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Abstract. For A a Hopf algebra of arbitrary dimension over a field K, it is well-known
that if A has nonzero integrals, or, in other words, if the coalgebra A is co-Frobenius, then
the space of integrals is one-dimensional and the antipode of A is bijective. Bulacu and
Caenepeel recently showed that if H is a dual quasi-Hopf algebra with nonzero integrals,
then the space of integrals is one-dimensional, and the antipode is injective. In this short
note we show that the antipode is bijective.

1. Introduction

The definition of quasi-Hopf algebras and the dual notion of dual quasi-Hopf algebras
is motivated by quantum physics and dates back to work of Drinfel’d [4]. There has been
recent interest in extending classical results and formulas to the quasi-Hopf setting (see
[5] for example); the theory of integrals for quasi-Hopf algebras was studied in [10, 7, 2].
In [2], Bulacu and Caenepeel showed that a dual quasi-Hopf algebra is co-Frobenius as a
coalgebra if and only if it has a nonzero integral. In this case, the space of integrals is one-
dimensional and the antipode is injective, so that for finite dimensional dual quasi-Hopf
algebras the antipode is bijective. In this note, we use the ideas from a new short proof
of the bijectivity of the antipode for Hopf algebras by the second author [8] to show that
the antipode of a dual quasi-Hopf algebra with integrals is bijective, thus extending the
classical result of Radford [11] for Hopf algebras.

In this paper we prove

Theorem 1.1. Let H be a co-Frobenius dual quasi-Hopf algebra, equivalently, a dual
quasi-Hopf algebra having nonzero integrals. Then the antipode of H is bijective.

2. Preliminaries

In this section we briefly review the definition of a dual quasi-Hopf algebra over a field
K. We refer the reader to [1, 3, 12] for the basic definitions and properties of coalgebras
and their comodules and of Hopf algebras. For the definition of dual quasi-Hopf algebra
we follow [9, Section 2.4].
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Definition 2.1. A dual quasi-bialgebra H over K is a coassociative coalgebra (H,∆, ε)
together with a unit u : K → H, u(1) = 1, and a not necessarily associative multiplication
M : H ⊗ H → H. The maps u and M are coalgebra maps. We write ab for M(a ⊗ b).
As well, there is an element ϕ ∈ (H ⊗H ⊗H)∗ called the reassociator, which is invertible
with respect to the convolution algebra structure of (H ⊗H ⊗H)∗. The following relations
must hold for all h, g, f, e ∈ H:

h1(g1f1)ϕ(h2, g2, f2) = ϕ(h1, g1, f1)(h2g2)f2(1)
1h = h1 = h(2)

ϕ(h1, g1, f1e1)ϕ(h2g2, f2, e2) = ϕ(g1, f1, e1)ϕ(h1, g2f2, e2)ϕ(h2, g3, f3)(3)
ϕ(h, 1, g) = ε(h)ε(g)(4)

Here we use Sweedler’s sigma notation with the summation symbol omitted.

Definition 2.2. A dual quasi-bialgebra H is called a dual quasi-Hopf algebra if there exists
an antimorphism S of the coalgebra H and elements α, β ∈ H∗ such that for all h ∈ H:

S(h1)α(h2)h3 = α(h)1, h1β(h2)S(h3) = β(h)1(5)
ϕ(h1β(h2), S(h3), α(h4)h5) = ϕ−1(S(h1), α(h2)h3, β(h4)S(h5)) = ε(h).(6)

Let H be a dual quasi-Hopf algebra. As in the Hopf algebra case, a left integral on H
is an element T ∈ H∗ such that h∗T = h∗(1)T for all h∗ ∈ H∗; the space of left integrals
is denoted by

∫
l and by [2, Proposition 4.7] has dimension 0 or 1. Right integrals are

defined analogously with space of right integrals denoted by
∫
r. Suppose 0 6= T ∈

∫
l. It is

easily seen that
∫
l is a two sided ideal of the algebra H∗, and KT ⊆ Rat(H∗) with right

coaction given by T 7→ T ⊗ 1. Since for co-Frobenius coalgebras Rat(H∗) = Rat(H∗H∗) =
Rat(H∗

H∗), KT must have left coaction T 7→ a ⊗ T . By coassociativity, a is a grouplike
element, called the distinguished grouplike of H. Then, for all h∗ ∈ H∗,

Th∗ = h∗(a)T.(7)

From [2, Proposition 4.2], the function θ∗ :
∫
l⊗H → Rat(H∗H∗)

θ∗(T ⊗ h) = σ(S(h5)⊗ α(h6)h7) ∗ (S(h4) ⇀ T ) ∗ σ−1(S(h3)⊗ β(S(h2))S2(h1))(8)

is an isomorphism of right H-comodules, where σ : H⊗H → H∗ is defined by σ(h⊗g)(f) =
ϕ(f, h, g), σ−1 is the convolution inverse of σ, and, as usual, (h ⇀ T )(g) = T (gh).

3. Proof of the theorem

LetH be a dual quasi-Hopf algebra with 0 6= T ∈
∫
l. As in [8], for each rightH-comodule

(M,ρ), we denote by aM the left H-comodule structure on M defined by ma
−1 ⊗ ma

0 =
aS(m1) ⊗ m0, where ρ(m) = m0 ⊗ m1. Denote the induced right H∗-module structure
on aM by m ·a h∗ = h∗(ma

−1)ma
0 = h∗(aS(m1))m0. By [2, Corollary 4.4] the antipode S

of H is injective, and therefore has a left inverse Sl. Then, for σ as above, we have the
following analogue of [8, Proposition 2.5]:
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Proposition 3.1. The map p : aH → Rat(H∗) defined by

p(h) = σ(S(Sl(h3))⊗ α(Sl(h2))Sl(h1)) ∗ (h4⇀T ) ∗ σ−1(h5β(h6)⊗ S(h7))(9)

is a surjective morphism of left H-comodules.

Proof. Let Ψ(h) := σ(S(Sl(h3))⊗ α(Sl(h2))Sl(h1)). Then for h∗ ∈ H∗ and g ∈ H:

(p(h) ∗ h∗)(g) = p(h)(g1)h∗(g2)
(9) = Ψ(h1)(g1)T (g2h2)σ−1(h3β(h4)⊗ S(h5))(g3)h∗(g4)

= Ψ(h1)(g1)T (g2h2)ϕ−1(g3, h3β(h4), S(h5))h∗(g4)
= Ψ(h1)(g1)T (g2h2)ϕ−1(g3, h3, S(h5))h∗(g4β(h4))

(5) = Ψ(h1)(g1)T (g2h2)ϕ−1(g3, h3, S(h7))h∗(g4(h4β(h5)S(h6)))
= Ψ(h1)(g1)T (g2h2)h∗(ϕ−1(g3, h3, S(h7))g4(h4β(h5)S(h6)))
= Ψ(h1)(g1)T (g2h2)β(h5)h∗(ϕ−1(g3, h3, S(h7))g4(h4S(h6)))

(1) = Ψ(h1)(g1)T (g2h2)β(h5)h∗((g3h3)S(h7)ϕ−1(g4, h4, S(h6)))
= Ψ(h1)(g1)T (g2h2)(S(h7) ⇀ h∗)(g3h3)β(h5)ϕ−1(g4, h4, S(h6))
= Ψ(h1)(g1)(T ∗ (S(h6) ⇀ h∗))(g2h2)β(h4)ϕ−1(g3, h3, S(h5))

(7) = Ψ(h1)(g1)(S(h6) ⇀ h∗)(a)T (g2h2)β(h4)ϕ−1(g3, h3, S(h5))
= Ψ(h1)(g1)T (g2h2)σ−1(h3β(h4)⊗ S(h5))(g3)h∗(aS(h6))

(9) = p(h1)(g)h∗(aS(h2))
= p(h∗(aS(h2))h1)(g)
= p(h∗(ha

−1)ha
0)(g)

= p(h ·a h∗)(g).

Thus p is left H-colinear. Finally, we note that p ◦ S = θ∗(T ⊗ −) where θ∗ is the
isomorphism from (8) so that p is surjective. �

Remark 3.2. As the referee pointed out, the computation in the proof of Proposition 3.1
may be streamlined using a formula that generalizes the equality h1⊗h2S(h3) = h⊗1 which
holds for any h in a Hopf algebra H. If H is a dual quasi-Hopf algebra, and pR ∈ (H⊗H)∗

is given by pR(h, g) = ϕ−1(g, h1β(h2), S(h3)), we then have

pR(g1, h)g2 = pR(g2, h2)(g1h1)S(h3)

for all h, g ∈ H. As a consequence we get that

T (g1h1)pR(g2, h2)g3 = T (g1h1)pR(g2, h2)aS(h3)

for all h, g ∈ H, and this formula allows us to delete lines four through eleven of the above
mentioned computation.

Let c be a grouplike element of H. From [2, p.580], c is invertible with inverse S(c).
We will show that left multiplication by c has an inverse too.

Let θc ∈ End(H) be defined by θc(h) = ch and define the coinner automorphisms qc
and rc = q−1

c ∈ End(H) by:

qc(h) = ϕ−1(c, S(c), h1)h2ϕ(c, S(c), h3) and rc(h) = ϕ(c, S(c), h1)h2ϕ
−1(c, S(c), h3).
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Lemma 3.3. For any grouplike element c and θc, rc, qc as above, θc ◦ θc−1 = rc and thus
θc is bijective with inverse θ−1

c = θc−1 ◦ qc = qc−1 ◦ θc−1.

Proof. Using (1) and the fact that c−1 = S(c), we see that

θc ◦ θc−1(h) = c(c−1h) = ϕ(c, S(c), h1)(cS(c))h2ϕ
−1(c, S(c), h3) = rc(h).

The same formula for c−1 = S(c) yields θc−1 ◦ θc = rc−1 and the statement then follows
directly. �

We can now prove our main result.

Proof of Theorem 1.1.
We only need to prove the surjectivity. The proof goes along the lines of the proof of
[8, Theorem 2.6], but with the difference that here the antipode is not necessarily an
anti-morphism of algebras.

Let π be the composition map aH
p→ Rat(H∗

H∗)
∼→ H ⊗

∫
r ' H, where the last two

isomorphisms follow by left-right symmetry of the results of [2]. Since H is a co-Frobenius
coalgebra, HH is projective by [6, Theorem 1.3] or [2, Theorem 4.5, (x)], and as π is
surjective, there is a morphism of left H-comodules λ : H → aH such that πλ = IdH . We
then have

aS(λ(h)2)⊗ λ(h)1 = λ(h)a
−1 ⊗ λ(h)a

0 = h1 ⊗ λ(h2).
Applying Id⊗ επ, we get aS(επ(λ(h)1)λ(h)2) = h for any h ∈ H. Thus θa ◦S is surjective
and since θa is bijective by Lemma 3.3, S is surjective also. �
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