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Abstract : In this paper we study the properties of the finite topology on the
dual of a module over an arbitrary ring. We aim to give conditions when certain
properties of the field case can still be found here. Investigating the correspondence
between the closed submodules of the dual M∗ of a module M and the submodules
of M , we prove some characterizations of PF rings: the up stated correspondence
is an anti isomorphism of lattices if and only if R is a PF ring.
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1 Introduction

Let R be an arbitrary (non commutative) ring. We will use the notations
HomR(M, N) for the set of R module morphisms from M to N for right
modules M,N and RHom(M, N) respectively for left modules M, N . Also
we use M∗ = HomR(M,R) for any right module M and ∗M = RHom(M,R)
for a left module M .

Given two right R modules M and N , recall that the finite topology on
HomR(M, N) is the linear topology for which a basis of open neighborhoods
for 0 is given by the sets {f ∈ HomR(M,N) | f(xi) = 0, ∀ i ∈ {1, . . . , n}},
for all finite sets {x1, . . . , xn} ⊆ M . This is actually the topology induced on
HomR(M, N) from HomSet(M, N) = NM which is a product of topological
spaces, where N is the topological discrete space on the set N . For an
arbitrary set X ⊆ M we denote by X⊥ = {f ∈ HomR(M,N) | f |X = 0}. If
W ≤ HomR(M, N) is a subgroup with M and N left R modules we denote
W⊥ = {x ∈ N | f(x) = 0, ∀ f ∈ W}.

The Finite Topology on the dual of a vector space (or the dual of a mod-
ule) is an important tool in different topics of algebra, such as coalgebras
and Hopf algebras, the theory of graded rings and modules, or more gen-
eral, the theory of corings. For example, the semiperfectness property for
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coalgebras (or even corings) is strongly connected to properties of the finite
topology of the dual algebra (or the dual ring); the topological tool allows
the connection of a series of properties of coalgebras to semiperfect coal-
gebras. Furthermore, the topological aspects of Hopf algebras allow char-
acterizations of (co)Frobenius Hopf algebras as Hopf algebras with nonzero
integrals.

Regarding the phenomenon for the field case, we find a series of prop-
erties connecting the subspaces of a vector space V and the subspaces of
V ∗, via the taking of orthogonal (X⊥), properties that have a dual flavor.
Some of these properties have also been studied in literature before (see for
example [2] and [3]), where a different notation is used for X⊥. We still
state some of these results for completion of the presentation, some of them
in a slightly more general setting or some of them with short or no proof
(as for example proposition 1, 1, 3, 4). But we are mainly interested in the
topological aspects, namely the set of closed submodules of the dual M∗ of
a module M .

A right PF ring is a ring that is right cogenerator and right self-injective,
that is, it is an injective cogenerator of the category MR. This is known
([1],[9],[10] cited by C.Faith [7]) to be equivalent to the fact that the ring R
is right self-injective and has essential right socle, and also, to the fact that

R decomposes as a finite direct sum
n⊕

i=1
eiR with ei idempotents such that

eiR are indecomposable injective with simple socle, i = 1, . . . , n. It is also
known [8] that a ring R is both left and right PF (and called simply PF) if
and only if R is right PF and left self-injective, and this is also equivalent
to R being right and left cogenerator. A left PF ring need not necesarily be
right PF, as an example in [5] shows.

A deeper investigation of the properties of the finite topology shows that
the dual caracter of the connection between closed subspaces (or submod-
ules) of V ∗ and subspaces (or submodules) of V is given by some properties
of the base ring R, namely R self-injective and R cogenerator, leading us
to the study of PF rings. Equivalent caracterisations of PF rings are found
then, namely PF rings are exactly those rings for which the lattice of the sub-
modules of any right (or, equivalently, any left) module M is anti-isomorphic
to the lattice of the closed submodules of M∗; equivalently, for finitely gen-
erated M ’s, the lattice the of submodules of M is anti-isomorphic to the
lattice the of submodules of M∗. This is the main result of the paper, and
is given by Theorem 1. As a corollary, some known characterizations of PF
rings given by Kato in [8] are obtained, as well as some interesting facts on
PF rings (Corollary 2, 3, 4).
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2 Preliminary results

Denoting by < X >R the R submodule generated by X, we obviously have
(< X >R)⊥ = X⊥, so we will work with finitely generated submodules F ≤
M and the basis of open neighborhoods {F⊥ | F ≤ M finitely generated}.
Also for left R modules X and Y and U ≤ X a submodule of X we will
denote U⊥

RHom(M,N) or simply U⊥ = {g ∈ RHom(X, Y ) | g|X = 0} when
there is no danger of confusion. If N is an R bimodule then we consider
the left R module structure on HomR(M,N) given by (r · f)(x) = rf(x),
for all x ∈ M, f ∈ HomR(M, N), r ∈ R. If W is a (left) submodule in
HomR(M, N), then W⊥ is a (right) submodule of M. For any right module
M we denote by ΦM the right R modules morphism

M
ΦM−→ ∗(M∗)

defined by ΦM (m)(f) = f(m), for all f ∈ M∗ and all m ∈ M . Then Φ is a
functorial morphism from idMR

to the functor ∗((−)∗).
We first extend some properties of the finite topology from the field case

to more general cases and give some properties of the finite topology on duals
of modules over PF rings. In Section 2 we obtain equivalent characterizations
of PF rings.

Proposition 1. Let M,N be R modules.
(i) If X ⊆ Y are submodules of M then Y ⊥ ≤ X⊥.
(ii) If U ⊆ V are subgroups of HomR(M, N) then V ⊥ ≤ U⊥.

Lemma 1. For M, N right R modules we have:
(i) If X ≤ M is a submodule of M then (X⊥)⊥ ⊇ X and if we denote 0 the
class of 0 in M/X then we have ({0}⊥)⊥ = (X⊥)⊥/X. If N is an injective
cogenerator of MR then the equality (X⊥)⊥ = X holds.
(ii) If Y ≤ HomR(M, N) is a (left) submodule of HomR(M, N) then (Y ⊥)⊥ ⊇
Y (Y is the closure of Y in HomR(M, N)). If N = R and R is a left PF
ring (RR is injective and a cogenerator of RM) then the equality (Y ⊥)⊥ = Y
holds for all modules M and (left) submodules Y ≤ M∗.

Proof. (i) If x ∈ X then take f ∈ X⊥; then f(x) = 0 as f |X = 0. We
get that f(x) = 0, ∀ f ∈ X⊥ so x ∈ (X⊥)⊥. Moreover, x ∈ ({0}⊥)⊥ if and
only if h̃(x) = 0, ∀ h̃ : M/X −→ N , equivalent to h(x) = 0, ∀h ∈ X⊥, i.e.
x ∈ (X⊥)⊥.
Suppose now N is an injective cogenerator of MR and take x ∈ (X⊥)⊥. If
x /∈ X then there is f : M/X −→ N such that f(x̂) 6= 0 (x̂ is the image
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of x in M/X via the canonic morphism π : M −→ M/X). Then there is
g = f ◦ π, g ∈ HomR(M, N) such that g|X = 0 (g ∈ X⊥) and g(x) 6= 0,
showing that x /∈ (X⊥)⊥, a contradiction.
(ii) Let f ∈ Y and take x ∈ Y ⊥. Then there is g ∈ Y such that f(x) = g(x).
But g(x) = 0 because x ∈ Y ⊥ so f(x) = 0. Thus f |Y ⊥ = 0 and f ∈ (Y ⊥)⊥.
For the converse, first we see that RR injective implies that for all finitely
generated right R modules F we have that F

ΦF−→ ∗(F ∗) is an epimor-
phism. Take π : P = Rn −→ F an epimorphism in MR. Then we have a
monomorphism 0 −→ P ∗ −→ F ∗ in RM, and as RR is injective we obtain

an epimorphism of right modules ∗(P ∗)
∗(p∗)−→ ∗(F ∗) −→ 0. Because Φ is a

functorial morphism then we have the commutative diagram

P
π - F - 0

∗(P ∗)

ΦP

?

∗(π∗)
- ∗(F ∗)

ΦF

?
- 0

showing that ΦF is surjective, as ΦP = ΦRn is an isomorphism. Now to
prove the desired equality, take f ∈ (Y ⊥)⊥, (fi)i∈I a family of generators
of the left R module Y , and F < M a finitely generated submodule of M .
Then fi|M ∈ F ∗ and if f |F /∈ R < fi|F | i ∈ I > then as RR is an injective
cogenerator of RM we can find a morphism of left R modules φ : F ∗ −→ R
such that φ(fi) = 0, ∀i ∈ I and φ(f) 6= 0. But as ΦF is surjective, we
can then find x ∈ F such that φ = Φ(x) and then fi(x)Φ(x)(fi) = φ(fi) =
0, ∀i ∈ I, showing that x ∈ Y ⊥ and f(x) = Φ(x)(f) = φ(f) 6= 0 which
contradicts the fact that f belongs to (Y ⊥)⊥. Thus we must have f |F ∈
R < fi|F | i ∈ I > so there is (ri)i∈I a family of finite support such that
f |F =

∑
i∈I

ri(fi|F ) = (
∑
i∈I

rifi)|F . This last relation shows that f ∈ Y . 2

Corollary 1. If R is a PF ring (left and right) then for any right (or left)
R module M and Y < M∗ we have that Y is dense in M∗ if and only if
Y ⊥ = 0.

Proposition 2. Let M be a right R module.
(i) If X ≤ M then we have ((X⊥)⊥)⊥ = X⊥ and X⊥ is closed.
(ii) If Y ≤ HomR(M,N) then ((Y ⊥)⊥)⊥ = Y ⊥.
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Proof. ”⊆” from (i) and (ii) follow from Proposition 1 and Lemma 1.
(i) ”⊇” Let f ∈ X⊥. Take x ∈ (X⊥)⊥; then f(x) = 0 so f ∈ ((X⊥)⊥)⊥. To
show that X⊥ is closed take f ∈ X⊥ and x ∈ X. Then there is g ∈ X⊥ such
that g(x) = f(x) so f(x) = 0 (x ∈ X). We obtain that f |X = 0 so f ∈ X⊥.
(ii) ”⊇” Let x ∈ Y ⊥. If f ∈ (Y ⊥)⊥ then f |Y ⊥ = 0 so f(x) = 0 showing that
x ∈ ((Y ⊥)⊥)⊥. 2

Proposition 3. Let M, N be right R modules and (Xi)i∈I a family of sub-
modules of M . Then
(i) (

∑
i∈I

Xi)⊥ =
⋂
i∈I

X⊥
i .

(ii) (
⋂
i∈I

Xi)⊥ ⊇
∑
i∈I

X⊥
i . If I is finite and N is injective then equality holds.

Proof. (i) f ∈ (
∑
i∈I

Xi)⊥ ⇔ f |P
i∈I

Xi
= 0 ⇔ f |Xi = 0, ∀i ∈ I ⇔ f ∈ X⊥

i , ∀i ∈
I ⇔ f ∈ ⋂

i∈I

X⊥
i .

(ii) ”⊇” is obvious, for Proposition 1 shows that X⊥
i ⊆ ⋂

j∈I

Xj
⊥, ∀i ∈ I.

For the converse it is enough to prove the equality for two submodules X, Y
of M . Denote π : M −→ M/X ∩ Y , p : M −→ M/X, q : M −→ M/Y
the canonical morphisms. If f ∈ HomR(M,N) such that f |X∩Y = 0 then
denote f : M/X ∩ Y −→ N the factorization of f (f = f ◦ π) and i :
M/X ∩ Y −→ M/X ⊕M/Y the injection i(π(x)) = (p(x), q(x)), ∀x ∈ M .
Then the diagram

0 - M

X ∩ Y

i- M

X
⊕ M

Y

ª¡
¡

¡
¡

¡

h = u⊕ v

N

f

?

is completed commutatively by h. Then h = u⊕v, with u ∈ HomR(M/X, N)
and v ∈ HomR(M/Y, N), such that h(p(x), q(x)) = u(p(x)) + v(q(x)). Tak-
ing u = u ◦ p and v = v ◦ q we have u ∈ X⊥, v ∈ Y ⊥ and f(x) = f(π(x)) =
h(i(π(x))) = h(p(x), q(x)) = u(p(x)) + v(q(x)) = u(x) + v(x), ∀x ∈ M , so
f ∈ X⊥ + Y ⊥. 2

Proposition 4. Let M,N be right R modules and (Yi)i∈I be a family of
submodules of HomR(M, N). Then:
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(i) (
∑
i∈I

Yi)⊥ =
⋂
i∈I

Y ⊥
i .

(ii) (
⋂
i∈I

Yi)⊥ ⊇ ∑
i∈I

Y ⊥
i . If N = R and R is a PF ring (both left and right

PF) and Yi are closed subsets of M∗ = HomR(M, R) then the equality holds:
(
⋂
i∈I

Yi)⊥ =
∑
i∈I

Y ⊥
i .

Proof. (i) Obvious.
(ii) ”⊇” similar to (ii)”⊇” of the previous proposition. For the converse
inclusion, take (Yi)i∈I a family of submodules of M∗. Then

∑

i∈I

Y ⊥
i = ((

∑

i∈I

Y ⊥
i )⊥)⊥ (from Lemma1 : R is rightPF)

= (
⋂

i∈I

(Y ⊥
i )⊥)⊥ (fromProposition 3)

= (
⋂

i∈I

Yi)⊥ (Lemma1 : Yi are closed andR is left PF)

2

Remarks (i) The equality in Proposition 3 does not hold for infinite sets.
Let V be an infinite dimensional space with a countable basis indexed by
the set of natural numbers: (en)n∈N. Put Vn =< ek | k ≥ n >. Then we
can easily see that

⋂
n∈N

Vn = 0 so (
⋂

n∈N

Vn = 0)⊥ = V ∗. Let f ∈ V ∗ be

the function equal to 1 on all the en-s. Then as V ⊥
n < V ⊥

m , ∀n < m, we
have that f ∈ ∑

n∈N

V ⊥
n ⇔ ∃n ∈ N such that f ∈ V ⊥

n which is impossible as

f(en) = 0, ∀n. We obtain
⋂

n∈N

Vn ⊃
∑

n∈N

V ⊥
n a strict inclusion.

(ii) The equality in Proposition 4 does not hold for non-closed sets. Let
again V be a vector space with a countable basis B = (en)n∈N. Denote
by e∗n the linear map equal to 1 on en and 0 on the other elements of
the basis B and by f∗ the linear map equal to 1 on all the en-s. Take
H =< e∗n | n ∈ N > and L =< f∗, e∗n | n ∈ N∗ >. Then we can easily see
that H⊥ = 0, L⊥ = 0 and H ∩ L =< e∗n | n ∈ N∗ >, so H⊥ + L⊥ = 0, but
(H ∩ L)⊥ =< f∗, e∗n | n ∈ N >⊥=< e0 >, thus H⊥ + L⊥ 6= (H ∩ L)⊥.
(iii) Given the same vector space, we give an example of a family of dense
subspaces of V ∗ whose intersection is 0. For p ∈ N let Hp =< e∗n+e∗n+1+. . .+
e∗n+p | n ∈ N >. Then a short computation shows that H⊥

n = 0 showing that

Hn is closed in V ∗. But
⋂

n∈N

Hn = 0, because if f =
m∑

i=1
λie

∗
i ∈

⋂
n∈N

Hn ⊂ H0,

then f ∈ Hm+1 which shows that if f 6= 0, than it can be written as a
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linear combination of e∗i in which at least one of the e∗i has i > m. This is
impossible as the e∗n-s are independent.

3 The Finite Topology vs PF Rings

If R is a ring then we have (Rn)∗ = HomR(R, R) ' RRn. So we can identify
R submodules of the right dual of Rn with left submodules of RR and vice
versa. For all x = (x1, . . . , xn) ∈ Rn we denote by ϕx : Rn −→ R the mor-

phism of right R modules ϕx(r1, . . . , rn) =
n∑

i=1
xiri and by ψx the morphism

of left modules defined by ψx(r1, . . . , rn) =
n∑

i=1
rixi, ∀ (r1, . . . , rn) ∈ Rn.

Also because of the isomorphism (Rn)∗ ' RRn, x 7→ ϕx, we will denote by
I⊥ = {x ∈ Rn | ϕx(r) = 0, ∀ r ∈ I} if I is a right submodule of Rn and sim-
ilarly for left submodules X of Rn, X⊥ = {x ∈ Rn | ψx(r) = 0, ∀ r ∈ X}.
Over a vector space V there is an anti isomorphism of lattices between
the lattice of closed subspaces of V ∗ and the subspaces of V given by
X 7→ X⊥, ∀X ≤ V . We have the obvious

Proposition 5. For a right module M the following are equivalent:
(i) The applications M ≥ X 7→ X⊥ ≤ M∗ and M∗ ≥ Y 7→ Y ⊥ ≤ M between
the lattice of the submodules of M and the lattice of the closed submodules
of M∗ are inverse anti-isomorphisms of lattices.
(ii) (X⊥)⊥ = X, ∀X ≤ M and (Y ⊥)⊥ = Y , ∀Y ≤ M∗.
(iii) (X⊥)⊥ = X, ∀X ≤ M and (Y ⊥)⊥ = Y, ∀Y ≤ M∗, Y closed.
(iv) The applications of (i) are inverse to each other.

If F is a finitely generated right R module then every submodule of F ∗ is
closed, as if Y is a left submodule of F ∗ and f ∈ Y , taking {x1, . . . , xn} the
a system of generators of F , there is g ∈ Y such that g(xi) = f(xi), for all
i, so f = g ∈ Y . Also it is easy to see that Rn has orthogonal equivalence
as right module if and only if it has orthogonal equivalence as left module,
and this is equivalent to (I⊥)⊥ = I, ∀ I ≤ Rn

R and (X⊥)⊥ = X, ∀X ≤ RRn.

Definition 1. We will say that a right R module M has orthogonal equiv-
alence (or orthogonal isomorphism, or shortly M has ⊥ equivalence) if the
equivalent statements of Proposition 5 hold. The ring R will be called with
⊥ equivalence if RR (or equivalently RR) is a module with orthogonal equiv-
alence.
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Proposition 6. Let M be a right R module and X a submodule of M . Then
we have the exact sequence

0 −→ (0⊥)⊥ −→ M
ΦM−→ ∗(M∗)

Proof. For x ∈ M we have ΦM (x) = 0 ⇔ f(x) = 0, ∀ f ∈ M∗ and this
equivalent to x ∈ (M∗)⊥ = (0⊥)⊥, thus kerΦM = (0⊥)⊥. 2

Proposition 7. (i) For an R module M we have (0⊥)⊥ = 0 if and only if
M is R cogenerated, i.e. there is a monomorphism M ↪→ RI for some set
I. Following [7], in this case M is called torsionless module.
(ii) If C is a class of right R modules which is closed under quotients then
the following are equivalent:
(a) (X⊥)⊥ = X for all M in C, X < M .
(b) (0⊥)⊥ = 0 for all M in C.
(c) Any M ∈ C is cogenerated by R.
(d) ΦM is a monomorphism for every M in C.
Proof. (i) If (0⊥)⊥ = 0 then take I = M∗ and M

i−→ RI , i(x) = (f(x))f∈I ;
then of course i is a monomorphism as i(x) = 0 if and only if f(x) = 0, ∀f ∈
I = M∗ i.e. x ∈ (0⊥)⊥ = 0. Conversely, given a monomorphism M

i
↪→ RI ,

taking πj the canonical projections for all j ∈ I, we obtain the morphisms
fj = πj ◦ i ∈ M∗ and then x ∈ (0⊥)⊥ = (M∗)⊥ implies fj(x) = 0, ∀ j ∈ I,
i.e. i(x) = 0 so x = 0, as i is injective. Thus (0⊥)⊥ = 0.
(ii) (b) ⇔ (c) by (i). (a) ⇔ (b) follows as C is closed under quotient objects
and denoting 0 the zero element of M/X ∈ C we have ({0}⊥)⊥ = (X⊥)⊥

from Lemma 1. Equivalence with (d) follows from Proposition 6 2

Proposition 8. Suppose RR is a module with ⊥ equivalence. Then R con-
tains all left simple modules and all right simple modules (up to an isomor-
phism; this is called a right - and left- Kasch ring).

Proof. It is easy to see that for every right ideal I of R we have the isomor-
phism of left R modules (R

I )∗ ' I⊥, given by I⊥ 3 f 7→ f ◦ π ∈ (R
I )∗, with

π : R −→ R/I the canonical projection. Then if S is simple right module
there is a maximal right ideal M < R and an isomorphism S ' R

M . Then
S∗ ' ( R

M )∗ ' M⊥ 6= 0 because if M⊥ = 0 then M = (M⊥)⊥ = 0⊥ = R,
which contradicts the maximality of M . In a similar way one can see that
R contains all the isomorphism types of left R modules. 2

We shall say a right (or left) R module is n generated if it has a system of
n generators.
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Lemma 2. Let X be a right R module such that every monomorphism i :
X ↪→ M with the property that M/Im i is 1-generated splits. Then X is an
injective module.

Proof. Let M be a right R module such that X < M (we identify X with its
image in M) and suppose X 6= M . Let L = {Y < M | Y 6= 0andX ∩ Y =
0}. Then L 6= ∅, because if x ∈ M \ X then as (X + xR)/X 6= 0 is 1-
generated then the hypothesis shows that there is Y < X + xR such that
X

.
+ Y = X + xR and then Y 6= 0 as x /∈ X, so Y ∈ L. We can easily

see that L is inductive, because if (Yi)i∈I is a totally ordered family of
elements of L then

⋃
i∈I

Yi is its majorant in L. Take N a maximal element

of L and suppose X + N 6= M . Then there is x ∈ M \ (X + N) and
as (X + N + xR)/(X + N) is 1-generated, by the hypothesis we can find
Y < M such that X + N + Y = X + N + xR and (X + N) ∩ Y = 0. An
easy computation shows now that (N + Y ) ∩X = 0 and so N + Y = N by
the maximality of N . Thus we obtain X + N + Y = X + N = X + N + xR
which is a contradiction, because x /∈ X + N . We find that X is a direct
summand in M for every module M such that X ↪→ M , so X is injective in
MR. 2

Proposition 9. Let R be a ring with ⊥ equivalence. If R
j

↪→ X is a
monomorphism of right (left) R modules and X is R cogenerated then j
splits.

Proof. Consider X
σ
↪→ RI a monomorphism and let (xi)i∈I = σ(j(1)).

Then we have (xir)i∈I = σ(j(1))r = σ(j(r)) and as j, σ are injective we see
that xir = 0, ∀ i ∈ I if and only if r = 0. This shows that

⋂
i∈I

Rx⊥i = 0.

Then we have 0 =
⋂
i∈I

Rx⊥i = (
∑
i∈I

Rxi)⊥ (by Proposition 3), so
∑
i∈I

Rxi =

((
∑
i∈I

Rxi)⊥)⊥ = 0⊥ = R. Then we find that there is F a finite subset of I

such that
∑
i∈F

Rxi = R, thus there are (yi)i∈F ∈ R such that
∑
i∈F

yixi = 1.

Now if we denote by πF the projection of RI on RF , πF ((ri)i∈I) = (ri)i∈F

and by y = (yi)i∈F ∈ RF = R(F ), then ϕy(πF (σ(j(r)))) = ϕy(πF ((xir)i∈I)) =
ϕy((xir)i∈F ) =

∑
i∈F

yixir = r, so ϕy ◦πF ◦σ ◦ j = idR, showing that the mor-

phism of right modules ϕy ◦ πF ◦ σ : X −→ R is a split for j. 2

Lemma 3. Rn has orthogonal equivalence (as left or right R module) if and
only if every n generated right (or left) module has orthogonal equivalence.
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Proof. Suppose Rn has ⊥ equivalence. Let F = Rn/X be a right n gen-
erated R modules and π : Rn −→ F the canonical projection. For each
g ∈ X⊥ (X < Rn) we denote by g ∈ F ∗ the (unique) morphism for which
g ◦ π = g and with x̂ = π(x) - the class of an element x ∈ Rn. Now we
see that if Y < F ∗ and Z = {α ◦ π | α ∈ Y }, then Y = {g | g ∈ Z},
Y ⊥ = {x̂ | g(x̂) = 0, ∀ g ∈ Z} = Z⊥/X (Z ⊆ X⊥ so Z⊥ ⊇ (X⊥)⊥ = X)
and (Y ⊥)⊥ = {g | g(x̂) = 0, ∀ x̂ ∈ Z⊥/X} = {g | g(x) = 0, ∀x ∈ Z⊥} =
{g | g ∈ (Z⊥)⊥ = Z} = Y .
Now if Y < F and Z = π−1(Y ) then Y ⊥ = {g | g(x̂) = 0, ∀ x̂ ∈ Y } = {g |
g(x) = 0, ∀x ∈ Z} = {g | g ∈ Z⊥} and (Y ⊥)⊥ = {x̂ | g(x̂) = g(x) = 0, ∀ g ∈
Z⊥} = {x̂ | x ∈ (Z⊥)⊥ = Z} = Y . 2

Theorem 1. The following assertions are equivalent:
(i) Every right R module has ⊥ equivalence.
(ii) Every finitely generated module has ⊥ equivalence.
(iii) Every left R module has ⊥ equivalence.
(iv) Every finitely generated module has ⊥ equivalence.
(v) R is a PF ring (both left and right).
(vi) (X⊥)⊥ = X for all X < M in MR or in RM.
(vii) R2 has ⊥ equivalence.

Proof. (v) ⇒ (i) and (v) ⇒ (vi) follow from Lemma 1 so we have the
implications (v) ⇒ (i) ⇒ (ii) ⇒ (vii) and (v) ⇒ (vi) ⇒ (vii)
(v) ⇒ (iii) ⇒ (iv) ⇒ (vii) is the left symmetric of (v) ⇒ (i) ⇒ (ii) ⇒ (vii).
(vii) ⇒ (v) If R2 has ⊥ equivalence, then by Lemma 3 we have that any
2 generated right (and any left) module has ⊥ equivalence, in particular R

has orthogonal equivalence. Now let R
i

↪→ X be a monomorphism in MR

such that X/i(R) is 1 generated. Then as X has ⊥ equivalence, Proposition
7 shows that X is R cogenerated as right R module. Now by Proposition 9
i splits, as X is R cogenerated and R has ⊥ equivalence. Then we can apply
Lemma 2 and obtain that RR is injective. Because R has ⊥ equivalence, by
Proposition 8 we obtain that RR contains all isomorphism types of simple
right modules, and as RR is injective, we obtain that RR is an injective
cogenerator of MR, i.e. a right RF ring. Similarly we can show that R is
also a left PF ring. 2

Corollary 2. If R is a PF ring, then F ' ∗(F ∗) by ΦF for every finitely
generated left module (the analogue holds for right modules).

Proof. Proposition 6 shows that ΦF is injective. By the same argument as
in the proof of Lemma 1 we have that RR injective implies that ΦF is an
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epimorphism and the conclusion is proved. 2

Corollary 3. R is a PF ring if and only if for every finitely generated right
(or left) R module F , the lattice of the submodules of F is anti isomorphic to
the lattice of the submodules of F ∗ via the ⊥ applications of Proposition 5,
equivalently, the dual lattice of the submodules of any finitely generated right
module is isomorphic (via ⊥ applications) to the lattice of the submodules
of the dual of that module.

As a consequence, we obtain two well known characterizations of (left and
right) PF rings given by Kato [8].

Corollary 4. The following assertions are equivalent:
(i) R is a left and right PF ring.
(ii) R is left and right cogenerator.
(iii) Every factor module of R2 (both in MR and RM) is torsionless.

Proof. (i)⇒(ii) is obvious.
(ii)⇒(i) As RR is a cogenerator of RM, from Proposition 7 we get that
(X⊥)⊥ = X for all left R modules M and submodules X < M (by taking
the class C in Proposition 7 to be the category of left R modules). Using
the fact that RR is also a cogenerator (in MR), we get that (I⊥)⊥ = I for
all right R modules N and submodules I < N ; in particular we obtain that
(the left and also the right R module) R2 has orthogonal equivalence, and
then Theorem 1 shows that R is a PF ring.
(ii)⇒(iii) If I is a right submodule of R2, then R2/X is torsionless if and
only if ({0}⊥)⊥ = {0} by Lemma 1 (where 0 ∈ R2/X is the 0 element).
Thus the hypothesis of (ii) is equivalent to the fact that R2 has orthogonal
equivalence, and the result follows again by Theorem 1. 2
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