1)cj2 = ∑

i∈I
c∗

i (cj1)cj2 = c∗
j (cj1)cj2 = cj · c∗

j . 91

Recall that a coalgebra C is almost connected if C0 is finite dimensional. As the 92
right comodule C is quasifinite, this is equivalent to the fact that there is only a finite 93
number of types of simple right comodules. 94

Proposition 1.2 Let C be a coalgebra such that the rational part of every right 95
C∗-module splits off. Then C is almost connected. 96
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Proof Consider M = ∏

i∈I
Si and take x = (xi)i∈I ∈ M, such that xi 	= 0, ∀i ∈ I. If y =97

(yi)i∈I ∈ M then for each i we have Si = xi · C∗ as xi 	= 0 and Si is simple, so there98
is c∗

i ∈ C∗ such that xi · c∗
i = yi. Because xi ∈ Ci, by the previous considerations we99

may assume that c∗
i ∈ E∗

i (that is, it equals zero on all the components of the direct100
sum decomposition of C except on Ei) and then there is c∗ ∈ C∗ with c∗|Ei = c∗

i |Ei101
(c∗ = (c∗

i )i∈I). Then one can easily see that xi · c∗ = xi · c∗
i = yi, thus we may extend102

this to x · c∗ = y showing that actually M = x · C∗. We have that Rat(M) is a direct103
summand in M so it must be finitely generated because M is, so Rat(M) must104
be finite dimensional. But

⊕

i∈I
Si ⊆ Rat(

∏

i∈I
Si), and this shows that I must be finite,105

equivalently, C is almost connected. ��106

Corollary 1.3 C∗ is a right noetherian ring.107

Proof Let T be a right simple comodule, E(T ) ⊆ C an injective envelope of T and108
C = E(T ) ⊕ X as right C comodules. If 0 	= I is a right C∗-submodule of E(T )∗,109
then for 0 	= f ∈ I put K = Ker f . We have K⊥ = {g ∈ E(T )∗ | g|K = 0} ⊇ f · C∗, as110
f ∈ K⊥. Conversely, if g is 0 on K, then K ⊆ Kerg as K is a right C subcomodule of111
E(T ) and therefore it factors through f , that is, ∃ α ∈ Hom(CC, CC) such that g =112
α f = h ◦ f = f h for h = ε ◦ α, so g = f · h ∈ f · C∗. This shows that K⊥ ⊆ f · C∗,113
so K⊥ = f · C∗. As K is finite dimensional by Lemma 1.1, K⊥ has finite codimension114
in E(T )∗, showing that I has finite codimension (I ⊇ f · C∗ = K⊥), which obviously115
shows that E(T )∗ is noetherian. If C0 = ⊕

i∈F
Ti with Ti simple right comodules then F116

is finite by Proposition 1.2. Therefore, if for each i ∈ F E(Ti) is an injective envelope117
of Ti contained in C, then C∗ = ⊕

i∈F
E(Ti)

∗ as right C∗-modules so C∗
C∗ is noetherian118

as each E(Ti)
∗ is. ��119

Put R = C∗. Note that J = C⊥
0 = { f | f |C0 = 0} is the Jacobson radical of R and120 ⋂

n∈N

Jn = 0. Also if M is a finite dimensional right R-module, we have M · Jn = 0 for121

some n, because the descending chain of submodules (MJn)n must be stationary and122
therefore MJn = MJn+1 = MJn · J implies MJn = 0 by Nakayama lemma.123

Proposition 1.4 Any element f ∈ J is nilpotent.124

Proof As C is a finite direct sum of injective envelopes of simple right comodules, it125
is enough to show that f n|E(T ) = 0 for some n for each simple right subcomodule of C126
and injective envelope E(T ) ⊆ C. Assume the contrary for some fixed data T, E(T ).127
Let X be a right subcomodule of C such that C = E(T ) ⊕ X as right C comodules.128
As C∗ � E(T )∗ ⊕ X∗, we identify the any element f of E(T )∗ with the element of129
C∗ equal to f on E(T ) and 0 on X. Define130

M =
∏

n≥1

E(T )∗

K⊥
n

where Kn = Ker f n ∩ E(T ) 	= E(T ) (because otherwise f n = 0) and K⊥
n = {g ∈131

E(T )∗ | g|Kn = 0}. For simplicity, if f ∈ E(T )∗ we convey to write f for the element132
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f + K⊥
n , the image of f in E(T )∗/K⊥

n . Note that Kn ⊆ Kn+1. Put λ = ( f [n/2])n≥1 ∈ M 133
where [x] is the smallest integer greater or equal to x. We have: 134

λ=( f, f 2, f 2, . . . , f n, f n, 0, . . . ) + (0, 0, . . . , 0, f n+1, f n+1, f n+2, . . . ) = rn + µn · f n

with rn = ( f, f 2, f 2, . . . , f n, f n, 0, . . . , 0 . . . ) and µn = (0, 0, . . . , 0, f, f, f 2, . . . ) (the 135
morphisms are always thought to be 0 on X and they are considered modulo 136
K⊥

n ). But then rn ∈ ∏

p≤n
E(T )∗/K⊥

p × 0 which is a rational left C comodule because 137

E(T )∗/K⊥
p � K∗

p and Kp is finite dimensional by Lemma 1.1. Write M = Rat(M) ⊕ 138
� as right R modules and µn = qn + αn with qn ∈ Rat(M) and αn ∈ �. Then if λ = 139
r + µ with r ∈ Rat(M) and µ ∈ � we have r + µ = rn + µn · f n = (rn + qn · f n) + 140
αn · f n which shows that µ = µn · f n. Then if µ = (lp)p≥1 and µn = (µn,p)p≥1 we get 141

that lp = µn,p · f n ∈ ( E(T )∗
K⊥

p
) · Jn for all p. By the previous remark, ( E(T )∗

K⊥
p

) · Jn = 0 for 142

some n (which depends on p) and this shows that l p = 0 for any p and thus µ = 0. 143
Therefore λ ∈ RatM, so λ · R is finite dimensional and again we get λ · RJn = 0 for 144
some n. Hence we get f [p/2]+n = 0 in E(T )∗/K⊥

p so f [p/2]+n|Kp = 0, ∀p, equivalently 145

f
[p/2]+n = 0 on Kp (because Kp is a right comodule). For p = 2n + 1 we therefore 146

obtain K2n+1 ⊆ K2n so Km = Km+1 for m = 2n. Then if I = Im( f
m
), I 	= 0 by the 147

assumption (Km 	= E(T )) and there is a simple subcomodule T ′ of I; then f |T ′ = 0 148

(because f ∈ J = C⊥
0 ). Take 0 	= y ∈ T ′; then y = f

m
(x), x ∈ E(T ) and 0 = f (y) = 149

f
m+1

(x) showing that x ∈ Km+1 = Km and therefore y = f
m
(x) = 0, a contradiction. 150

�� 151

Theorem 1.5 If the rational part of every right C∗-module splits off, then C is finite 152
dimensional. 153

Proof For a right C-comodule M denote by ln(M) the n-th term in the Loewy 154
series of the comodule M. We first show that Cn = ln(C) is finite dimensional for 155
all n. We proceed by induction on n; for n = 0 this is Proposition 1.2. Assume the 156
statement for 0, 1, . . . , n − 1. Write C0 = ⊕

i∈F
Ti with Ti simple right C-comodules 157

and C = ⊕

i∈F
E(Ti) with E(Ti) injective envelopes of the Ti’s. We know that the 158

set F is finite by Proposition 1.2. We have Cn = ⊕

i∈F
ln(E(Ti)) so it is enough to 159

show that ln(E(Ti)) is finite dimensional for all i ∈ F. If otherwise, we would have 160
ln(E(Ti)) = E(Ti) by Proposition 1.1. But then one can write E(Ti)/ ln−1(E(Ti)) = 161
ln(E(Ti))/ ln−1(E(Ti)) = T ⊕ K with T simple finite dimensional, so K must be 162
infinite dimensional because ln−1(E(Ti)) is finite dimensional by the induction hy- 163
pothesis. In this way we can find an infinite dimensional proper subcomodule of E(Ti) 164
corresponding to K which is impossible again by Proposition 1.1. 165

By Corollary 1.3 C∗ is right noetherian and by Proposition 1.4 every element of J 166
is nilpotent. Therefore by Levitzki’s Theorem (see for example [4, p. 199, Theorem 167
1] or [9, Cor. II.4.1.5]) we have that J is nilpotent, so Jn = 0 for some n. But Cn−1 = 168
(Jn)⊥ = {x ∈ C | h(x) = 0 ∀ h ∈ Jn} by [3, Cor. 3.1.10], so Cn−1 = C and therefore C 169
is finite dimensional. �� 170
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