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Abstract. The set of row reduced matrices (and of echelon form matrices), is closed under

multiplication. We show any system of representatives for the Gln(K) action on the n×n matri-

ces, which is closed under multiplication, is necessarily conjugate to one that is in simultaneous

echelon form. We call such closed representative systems Grassmannian semigroups. We study

internal properties of such Grassmannian semigroups, show that they are algebraic semigroups

and admit gradings by the finite semigroup of partial permutations, with components that

are naturally in one-one correspondence with the Schubert cells of the total Grassmannians.

We show that there are infinitely many isomorphism types of such semigroups in general, and

two such semigroups are isomorphic exactly when they are semiconjugate. We also investigate

their representation theory over an arbitrary field, and other connections with multiplicative

structures on Grassmannians and Young diagrams.

1. Introduction and Preliminaries

Let K be an infinite field. Consider the left regular action of the general linear group Gln(K) on

the matricesMn(K). A very important set of matrices is the setR of row reduced matrices, which

is a standard system of representatives for this action. Row reduction is the basic algorithm

for solving linear systems. Moreover, R has an additional remarkable property: it is closed

under the multiplication of matrices. Strangely, this basic linear algebra fact is not as well

known as one would expect; we have only noted this fact in one textbook [8], Exercise 2.19; it

is also noted in [9], page 67 (see also [1]). The fact that a product of row reduced matrices is

row reduced has a geometric consequence. Consider V the n-dimensional space over K, with

a fixed basis {e1, . . . , en}, regarded as the vector space of column vectors with n entries, and

Mn(K) acting as endomorphisms on the left. Then each Gln(K) orbit O corresponds uniquely

to a subspace of Kn, by O = Gln(K) · A → ker(A) (since ker(A) is uniquely determined for

A ∈ O). Hence, the multiplication of row reduced matrices induces a multiplication on the total

Grassmannian GrK(n) via the bijection R ←→ GrK(n), A ←→ ker(A). Thus R and GrK(n)

form a semigroup, and in fact, an algebraic semigroup. This motivates the introduction of the

following terminology.

Definition 1.1. We say S is a Grassmannian semigroup if S is a system of representatives for

the left regular Gln(K) action on Mn(K), which is also closed under multiplication of matrices.

Equivalently, S is a sub-semigroup of (Mn(K), ·) such that for every subspace W of V , there is

a unique element A ∈ S such that ker(A) = W .

Grassmannian semigroups were also studied in [1]. It is an interesting question to ask what other

special systems of representatives for the Gln(K) action can be found, or equivalently, other

natural multiplicative structures on GrK(n) compatible with the natural matrix multiplication,

and what is special about R, and whether R somehow canonical. This is also interesting from

the perspective of row reduction: what are the interesting canonical forms for row reduction?
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Our first main result addresses this question. In Proposition 2.9 and Theorem 2.6 we show

that every such Grassmannian semigroup is conjugate to a Grassmannian semigroup which is

in simultaneous echelon form with all initial pivots equal to 1 (i.e. a Grassmannian semigroup

consisting only of row echelon form matrices), but where entries above pivots are not necessarily

equal to 0. This is a consequence of a peculiarity of such semigroups, namely, that if two elements

in a Grassmannian semigroup have the same rank, then they must have the same range (column

space). Beyond being conjugate to a semigroup in echelon form, we prove there is a certain

canonical form for each such semigroup, which generalizes the set of row reduced matrices. In

particular, we are able to describe all such Grassmannian semigroups of order 2 and 3.

For each row echelon form matrix, we can define its type to be the set of positions of columns

containing pivots. The set of row reduced matrices with only 0’s everywhere except pivot

positions form a semigroup Πn of 2n elements, and any Grassmannian semigroup S is graded by

Πn. This allows one to obtain a natural one-to-one correspondence between Schubert cells of the

total Grassmannian GrK(n), associated Young diagrams and the graded components of such a

semigroup. In particular, for example, the semigroup of row reduced matrices and GrK(n) have

an algebraic semigroup structure.

In Section 3, we study the algebraic structure of Grassmannian semigroups S. We show that

there are several elements in such an algebraic structure that can be identified and defined

intrinsically. There is a basis B in which S is echelon, and when S is in echelon form, the Jordan

cell N of dimension n and eigenvalue 0 must belong to the semigroup S; also, the rank k row

reduced diagonal idempotents Ek must be in the (echelon form of the) semigroup. This element

N is uniquely determined intrinsically in S by the algebraic fact that every nilpotent element

of S is a left multiple of N . Moreover, the equivalence relation on the set E of idempotents in

S defined by E ∼ E′ if EE′ = E′ and E′E = E partitions E into n + 1 equivalence classes,

and allows one to define the rank, and also the type of an element of S independently of the

ambient algebraMn(K) in which S is defined. Hence, given a Grassmannian semigroup S, all this

structure, including the partition (grading) of S into parts indexed by Πn can be recovered from

internal algebraic properties of S. This indicates that the algebraic structure (multiplication)

of this S may retain plenty of the combinatorics and geometry of GrK(n).

In Section 4, we study the problem of isomorphisms of Grassmannian semigroups. One sees

easily that isomorphisms of such algebraic structures determine inclusion preserving bijections

on GrK(n), so that the basic Fundamental Theorem of Projective Geometry can be used. Our

main result of this section is that two Grassmannian semigroups are isomorphic if and only if

they are semiconjugate, that is, they are isomorphic via a ring automorphism of Mn(K), which

must be the composition of a conjugation by a matrix A and a ring automorphism σ of Mn(K)

induced by some σ ∈ Aut (K). This, together with the results of the first section allows us to

determine up to isomorphism all such algebraic Grassmannian semigroups of dimensions 2 and

3, and determine the cardinality of the set of all such isomorphism classes. For example, when

K = R, we show that there are ℵ2 = 22ℵ0 such isomorphism classes. This can be done in higher

dimensions, but the descriptions one would obtain makes such results impractical to state.

In Section 5, we further explore connections between the Grassmannian semigroups, Grassman-

nians and Young diagrams. We note that besides the multiplicative structures they induce on

GrK(n), one obtains a monoid structure on the set of Young diagrams. Each matrix in Πn repre-

sents a Schubert cell in GK(n), and has a canonically associated Young diagram, and vice-versa,

and one can define a bijective function between the set of all Young diagrams and the monoid
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(semigroup) Π =
∞
⋃

n=1
Πn, where Πn is regarded naturally as a submonoid of Πn+1 as corner ma-

trices. This is interesting vis-a-vis the so called plactic monoid, a monoid structure on the set of

all Young tableaux. Motivated also by this, we study the representation theory of Grassmannian

semigroups, and of the monoids Πn and Π. The semigroup algebra F[S] over some arbitrary

possibly different field F of a Grassmannian semigroup S on Mn(K) is in fact semilocal and has

nilpotent Jacobson radical (although S can be quite large). We also completely determine the

Ext quiver of Πn, its left and right projective indecomposables and their dimensions; these are

expressed in terms of the combinatorial binomial coefficients.

We note that in our treatment and interpretation of GrK(n) we take the naive approach and

view it as simply a union of affine spaces as opposed to the usual projective space subvariety via

the Plücker embedding; as noted before, this has the advantage of being compatible with other

algebraic structures (such as the natural matrix multiplication). In algebraic terms, this trans-

lates into the difference between our semigroup algebra F[Πn] and the exterior algebra Λ(Fn).

Nevertheless, some questions regarding these structures arise on the way, such as whether there

are other relevant connections of the above mentioned product of Young diagrams with other

combinatorial representation theory or algebraic combinatorics problems. We believe another

interesting question is to completely describe the semigroup algebras of Πn as quivers with re-

lations, and determine the properties of the semigroup algebra F[Π] of the semigroup of Young

diagrams. They are also bialgebras, and determining their representation and Grothendieck

rings could be an interesting problem as well. The algebraic semigroup structures we find on

Grassmannian semigroups also naturally give rise dually to bialgebras (the bialgebra of alge-

braic representative functions). Hence, we hope this work can be the starting point of future

investigations.

2. Simultaneous echelon form for Grassmannian semigroups

The following is an easy observation that is likely known; we include a brief argument for

completeness.

Proposition 2.1. Let V be an n-dimensional vector space over an infinite field K and X =

{Ai | i = 0, 1, . . . , k} be a finite collection of subspaces of V . Then there is a flag 0 = B0 ⊂ B1 ⊂

B2 ⊂ · · · ⊂ Bn = V on V with dim(Bi) = i such that if dim(Aj) = t then Bn−t is a complement

for At.

Proof. Fix a basis e1, . . . , en and write all vectors as column vectors with respect to this basis.

Let B = [xij ] be a generic n× n matrix with variables as shown. Let dimAi = di. Replace the

first di columns of B with a basis for Ai and denote it by M(Ai). Let Ψ(Ai) = detM(Ai), so

Ψ(Ai) is a polynomial in K[xij |i, j] (depending only on n(n− di) variables). Let Ψ =
∏

Ψ(Ai),

so Ψ is a polynomial in the n2 variables xij . Note that Ψ is the zero polynomial only when

detM(Ai) = 0 for some i. But this is not possible since M(Ai) can always be completed to a

basis (so Ai has a complement), and det(M(Ai)) would be non-zero at the corresponding point.

Therefore, since the field K is infinite, Ψ has a non-zero B ∈Mn(K). If Bi is be the span of the

last n− i columns of B and it is clear that the Bi are the members of C(X) above required. �

Common complements have been studied for a long time, and in the generality of modules over

arbitrary rings, most recently by T.Y. Lam and his co-authors; we refer to [2, 5, 7] also for the

history of the subject. This is usually studied in the form of existence of common complements

of isomorphic submodules; for vector spaces, a much more general statement is possible as above.
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In what follows, S will be a Grassmannian semigroup of n× n matrices.

Proposition 2.2. Let A ∈ S be a matrix of rank k. Then for every subspace W of V such

that V = W ⊕ Im (A), let E ∈ S be the unique element such that ker(E) = W . Then E

is an idempotent and EA = A. Consequently, the column space of A and E coincide (i.e.

Im(E) = Im(A)) and the columns of A span the 1-eigenspace of E.

Proof. Let E ∈ S be such that ker(E) = W (this is obviously unique). Note that since

W ∩ Im (A) = 0, we have that dim(Im (EA)) = dim(E(Im (A))) = dim(E(W + Im (A))) =

dim(Im (E)) so rank (EA) = rank (E) = n − dim(W ) = rank (A). This means that

dim(ker(A)) = dim(ker(EA)), and since ker(A) ⊆ ker(EA), it follows that ker(A) = ker(EA).

By the uniqueness property of the Grassmannian semigroup, it follows that EA = A.

Now note that E2A = EA = A, and as above, this shows that Im (E2) = Im (E), hence

ker(E2) = ker(E). Therefore, E2 = E again by the uniqueness property. Moreover, the identity

EA = A shows that the columns of A are 1-eigenvectors for E, and since Im (E) has dimension

k and is spanned by eigenvectors, it follows that Im (A) ⊆ Im (E), so they coincide since they

have the same dimension (the equality EA = A shows this directly also). �

Proposition 2.3. Let A,B ∈ S such that rank (A) = rank (B). Then Im (A) = Im (B).

Proof. Let k be the common rank of A and B and assume Im (A) 6= Im (B). Note that there is a

subspace W of V such that V = Im (A)⊕W = Im (B)⊕W . This can be seen by the remarks in

the beginning of this section, or directly: take A′, respectively B′, to be n× k matrices formed

by some vectors that span Im (A), respectively Im (B). finding the W amounts to finding an

n× (n− k) matrix U such that det[A′|U ] 6= 0 and det[B′|U ] 6= 0. This is possible, since the sets

{U,det[A′|U ] 6= 0} and {U,det[B′|U ] 6= 0} are open subsets of the affine space An(n−k).

By Proposition 2.2, there are idempotents E,F ∈ S such that ker(E) = ker(F ) = W and

Im (E) = Im (A), Im (F ) = Im (B). This shows that E 6= F , and this contradicts the Grass-

mannian semigroup property, since two elements in S have the same kernel. �

We can now note the following interesting fact about the elements of a Grassmannian semigroup.

Corollary 2.4. There are subspaces V0, V1, . . . , Vn with dim(Vk) = k and such that

(i) If A ∈ S has rank (A) = k, then Im (A) = Vk.

(ii) For each k there are idempotents E ∈ S such that Im (E) = Vk.

Proposition 2.5. With the notations of the previous proposition, for each 0 ≤ k < n, Vk ⊂

Vk+1.

Proof. Let Ek be an idempotent with Im (Ek) = Vk. If Wk = ker(Ek), obviously ker(Ek) ∩

Im (Ek) = 0 since Ek is an idempotent. Let W be a subspace of codimension 1 in Wk; note that

it exists since Wk 6= 0 since k < n. Let A ∈ S be such that ker(A) = W . We note that since

Im (Ek) ∩ ker(A) = 0, we have A(Im (Ek)) ∼= Im (Ek), so rank (AEk) = rank (Ek). As before,

since ker(Ek) ⊆ ker(AEk), using the uniqueness property of S, this shows that AEk = Ek. From

this we obtain that Im (Ek) ⊂ Im (A). But rank (A) = n − dim(W ) = k + 1, so Im (A) = Vk+1

and Im (Ek) = Vk. Thus, Vk ⊂ Vk+1. �

Hence, for every element A ∈ S, we have A(Vk) = Vk−i for some i. Using this for the flag

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V , and choosing a basis (wi)i=1,...,n such that wi ∈ Vi \ Vi−1, we see

that with respect to this basis every endomorphism A ∈ S is in echelon form (here by echelon

form we understand the usual, that is, a matrix for which in every row the first non-zero element

is found at least one position to the right from the first non-zero element in the previous row).
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Thus, we have the following

Theorem 2.6. Any Grassmannian semigroup of n×n matrices may be conjugated to one which

is in echelon form (that is, to a semigroup consisting of matrices in echelon form; therefore, the

matrices of a Grassmannian semigroup are simultaneously echelonizable).

Let us denote Ek the “basic” idempotent matrices Ek =















1 . . . 0 . . . 0

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0

. . . . . . . . .

0 0 0 . . . 0















, having

1 on the first k entries on the diagonal and 0 elsewhere. The following is a variant of a result

present in [1]; we give there a more direct short proof.

Proposition 2.7. Let S be a Grassmannian semigroup in Mn(K), which is in echelon form.

Then Ek ∈ S for all 1 ≤ k ≤ n.

Proof. Let Fk ∈ S be the unique matrix whose kernel is ek+1, . . . , en, where ei are the vectors of

the canonical basis. As in Proposition 2.2, Fk is an idempotent, and since Fk are in echelon form,

we have Fk =

(

A 0

0 0

)

, where A is a k× k upper triangular matrix. Since A is diagonalizable

(A2 = A) with rankA = k, we see that A = Ik, the k × k identity, and so Fk = Ek, and the

proof is finished. �

We also note a more general easy description of the idempotents in a Grassmannian semigroup.

Proposition 2.8. Let S be a Grassmannian semigroup in echelon form. Then the idempotents

of rank k in S are of the form

E =

(

Ik C

0 0n−k

)

where C is an arbitrary k × (n− k) matrix with entries in K.

Proof. Since E has rank k and is in echelon form, in particular E =

(

H C

0 0n−k

)

. Since

E2 = E, we get H2 = H and HC = C. This shows that the columns of C are 1-eigenvectors for

the idempotent H, and so they are linear combinations of the columns of H. Hence, rank (E) =

rank (H) = k, and since H is an idempotent it follows that H = Ik, and so

E =

(

Ik C

0 0n−k

)

Conversely, if C is an arbitrary k × (n − k) matrix, note that the span of the columns of the

n × (n − k) matrix M(C) =

(

−C

In−k

)

is a subspace V (C) of V = Kn of dimension n − k for

which V (C) ∩ Vk = 0. Moreover, for every such subspace W for which W ∩ Vk = 0 there is a

unique such matrix C for which W = V (C). Indeed, let B be an k × (n − k) matrix whose

columns span W , and column reduce this matrix. Note that a lines 1, 2, . . . , k cannot contain

a pivot, since Vk ∩ W = 0, and the conclusion follows as M(C) and M(D) are not column

equivalent if C 6= D. Finally, for every k × (n − k)-matrix C there is an element E ∈ S with

ker(E) = V (C), and since V (C)∩Vk = 0, it follows that E is an idempotent by Proposition 2.2.

Hence E =

(

Ik D

0 0n−k

)

and E annihilates V (C), so EM(C) = 0 from which it follows that

D = C. �
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Proposition 2.9. Assume S is a Grassmannian semigroup in echelon form with respect to a

basis e1, . . . , en. Then, after a change of basis of the type ei 7→ λiei (i.e. a “diagonal” change of

basis) the matrices in S will have 1 on all pivot entries.

Proof. First, we show that all rank 1 matrices with a pivot on position (1, i) will have the

same value of the pivot. If Ai ∈ S is matrix having a pivot value of ai at position (1, i),

A =









0 . . . ai ai+1 . . . an

0 0 . . . 0

. . . . . . . . .

0 0 . . . 0









, then Bi = Ai · Ei ∈ S has the element ai ∈ K as a

pivot in position (1, i) and 0 elsewhere. By the uniqueness condition for Grassmannian semi-

groups, such an element in S is unique, so ai is the same for all matrices of this form.

Now, consider a matrix B ∈ S, with a pivot in position (i, j) equal to bij . Then it is straightfor-

ward to note that Bi ·B is an echelon matrix in S having a pivot of aibij in position (1, j), and

so, by the above considerations we see that aj = aibij . We now note that if we change bases by

e′i = 1
ai
ei, in the new basis e′i, each element of S will still be in echelon form, and the rank 1

matrices will have the pivots equal to 1. Moreover, by the above, the pivots in positions (i, j)

will be bij = aj · a
−1
i = 1. �

It seems appropriate here to note the following remark on the structure on another set of elements

which occur in every Grassmannian semigroup which in fact form the set nilpotents of rank 1.

Remark 2.10 (Elements of type (p), 1 ≤ p ≤ n). If S is a Grassmannian semigroup in echelon

form, then for every 1 ≤ p ≤ n, the elements of type (p) in S are all the matrices Lp(ap+1, . . . , an)

for arbitrary ap+1, . . . , an, having the first line (0, . . . , 0, 1, ap+1, . . . , an), with the 1 on position

(1, p) and 0 elsewhere. Indeed, for arbitrary ap+1, . . . , an in K, there has to be an element B ∈ S

of rank 1 which has kernel the subspace xp = −ap+1xp+1−· · ·−anxn (such a subspace is uniquely

determined by ap+1, dots, an), and in row reduced form the matrix B = Lp(ap+1, . . . , an) is the

only such possibility. Obviously, these are precisely the nilpotent elements of rank 1.

2.1. A “row reduced” form for Grassmannian semigroups. We give a theorem which

shows that, after conjugation by a suitable element, the matrices in a Grassmannian semigroup

S can be put (simultaneously) in a form very close to the classical row reduced echelon form.

First, we fix some notation.

Definition 2.11. Let τ = (k1, k2, . . . , kt) be a t-uplet of integers where 1 ≤ k1 < k2 < · · · <

kt ≤ n are integers, 1 ≤ t ≤ n. We will say an echelon matrix A has shape τ if it has pivots at

positions (i, ki), for i = 1, . . . , t, i.e. the pivots are at columns k1, . . . , kt.

We denote by Pτ the matrix having 1 at positions (i, ki) and 0 elsewhere. In what follows, we

it will be convenient to consider column reduced matrices, which mean that we column-reduce

right to left, bottom-up.

Definition 2.12. We say that a matrix N is right column reduced (respectively, in right column

echelon form) if it is obtained from a row reduced matrix (respectively, from an echelon matrix)

via reflection across the secondary diagonal; equivalently, if the matrix under consideration is

rotated ninety degrees clockwise and reflected across a vertical line to its left, it is row reduced.

That is, a matrix N is right column reduced if its columns, listed from right to left are

c1, c2, . . . , cn, and these columns, when transposed and organized into lines in reverse order
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as tcn, . . . ,
tc1, form a row reduced matrix that we will denote by R(N). Obviously, this opera-

tion R is its own inverse, so R2 = Id on Mn(K). Its importance is revealed when dealing with

the nullspace of matrices, and offers a convenient way to write such nullspaces.

For a shape τ = (k1, . . . , kt), let τ ′ be the shape defined as τ ′ = (l1, . . . , ls), such that 1 ≤ l1 <

· · · < ls ≤ n and {l1, . . . , ls} ⊔ {k1, . . . , kt} = {1, 2, . . . , n} (i.e. {l1, . . . , ls} is the complement

of {k1, . . . , kt}). The correspondence between τ and τ ′ can also be explained via conjugate

(transpose) Young diagrams.

We recall a standard construction done for Schubert cells of Grassmannians. If A is a row echelon

(or row reduced) matrix of type τ , let Y0(A) be the Young diagram obtained by retaining all

non-pivot positions from all rows containing pivots. Namely, if A has type τ = (k1, . . . , kt), we

place in row i of Y0(τ) a number of boxes equal to the number of non-pivot positions on row i,

to the right of (i, ki). More precisely, if A has a pivot at (i, ki) there are n− ki columns to the

right of column ki, t − i of which are pivot columns. There are therefore (n − ki) − (t − i) =

n− t+ i− ki non pivot positions on row i and to the right of column ki. Hence, we may write

Y0(τ) = (n − t + 1 − k1, n − t + 2 − k2, . . . n − kt), where the j’th entry of this array denotes

the number of boxes of Y0(τ) on row j. This is using the French convention with rows having

a non-increasing number of boxes as we go downwards. If τ ′ = (l1, . . . , ls), let Y0(τ
′) be defined

similarly. Then it is not difficult to see that Y0(τ) and Y0(τ
′) are conjugate Young diagrams. We

will later use further connections of row reduced and echelon form matrices and Young diagrams.

We now extend the map R to a bijection from echelon matrices of type τ to right column echelon

matrices of type τ ′. It will also be useful to have some additional notation. If τ = (k1, . . . , kt) is

a fixed shape, let us denote by Wτ the set of matrices which entries 0 everywhere except possibly

non-zero at positions (i, j) for i ≤ t and j > ki, and j 6∈ {k1, . . . , kt}. Equivalently, A ∈Wτ if and

only if A+Pτ is a row reduced matrix of type τ . Obviously, Wτ is a K-subspace of Mn(K). Note

that the dimension of this space is dim(Wτ ) = (n−k1−t+1)+(n−t−k2+2)+· · ·+(n−t−kt+t) =

t(n−t)+t(t+1)/2−(k1+· · ·+kt). We will more closely investigate the relation of Grassmannian

semigroups and Grassmannians later.

Remark 2.13. A t-shuffle is a permutation on n letters that preserves the order of (1, . . . , t)

and (t + 1, . . . , n). If A is a matrix and P is a permutation matrix, then AP permutes the

columns of A. It is easy to see that a shuffle is a permutation matrix of the form P =

(

R1

R2

)

where R1 and R2 are 0,1 echelon matrices. Every rank t row reduced matrix is of the form R =
(

It N

0 0

)

P . Let M =

(

It N

0 0

)

; then ker(M) is the span of the columns of

(

0 −N

0 In−t

)

.

So, the kernel (null space) of R is the span of the columns of N(R) := P−1

(

0 −N

0 In−t

)

=

(

Rt
1 Rt

2

)

(

0 −N

0 In−t

)

. But the shape of R is the shape of R1 and one sees that the shape of

S, according to our right-left, down-up convention is the shape of Rt
2, which is the shape of the

complement of R1 as desired.

We have thus defined, for each row reduced matrix R as above, a right column reduced matrix

N(R) such that the null space of R is the span of the columns of N(R); furthermore, if R has

type τ = (k1, . . . , kt), then N(R) is a right column reduced matrix of type τ ′ = (l1, . . . , ls) as

follows with τ ′ being the complement of τ . Below we see an example on how this construction
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N works.

R =



















1 a 0 0 b c

0 0 1 0 d e

0 0 0 1 f g

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



















−→ N(R) =



















0 0 0 −a −b −c

0 0 0 1 0 0

0 0 0 0 −d −e

0 0 0 0 −f −g

0 0 0 0 1 0

0 0 0 0 0 1



















We denote by S the map that does the reverse operation, so for a right column reduced matrix

B of type τ ′, it associates a row reduced matrix S(B) of type τ . We have that S and N are

inverse maps. We summarize the properties of these in the following Lemma, which is likely

known, and only amounts to a careful computational observation, and therefore we omit the

details of the proof.

Lemma 2.14. (i) Let B be a right column reduced matrix of type τ ′. Then there is a unique

matrix A of type τ , such that AB = 0. Moreover, A = S(B).

(ii) Let A be a row reduced matrix of type τ . Then there is a unique right column reduced matrix

B of type τ ′, such that AB = 0. Moreover, B = N(A).

(iii) For A,B as in (i) and (ii) above, we have BA = 0.

We have the following theorem representing matrices A of type τ which are in row reduced form,

and which have the null space equal to N of type τ ′. If we regard Kn as the space of column

vectors over K, we first note that every subspace W of Kn as a canonical basis which can be

represented uniquely by a matrix B in right column reduced form. This is obtained by column

reducing an arbitrary basis of W .

Theorem 2.15. Let W be a subspace of Kn. Let N be the right column reduced matrix whose

columns represent a basis of W , and let τ ′ be the type of N . If S is an echelon matrix of type

τ such that SN = 0, then there is a matrix C which has 0 entries everywhere except potentially

at positions above the pivot positions of S, and such that S = S(N) + C − CN .

We saw Grassmannian semigroups can be put into (simultaneous) echelon form. Using the

previous theorem, we notice a structure statement for matrices in a Grassmannian semigroup,

which will show an even closer resemblance to the the semigroup of row reduced matrices. Let

S be in echelon form with the pivots of every element of S equal to 1. For each type τ , and

every matrix N of type τ ′, there is a unique matrix S ∈ S with Null(S) = Col(N) (i.e. the null

space of S is the column space of N), and these are all matrices of type τ in S, by the above

remark on canonical bases in subspaces of Kn. Hence, there is a matrix C = Cτ (N) which has

0 entries everywhere except potentially at positions above the pivot positions from S(N), such

that S = S(N) + Cτ (N)− Cτ (N)N . Each such Cτ is a function of N of type τ ′. We note that

in the case the functions Cτ are all 0, we obtain the semigroup S of row reduced n×n matrices

over K.

As corollary, for small values of n we can re-obtain a full classification of such Grassmannian

semigroups as in [1].

Corollary 2.16. If S is a Grassmannian semigroup in M2(K), then S is conjugate to R, the

semigroup of row reduced matrices.
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Proof. Up to conjugation we may assume S is in echelon form, and with pivots equal to 1, and

therefore, the semigroup is

S = {I2;

(

1 x

0 0

)

, x ∈ K;

(

0 1

0 0

)

; 02}

where c is an element in K, which is precisely R (i.e. there is only one Grassmannian semigroup

in echelon form and with pivots equal to 1). �

Corollary 2.17. If S is a Grassmannian semigroup in M3(K), then there is a function f : K→

K such that S is conjugate to the following semigroup

S = { I3;





1 0 x

0 1 y

0 0 0



 , x, y ∈ K;





1 u f(u)

0 0 1

0 0 0



 , u ∈ K;





0 1 0

0 0 1

0 0 0



 ;





1 z t

0 0 0

0 0 0



 , z, t ∈ K;





0 1 w

0 0 0

0 0 0



 , w ∈ K;





0 0 1

0 0 0

0 0 0



 ; 03. }

Proof. We may use the above remark on the structure theorem of such Grassmannian semigroups

and note that for each type there are precisely the above families, with the fourth one of type




0 1 0

0 0 1

0 0 0



, or proceed as follows. Note that each of the following types families of subspaces

of V , which exhaust the subspaces of V , must be the kernel of a corresponding matrix (the

vectors should be considered as column vectors in V = K3):

{ 0;Span(−x,−y, 1), x, y ∈ K; (1,−u, 0);Span(1, 0, 0);

Span{(−z, z, 0), (−t, 0, t)}, z, t ∈ K;Span(−w, 1, 0), w ∈ K;Span(0, 0, 1);V }

We get a semigroup in echelon form with pivots equal to 1, except the second of the above types

of matrices, except is in general in the form





1 α x

0 1 y

0 0 0



 , x, y ∈ K;; nevertheless, we know the

matrix E2 should be in S, and multiplying the two together we get that





1 α 0

0 1 0

0 0 0



 ∈ S, and

by the uniqueness property of the Grassmannian semigroup we obtain α = 0. Finally, the fourth

type is N =





0 1 0

0 0 1

0 0 0



 and has the property Ne3 = e2 + ce1, Ne2 = e1, Ne1 = 0. After

further changing the basis to e′3 = e3, e
′
2 = e2 + ce1, e

′
1 = (1 + c)e1, we see that the semigroup

becomes of the desired form in the basis {e′1, e
′
2, e

′
3} (see also Proposition 3.9).

It is easy to see that the above described set is closed under multiplication and forms a Grass-

mannian semigroup. �

3. The structure of Grassmannian semigroups

We note a few basic facts on the set of “types” of matrices. We note that the set Πn of all shapes

or “types” has a monoid structure. For each shape τ = (k1, . . . , ks), let Pτ be the matrix having

1 on positions (i, ki) and 0 elsewhere. It is not difficult to see that the set of n × n matrices
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Πn = {Pτ |τ is a shape} is closed under product. This can be used to introduce a multiplication

of “shapes”: τσ is such that Pτσ = PτPσ.

We notice also that the type or shape of an element in a Grassmannian semigroup can also be

defined without reference to a basis for which it is in echelon form. For this, note that given the

flag 0 ⊂ V1 ⊂ · · · ⊂ Vn = V of images of elements in S, we have AVi = Vj for some j ≤ i, and

ki = min{j |A(Vj) = Vi} when Vi = A(Vj) for at least one j, equivalently, Vj ⊂ Im(A). This is

easy to see for S in any base in which it is in echelon form, so it is independent of such a basis.

We will show that the types can be defined independent without reference to the space V on

which S acts.

Remark 3.1. We also note here a short conceptual proof of the fact that the row reduced matrices

are closed under products. Indeed, one can interpret the set of row reduced matrices R as the set

of endomorphisms T of a finite dimensional vector space V , which have the following properties

with respect to a fixed basis {e1, . . . , en}:

(1) If Ik = Span{e1, . . . , ek}, then for all k ≤ n, we have TIk = Is for some s ≤ k.

(2) If k is such that T (Ik−1) ( T (Ik), then T (ek) ∈ {e1, e2, . . . , en} (more precisely, T (ek) = et
such that T (Ik) = It). This condition can be written equivalently as follows: if Vs = Im(T ) and

(k1, . . . , ks) is such that ki = min{j |T (Vj) = Vi}, then T (eki
) = ei.

The above two conditions make it easy to check that if two endomorphisms A,B satisfy these

conditions, then AB satisfies the same conditions as well.

Also, by the results of the first section, we note we have proved that for any Grassmannian

semigroup S there is a flag I1 ⊂ · · · ⊂ In = Kn on Kn with respect to which elements of S

have the first property (1). The only difference to row reduced matrices is that, in general, in a

Grassmannian semigroup one does not have to have property (2) hold in general.

We prove a few simple propositions on decomposition of elements in a Grassmannian semigroup.

As before, S will denote a Grassmannian semigroup in Mn(K). First we note the following fact

regarding solutions of equations in such semigroups.

Proposition 3.2. Let S a Grassmannian semigroup and a, b ∈ S. Then the equation a = xb

has a solution in S if and only if ker(b) ⊆ ker(a). Moreover, in this case, there is a unique

solution x of maximal rank i.e. with rank (x) = n− rank (b) + rank (a), and ker(x) = b(ker(a)).

Proof. Of course, ker(b) ⊆ ker(a) is necessary. To show it is sufficient, note that if a solution of

a = xb exists then ker(a) = b−1(ker(x)) (and b(ker(a)) ⊆ ker(x)). Thus, if ker(b) ⊆ ker(a), let

W = b(ker(a)) and let x ∈ S be such that ker(x) = W . Then ker(xb) = b−1(ker(x)) = b−1(W ) =

ker(a) (since ker(b) ⊆ ker(a)), and since xb, a ∈ S, by uniqueness of kernels we get xb = a. By

Sylvester’s inequality we have rank (a) ≥ rank (x) + rank (b) − n, so rank (x) ≤ n − rank (b) +

rank (a). If equality is assumed, then it follows that dim(ker(x)) = dim(ker(a)) − dim(ker(b)).

This shows that the linear map b : ker(a) = b−1(ker(x)) → ker(x) is surjective (since ker(b) ⊆

ker(a), dim(Im(b|ker(a))) = dim(ker(a))−dim(ker(b)) = dim(ker(x))), and so ker(x) = b(ker(a)).

Therefore, x is unique as it is uniquely determined by its kernel. �

Next we give a result about unique decompositions of elements. Recall that if W is a vector

space, a flag on W is a sequence 0 = W0 ⊂ W1 ⊂ · · · ⊂ Wk = W with dim(Wi) = i; a partial

flag is a sequence Ws ⊂ Ws+1 ⊂ · · · ⊂ Wt with dim(Wi) = i. The next proposition shows that

elements decompose uniquely along (partial) flags.

Proposition 3.3. Let S be a Grassmannian semigroup, and a ∈ S.

(i)Suppose X1 ⊂ X2 ⊂ · · · ⊂ Xt = ker(a) is a sequence of subspaces. Then there is a unique



GRASSMANNIAN SEMIGROUPS 11

decomposition a = a1a2 . . . at with ai ∈ S and ker(ai+1 . . . at) = Xt−i and each ai is of maximal

rank, i.e. rank (ai) = n− dim(Xi) + dim(Xi−1).

(ii) If 0 = X0 ⊂ X1 ⊂ · · · ⊂ Xt = ker(a) is a flag on ker(a), then there is a unique decomposition

a = atat−1 . . . a1 with ai ∈ S and ker(aiai−1 . . . a1) = Xi and rank (ai) = n− 1.

Proof. (i) We apply the previous proof recursively. First, write a = a1b1 uniquely with ker(b1) =

Xt−1 and a1 of maximal rank equal to n − dim(Xk−1) + dim(Xk). Then repeat the procedure

for b1 and Xt−2 ⊂ ker(b1) to obtain b1 = a2b2 with ker(b2) = Xt−2 and a2 has maximal possible

rank, etc. To see uniqueness, if a = a1 . . . at = a′1 . . . a
′
t are two such decompositions, then since

ker(a2 . . . at) = ker(a′2 . . . a
′
t) then a2 . . . at = a′2 . . . a

′
t and using the uniqueness of the solution

x of maximal rank of the equation a = xa2 . . . at provided by the previous proposition we get

a1 = a′1, etc.

(ii) Follows from immediately from (i). �

Proposition 3.4. If S is a Grassmannian semigroup on V of dimension n, A ∈ S is of rank

k, E is an idempotent of rank (E) = s ≥ k, then EA = A.

Proof. As in the beginning, we note Im(A) = Vk ⊂ Vs, and Vs is the set of 1-eigenvectors of E

since E is idempotent. Therefore, EA(v) = A(v) for all v ∈ V . �

3.1. Nilpotent elements. We need one more proposition that describes the nilpotent elements

in a Grassmannian semigroup. Recall that given such S we denoted by Vk the subspace of V

which is the (common) image of the elements of rank k in S.

Proposition 3.5. If a ∈ S, then there is k such that ak = ak+1 = . . . and ak is an idempotent.

Proof. The ascending sequence (ker(ak))k of subspaces of V must stabilize

ker(ak) = ker(ak+1) = . . . .

By the Grassmannian semigroup property, ak = ak+1 = . . . a2k = . . . , and so ak is also an

idempotent. �

Proposition 3.6. Let S be a Grassmannian semigroup. Then the following are equivalent for

x ∈ S:

(i) x is nilpotent;

(ii) V1 ⊆ ker(x)

(iii) x is a left zero-divisor in S, i.e. there is y ∈ S such that xy = 0.

Proof. (i)⇒(ii) If x is nilpotent, let k be such that xk−1 6= 0 = xk. Then 0 6= Im(xk−1) ⊆ ker(v).

Obviously, Im(xk−1) = Vi, i ≥ 1, so V1 ⊆ Im(xk−1) ⊆ ker(x).

(ii)⇒(i) Let k be such that xk = xk+1 = . . . , so xk is idempotent. We claim xk = 0. Indeed,

otherwise we have V1 ⊆ Im(xk) = Vi for some i ≥ 1, and since V1 ⊆ ker(x), it follows that

dim(x(Vi)) ≤ dim(Vi) − dim(V1) = i − 1 < i = dim(Vi). So Im(xk+1) = x(Vi) 6= Vi = Im(xk),

which contradicts xk = xk+1.

(ii)⇒(iii) Obviously, V1 ⊆ ker(x) if and only if V1 = Im(y) ⊆ ker(x) for every y ∈ S of rank 1

(and there are such elements in S), which is equivalent to xy = 0 for all such elements y. �

In the proposition above we may easily see that right zero divisors are not necessarily nilpotent:

if b ∈ S is such that Im(b) = Vn−1 and ker(b) = Y 6= V1, and a ∈ S is such that ker(a) = Vn−1,

then ab = 0 so b is a right zero-divisor, but b is not nilpotent since V1 6⊂ ker(b).

By extension of the terminology of rings, we may call a subset I of a semigroup M an ideal if for

all a ∈ M and x ∈ I, we have ax, xa ∈ I. Of course, this is not going to produce a congruence
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relation on M that would be suitable for doing a quotient, as it is for rings. For a Grassmannian

semigroup S we denote by N(S) the set of nilpotent elements of S. This makes sense in any

semigroup where there is a “zero” element (i.e. an element z such that az = za = z for all a).

We note the following

Proposition 3.7. Let S be a Grassmannian semigroup. Then the set of nilpotent elements

N(S) is a “prime” ideal of S, namely, if ab ∈ N(S) then a ∈ S or b ∈ S.

Proof. This property is easiest visualized in matrix form. Consider a basis with respect to which

the semigroup S is in echelon form (with pivots equaling 1). In particular, S ⊂ Tn, the algebra

of upper triangular matrices, and if Nn is the set of strictly upper triangular matrices, then

N(S) = Nn ∩S. Since Nn is an ideal of Tn (the Jacobson radical of Tn), it follows that N(S) is

an ideal of S.

For “primality”, let c 6∈ N(S), and a ∈ S. Then c must have its entry on position (1, 1) equal

to 1. This can be seen either from Proposition 3.6, or from the obvious fact that matrices in

echelon form are nilpotent if and only if they have a 0 on position (1,1). Now the following

equalities can happen only if a1 = a2 = 0, and this shows that if either ac or ca is nilpotent,

then so is a.








1 ∗ . . . ∗

0 ∗ . . . ∗

. . . . . .

0 . . . 0 ∗









·









a1 ∗ . . . ∗

0 ∗ . . . ∗

. . . . . .

0 . . . 0 ∗









=









0 ∗ . . . ∗

0 0 . . . ∗

. . . . . .

0 . . . 0 0









=

=









a2 ∗ . . . ∗

0 ∗ . . . ∗

. . . . . .

0 . . . 0 ∗









·









1 ∗ . . . ∗

0 ∗ . . . ∗

. . . . . .

0 . . . 0 ∗









�

Remark 3.8. Let N1 ∈ S be such that ker(N1) = V1. Since V1 ⊆ ker(x) for all x ∈ N(S),

we see that for each such x ∈ N(S) there is a ∈ S such that x = aN1, i.e. N1 divides all the

nilpotent elements of S. This particular nilpotent will be important next.

We denote Nk the nilpotent element of S for which ker(Nk) = Ik. Let en ∈ Vn \ Vn−1.

Since rank (N1) = n − 1, we have that Nn
1 = 0 6= Nn−1

1 . Define the elements ei by

en−1 = N1(en), . . . ei−1 = N1(ei), i ≥ 1, so e0 = 0. We claim that (ei)i=1,...,n is a basis of

V , and, moreover, {e1, . . . , ek} is a basis of Vk for each k. For this it is enough to show that

ei ∈ Vi \ Vi−1 for all i. Suppose ek ∈ Vk−1 for some k, and let k be the largest such number;

obviously, k < n since en /∈ Vn−1. We have that N1(Vi) = Vi−1 for all i. Then ek+1 /∈ Vk, so

Vk+1 = Kek+1 + Vk, and therefore N1(Vk+1) = KN1(ek+1) + N1(Vk) = Kek + N1(Vk) ⊆ Vk−1.

But this is a contradiction to N1(Vk+1) = Vk, so the claim is proved. With this we have the

following

Proposition 3.9. With the above notations, Nk
1 = Nk. Moreover, there is a basis of V with

respect to which, in the semigroup S, Nk is the matrix with 1 on the k’th diagonal above the

main diagonal, and 0 elsewhere, so N1 is the Jordan cell of dimension n and eigenvalue 0.

Proof. Consider the basis above {e1, . . . , en}. Obviously, in this basis N1 is a Jordan cell of di-

mension n and eigenvalue 0. Moreover, ker(Nk
1 ) = Span{e1, . . . , ek} = Vk, since dim(ker(Nk

1 )) =

k and it is straightforward to note that Nk
1 (ei) = 0 when i ≤ k. Hence, by the uniqueness of the

elements with a given kernel in a Grassmannian semigroup, Nk
1 = Nk. �



GRASSMANNIAN SEMIGROUPS 13

A few remarks on intrinsic abstract properties of Grassmannian semigroups. We note

that several invariants of a Grassmannian semigroup S can be defined without any reference to

the action of S on V .

(I1) First, note that the identity I and zero 0 elements of S are uniquely determined.

(I2) Next, the element N1 is uniquely determined by the property that for all nilpotent x ∈ S,

there is y ∈ S such that x = yN1 (since such an element in S, considered as an endomorphism

of V , will have its kernel contained in the kernel of all nilpotent elements in S).

(I3) The structure of idempotents is uniquely determined. Let ∼ be the equivalence relation on

the set E(S) of idempotents of S given by E ∼ E′ if EE′ = E′ and E′E = E. If S ⊂ EndK(V )

is any fixed representation of S as Grassmannian semigroup on V , it is easy to see that E ∼ E′

if and only if rank (E) = rank (E′). Thus, n - the dimension of the vector space V equals the

number of equivalence classes of idempotents. We may also introduce a quasi-ordering on E(V )

by setting E′ ≥ E if and only if EE′ = E′, which is equivalent to Im(E′) ⊆ Im(E), and further

rank (E′) ≤ rank (E). This becomes a total order on E(S)/ ∼, making it a PO-set isomorphic

to {0, 1, . . . , n}. Let Hk be the equivalence class of level k (corresponding to idempotents of

rank k).

(I4) The structure of idempotents determines a filtration on S that recovers rank. Namely, using

Proposition 3.4, we see that if A ∈ S, then rank (A) ≤ k if and only if EA = A for some E ∈ Hk,

equivalently, for all E ∈ Ek. Hence, we may introduce the subset Rk = Rk(S) consisting of

elements A for which EA = A for some (equivalently, all) E ∈ Hk. This will consist of all

elements of rank ≤ k. Now, the rank can be defined abstractly as rank (A) = k if A ∈ Rk \Rk−1.

This shows that n - the dimension of the space on which S acts, is recovered as the cardinality

of the set of equivalence classes of idempotents E(S)/ ∼.

(I5) Now, the type of an element in S can also be defined abstractly. Fix E1, E2, . . . , En rep-

resentatives of H1, H2, . . . , Hn respectively. Given A ∈ S, consider the sequence of numbers

rank (AE1), . . . , rank (AEn); in matrix interpretation, the images of these elements correspond

to A(V1), . . . , A(Vn). Then one defines ki = min{j | rank (AVj) = i}. It is easy to see that this

is an equivalent reformulation of the type of A given before in the case A is in echelon form.

(I6) Note that the type of an element in S can also be recovered by using the distinguished

nilpotent N1. It is based on the following easy observation: if A is a matrix and N1 is the

Jordan cell with eigenvalue 0 of dimension n, then AN1 is obtained by deleting the last column

of A, shifting the other columns of A to the right and replacing the first one by 0. Hence, the

last columns in the matrices in the sequence A,AN1, AN
2
1 , . . . , AN

n−1
1 are all the columns of

A. If A is an echelon matrix of type (k1, . . . , kt), then it is easy to see that the type of AN1

is (k1 + 1, k2 + 1, . . . , kt + 1) if kt < n and (k1 + 1, . . . , kt−1 + t) if kt = n. Therefore, the

non-increasing sequence rank(A), rank(AN1), . . . , rank(AN
n−1
1 ) will completely determine the

type of the echelon matrix A: the ranks will decrease precisely at positions n−kt +1, n−kt−1 +

1, . . . , n− k1 + 1. Hence, since rank is intrinsically determined in a Grassmannian semigroup S,

this is another way to get the type of an element in S without reference to the ambient space.

While we defined the Grassmannian semigroups as systems of representatives for the left Gln(K)

action on Mn(K), it is natural to ask what is their relationship with the right action. This by the

next proposition which uses the above results on the structure of such semigroups, and shows

that under the right action Grassmannian semigroups are contained in a small (finite) number

of orbits.
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Proposition 3.10. Let S be a Grassmannian semigroup, and Ek ∈ S the previously defined

basic idempotents. Then S ⊂
n
⋃

i=0
EkGln(K); in particular, up to equivalence under right action,

there are exactly n+ 1 classes of elements in S.

Proof. This is obvious, since the right Gln(K) actions operates on columns, so preserves column

space, and equivalence classes are determined precisely by column space. We have already shown

there are exactly n+ 1 possible column spaces for elements in S. �

4. Isomorphisms of Grassmannian semigroups

In what follows, we aim to study when two Grassmannian semigroups are isomorphic. By the

remarks of the previous section, we note that if two such semigroups are isomorphic, then they

have the same “dimension”, i.e. they are Grassmannian semigroups on the same vector space of

dimension n (since n is determined by the internal structure of the semigroup as we saw in the

previous section). The first step is to notice that an isomorphism of such semigroups produces

an order preserving isomorphism of the lattice of subspaces of the vector space. We will denote

L(X) for the lattice of subspaces of the vector space X. Also, if S is a Grassmannian semigroup

on the vector space V , for each X ∈ L(V ) denote aX ∈ S the element for which ker(aX) = X.

Proposition 4.1. Let S,S ′ be Grassmannian semigroups in Mn(K), and let ϕ : S → S ′ be an

isomorphism. Let L(Kn) be the set of subspaces of Kn and let p : L(Kn)→ L(Kn) be defined by

p(X) = W if and only if ϕ(aX) = a′W , where aX ∈ S and a′W ∈ S
′ are the unique elements with

ker(aX) = X, ker(a′W ) = W . Then p is an inclusion preserving bijection.

Proof. If X ⊆ Y ⊆ Kn are subspaces, then there is b ∈ S such that aY = baX , so ϕ(aY ) =

ϕ(b)ϕ(aX) by Proposition 3.2; thus ker(ϕ(aX)) ⊆ ker(ϕ(aY )), and so p(X) ⊆ p(Y ). �

Since the above induced map p is an inclusion preserving bijection on L(V ), we are in position

to use the Fundamental Theorem of Projective Geometry and the Skolem-Noether theorem to

characterize this map and obtain insights on the isomorphism class of a semigroup. We fix a

basis V = Kn and identify EndK(V ) = Mn(K). For an automorphism σ of the field K, denote

σ : V → V by applying σ component wise. By extension (and abuse of notation), we will

also denote σ : Mn(K) → Mn(K) the ring automorphism obtained by applying σ to each entry

of a matrix. Let also θ ∈ Gln(K). Then the composition map τ : A → θAθ−1 → σ(θAθ−1)

is a semi-linear automorphism of the ring Mn(A), and it is well known that every semi-linear

transformation is obtained this way (recall that an auto-morphism α of the ring Mn(K) is said

to be semilinear if α(c · A) = σ(c)α(A) for some automorphism σ of the field K). Then τ(S) is

also a Grassmannian semigroup, and we introduce the following

Definition 4.2. We say that two Grassmannian semigroups S,S ′ are semi-conjugate if S ′ =

τ(S) for a semi-linear transformation τ as above.

In what follows, we will show that two Grassmannian semigroups are isomorphic then they are

“almost” semi-conjugate, except for some trivial way of obtaining new Grassmannian semigroups

by multiplying matrices by certain constants. We first observe

Proposition 4.3. Let S,S ′ be two isomorphic Grassmannian semigroups. Then there exists

a Grassmannian semigroup S0 which is semi-conjugate to S and an isomorphism ψ : S0 → S
′

which is kernel preserving, that is, ker(ψ(x)) = ker(x) for all x ∈ S0.
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Proof. Let p : L(Kn) → L(Kn) be the map from Proposition 4.1 induced by the isomorphism

ϕ : S → S ′, which is inclusion preserving. By the Fundamental Theorem of Projective Geometry,

we have that p is given by a semi-linear automorphism of Mn(K), so p(W ) = σ(θ(W )), for

all subspaces W of Kn, where we interpret by θ as an endomorphism of Kn via the fixed

identification Mn(K) = EndK(V ). Let τ(A) = σ(θAθ−1). Then S0τ(S) is a Grassmannian

semigroup which is semi-conjugate to S. Note now that for aW ∈ S (so ker(aW ) = W ), we

have ker(τ(aW )) = p(W ). Indeed, let v ∈ ker(τ(aW )); this is equivalent to σ(θaW θ−a)v = 0 and

further to (σ)−1(v) ∈ ker(θaW θ−1), i.e. θ−1(σ)−1(v) ∈ ker(aW ) = W . Hence, v ∈ ker(τ(aW )) if

and only if v ∈ σ(θ(W )).

Lastly, if ψ = ϕ ◦ τ−1, then the map induced by ψ on L(Kn) takes p(W ) to p(W ) for each

W ∈ L(Kn), and so it is kernel preserving. �

Next, we determine what kernel preserving isomorphisms between Grassmannian semigroups

look like. We will need the following small Lemma, which may be known, but we could not find

a reference.

Lemma 4.4. Let b, c be linear transformations of V to V ′ vector spaces of finite dimension such

that the maps b−1, c−1 on L(V ′) are equal. Then there is λ ∈ K, λ 6= 0 such that b = λc.

Proof. First, ker(b) = b−1(0) = c−1(0) = ker(c), so it is easy to see that by factoring out by

ker(b) = ker(c), we may assume that b and c are injective, since if the induced maps B = b, C = c

will have B = λC, it follows immediately that b = λc. Also, note that 0 6= w ∈ Im(b) if and

only if b−1(Kw) 6= 0. Since b−1(Kw) = c−1(Kw) for all w, this shows that Im(b) = Im(c). Thus,

we may also assume b 6= 0 6= c. Let w1, . . . , wn be a basis on Im(b) = Im(c), and xi, yi be

such that b(xi) = wi = c(yi). By injectivity, we have b−1(Kwi) = Kxi and c−1(Kwi) = Kyi,

and the hypothesis thus implies Kxi = Kyi so yi = λixi. Let W = K(wi + wj) for i 6= j.

Since b(xi + xj) = wi + wj = c(yi + yj), by the injectivity of b and c and hypothesis we get

K(xi + xj) = b−1(W ) = c−1(W ) = K(yi + yj), so yi + yj = λ(xi + xj) for some λ. Hence,

λixi +λjxj = λxi +λxj , and since xi, xj are linearly independent (since b is injective and wi, wj

are independent), we get λi = λ = λj . This shows that λ1 = · · · = λn, so yi = λxi and therefore

b(xi) = wi = c(yi) = c(λxi) = λc(xi), which shows that b = c. �

Proposition 4.5. Let ϕ : S → S ′ be a kernel preserving isomorphism between two Grassman-

nian semigroups on the n-dimensional vector space V , n ≥ 2. Let N(S) be the set of nilpotent

elements in S as before. Then:

(i) If n = 2, then there is λ ∈ K such that S ′ = S − {N1} ∪ {λN1}, and

ϕ(a) =

{

a if a /∈ N(S),

λ · a if a = N1

(ii) S = S ′ and ϕ = Id if n ≥ 3.
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Proof. Since ϕ is kernel preserving, we have ker(b) = ker(ϕ(b)) for all b ∈ S. Let W be a

subspace of V , let b ∈ S, and let a = aW ∈ S so that ker(a) = W . Notice that

b−1(W ) = b−1(ker(a))

= ker(ab) = ker(ϕ(ab)) (sinceϕ is kernel preserving)

= ker(ϕ(a)ϕ(b)) (sinceϕ is a morphism)

= ϕ(b)−1(ker(ϕ(a)))

= ϕ(b)−1(ker(a)) (sinceϕ is kernel preserving)

= ϕ(b)−1(W )

Therefore, b−1 and ϕ(b)−1 are equal on L(V ) and by the previous Lemma ϕ(b) = λ(b) · b for

some λ(b) ∈ K \ {0}.

Note that if b, c ∈ S are such that bc 6= 0, then λ(bc) = λ(b)λ(c): indeed, ϕ(bc) = λ(bc)bc =

ϕ(b)ϕ(c) = λ(b)λ(c)bc and bc 6= 0. Next, if e ∈ S is a nonzero idempotent, then λ(e)2 = λ(e) in

K and λ(e) 6= 0 so λ(e) = 1. Furthermore, if a 6∈ N(S), then there is k such that ak = ak+1 6= 0

and ak is an idempotent (Proposition 3.5). Hence λ(ak) = 1 and λ(ak) = λ(a · ak) = λ(a)λ(ak)

so λ(a) = 1.

Let x be a nilpotent element, so V1 ⊆ ker(x) by Proposition 3.6. If x is nilpotent with x 6= N ,

then V1 ( ker(x), and let Y be a subspace of ker(x) of co-dimension 1 and such that V1 6⊂ Y .

Let a = aY (so ker(a) = Y ) and let c ∈ S be such that x = ca (it exists since ker(a) ⊂ ker(x)).

Moreover, we may assume c has maximal rank equal to n−1 since dim(ker(x))−dim(ker(a)) = 1,

and there is a unique such c by Proposition 3.2. Then a is not nilpotent since V1 6⊂ Y , and so

c ∈ N(S) by Proposition 3.7. Thus, V1 ⊆ ker(c), and so V1 = ker(c) (since rank (c) = n−1), and

therefore c = N1. Thus 0 6= x = N1a, so λ(x) = λ(N1)λ(a), and as λ(a) = 1 (since a 6∈ N(S)),

we get λ(x) = λ(N1), and so λ is constant on N(S).

Finally, if n = 2 there is only one non-zero nilpotent element, and the statement (i) follows.

Otherwise, we have N2
1 6= 0, since rank (N2) = n−1 so rank (N2

1 ) ≥ n−1+n−1−n = n−2 ≥ 1

(n = dim(V ) ≥ 3). Hence, λ = λ(N2
1 ) = λ(N1)λ(N1) = λ2, and as λ 6= 0, we get λ = 1. The

conclusion of (ii) follows. �

Since for n = 2 every two Grassmannian semigroups are conjugate by Corollary 2.16, we have

the following:

Corollary 4.6. Two Grassmannian semigroups are isomorphic if and only if they are semi-

conjugate.

In particular we have:

Corollary 4.7. If K is such that Aut (K) = {IdK}, then two Grassmannian semigroups are

isomorphic if and only if they are conjugate. In particular, two real Grassmannian semigroups

are isomorphic if and only if they are conjugate (since Aut (R) = {Id}).

4.1. Small dimensions. By the previous section, every two Grassmannian semigroups on a

vector space of dimension 2 are isomorphic. We aim to study this problem in dimension 3. Since

every Grassmannian semigroup is conjugate to one in echelon form, we will investigate when

two Grassmannian semigroups in echelon form are isomorphic, and when they are conjugate.

We note that if S,S ′ are Grassmannian semigroups in echelon form, and ϕ : S → S ′ is an

isomorphism such that ϕ(X) = θσ(X)θ−1 for invertible θ, then S0 = σ(S) is also a semigroup

in echelon form, and so S0 and S ′ are conjugate.
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Proposition 4.8. Let S0 and S ′ be Grassmannian semigroups in echelon form that are conjugate

by θ. Then θ = p(Jn(0)), where p is a polynomial and Jn(0) = N1 is the Jordan cell of dimension

n and eigenvalue 0.

Proof. Since the element N1 is in both S0 and S ′, and it is uniquely defined by the internal

semigroup structure and invariant properties described above - invariant property (I2), then the

conjugation isomorphism X 7→ θXθ−1 must take N1 to N1. Hence, θN1 = N1θ. But it is well

known (and computationally straightforward to check) that the centralizer of the Jordan cell

Jn(0) consists of polynomial functions of Jn(0), which ends the proof. �

We apply the previous proposition to determine Grassmannian semigroups of dimension 3 up

to isomorphism. As noted in [1] and Corollary 2.17 above, they are completely determined by

a function f . We determine first when two such semigroups are conjugate. If S(f), S(g) are

two such semigroups associated with the functions f, g : K → K, and conjugation by θ is an

isomorphism between them, then θ =





1 a b

0 1 a

0 0 1



 as noted in the previous proposition (we

may assume the diagonal is 1, since we may always multiply the conjugation matrix by a scalar,

since conjugation by diagonal matrices has no effect). Conjugation will preserve the type (since

type is an intrinsic property of the semigroup structure), and we have




1 a b

0 1 a

0 0 1



 ·





1 w f(w)

0 0 1

0 0 0



 ·





1 a b

0 1 a

0 0 1





−1

=





1 w f(w) + a

0 0 1

0 0 0



 ·





1 −a a2 − b

0 1 −a

0 0 1



 =





1 −a+ w a2 − b− aw + f(w) + a

0 0 a

0 0 0





and therefore we obtain g(w−a) = a2−b−aw+f(w)+a, or, equivalently, g(t) = f(t+a)−at+a−b

for all t ∈ K. Furthermore, it is easy to see that two Grassmannian semigroups S(f),S(g) in

echelon form are isomorphic via an isomorphisms of type σ for σ ∈ Aut (K) if σ(f(w)) = g(σ(w))

for all w ∈ K. Thus, combining the two, we get the following, that recovers in particular another

result of [1].

Proposition 4.9. Let S(f), S(g) be two Grassmannian semigroups in echelon form as in Corol-

lary 2.17, with f, g : K→ K. Then:

(i) S(f),S(g) are conjugate if and only if g(t) = f(t+a)−at+a− b, ∀ t ∈ K for some a, b ∈ K.

(ii) S(f) and S(g) are isomorphic if and only if g(w) = σ(f(σ−1(w))+a)−aσ−1(w)+a−b, ∀w ∈

K for some a, b ∈ K and σ ∈ Aut (K).

Denote by U3(K) the group of unipotent upper triangular matrices of the above type




1 a b

0 1 a

0 0 1



, and Fun(K,K) the set of maps from K to K. Obviously, U3(K) is isomor-

phic to the quotient of the group of units of K[X]/(X3) by the scalars λ ∈ K×, and it is abelian.

Also, Aut (K) acts on this abelian group in the obvious way (acting on each entry). Thus their

semidirect product Aut (K)〉U3(K) acts on Fun(K,K) by the action described in (ii) of the
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above proposition, and by the above remarks the orbits of this action parametrize the set of

isomorphism types of Grassmannian semigroups in M3(K). The cardinality of the group U3(K)

is obviously that of K if K is infinite, and the cardinality of Fun(K,K) is |K||K|, which is larger

than |K|. In particular, when Aut (K) is not too large, we can easily obtain:

Corollary 4.10. If K is an infinite field with Aut (K) = {Id}, or, more generally, if |Aut (K)| <

|K|, then there are |K||K| isomorphism types of Grassmannian semigroups of dimension 3. In

particular, when K = R, the set of isomorphism types of Grassmannian semigroups of dimension

3 has cardinality ℵ2 = 2ℵ1 = 22ℵ
0 .

Given all the above results on the structure of Grassmannian semigroups, one may certainly

ask whether there is an algebraic feature of the semigroup R of row reduced matrices (either an

internal one or one relative to the ambient spaceMn(K) and action on L(Kn)) which distinguishes

R from all other semigroups. Thus, we formulate

Question. Give a characterization of the semigroup R among all Grassmannian semigroups.

One such characterization is given by Remark 3.1; we mention it below without proof, which

can be deduced easily from that 3.1. The following theorem states that the semigroup of row

reduced matrices is that for which the type of an element can be read of a particular fixed basis.

Theorem 4.11. Let S be a Grassmannian semigroup. Then S is isomorphic to R if and only

if there is a basis {e1, . . . , en} such that for every element A ∈ S, if τ = (k1, . . . , ks) is the type

of A, then A(eki
) = ei.

Another perhaps not so remarkable characterization that parallels Proposition 3.10 is the fol-

lowing: a semigroup S which is in echelon form equals the semigroup of row reduced matrices if

for every element A ∈ S, there is a permutation matrix P such that AP is an idempotent.

We note a third characterization ofR, somewhat in the same spirit as the previous two. We make

the following remark: if B is an echelon matrix of type τ = (k1, . . . , kt), then for p ∈ {k1, . . . , kt},

say p = ki, we have that BEp−BEp−1 is a matrix whose only nonzero column is the p’th column

which equals the p’th column of B. In order to have that B is in row reduced form, this column

needs to have just one non-zero element equal to 1 at position (i, ki). Since left multiplication

of B by the elements Ej selects the first j lines and replaces the rest by 0, this can be tested by

asking that EjB = 0 for j < i. Hence, B is in row reduced form if EjBEki
= EjBEki−1 for all

j < ki.

Proposition 4.12. Let S be a Grassmannian semigroup. Let S ′ be a Grassmannian semigroup

in echelon form which is conjugated to S and let Fi ∈ S be elements corresponding to Ei ∈ S
′

via this conjugation. Then S is conjugated to the semigroup of row reduced matrices if and only

if for each B ∈ S of type τ = (k1, . . . , kt), we have EjBEki
= EjBEki−1 for all j < ki.

It is natural to ask whether it is possible to give a characterization of the semigroup of row

reduced matrices, which is an intrinsic algebraic characterization, independent of the embedding

into the ambient matrix algebra. The above proposition could offer some clues on the possibility

of such a characterization. In fact, if the “basic” matrix idempotents Ei that appear in any

Grassmannian semigroup in echelon form could be characterized intrinsically only in terms of

the properties of the semigroup, the above proposition would then offer such a characterization.

Unfortunately, this seems to be hard to achieve. For this, note that if S is a Grassmannian

semigroup in echelon form, then two matrices A,B ∈ S that have the same first n− 1 columns

are indistinguishable by right multiplications (except by identity). That is, if C ∈ S, C 6= I,



GRASSMANNIAN SEMIGROUPS 19

then the last row of C is 0, so AC = BC. Left multiplications on the other hand at a glance

seem to be quite general. In fact, for example, as far as elements of rank 1 are concerned, left

multiplication does not help either, since for any such element A ∈ S with rank(A) = 1, we get

CA = 0 or CA = A for all C ∈ S.

5. Graded algebra structure on Grassmannians and semigroups

We describe a connection between Grassmannian semigroups and a certain graded algebra

structure on Grassmannians. Recall that by GrK(k, n) or Gr(k, n) one denotes the set of

subspaces of Kn, the set of Grassmannians. Recall that Πn has a monoid structure. Let

GrK(n) be the set of all subspaces of the space Kn, that is, the “total” Grassmannian.

One can write GrK(n) =
⋃

τ∈Πn

Wτ , which can be regarded as a bijection obtained by giv-

ing each subspace of Kn a canonical basis of column (or row) reduced vectors (the basis

e1, . . . , en is fixed). Recall that Wτ is the set of matrices of the type A − Pτ , where A is

a row reduced matrix of type τ . Since any subspace of Kn regarded as line vectors has a

unique row reduced basis, we see that GrK(n, t) =
⋃

τ=(k1,...,kt)

Wτ , and each Wτ corresponds

to some Schubert cell. Recall that if τ = (k1, . . . , kt), then Wτ is a subspace of Mn(K) and

dim(Wτ ) = t(n− t) + t(t+ 1)/2− (k1 + · · ·+ kt), so we may view each Wτ as an affine space of

appropriate dimension. If t is fixed this is maximum when (k1, . . . , kt) = (1, . . . , t). This agrees

with the known fact that the dimension of the Grassmannian GK(n, t) is t(n− t).

Let S be a Grassmannian semigroup. By Theorem 2.15 we may assume, after possible con-

jugation by a matrix, that S is in echelon form. Using either Theorem 2.15 or directly the

definition of Grassmannian semigroup and the remarks of the preceding sections, the set of row

reduced matrices of S of type τ is in 1-1 correspondence with the space Wτ ′ and with Wτ .

Let ψτ : Wτ → S be a bijection which parametrizes these matrices; this may be taken to be

algebraic. It is not difficult to observe that if A is an echelon matrix of type τ (with pivots

equal to 1) and B is an echelon matrix of type σ (with pivots equal to 1), then AB is an echelon

matrix of type τσ (with pivots equal to 1). Hence, the semigroup S is graded by the monoid Πn.

Moreover, the maps ψτ can be used to introduce a multiplication on GrK(n) in the following

way:

If A ∈Wτ , B ∈Wσ, then define C = A ∗B ∈Wτσ such that ψτσ(A ∗B) = ψτ (A)ψσ(B)

Since multiplication in S is done by algebraic equations, the set GrK(n) viewed as an algebraic

variety via the union of the maps ψτ , becomes an algebraic variety with a semigroup structure

given by polynomial equations, thus, an algebraic semigroup. The structure of algebraic variety

of GrK(n) obtained this way via the decomposition into affine subspaces GK(n) =
⋃

τ∈Πn

Wτ will

differ from the one obtained via the Plücker embedding into Λ(Kn).

5.1. Representations of Πn and Grassmannian semigroups. Recall that the set of semis-

tandard Young tableaux admits a semigroup structure called the Plactic monoid, which can be

defined in general independently via words in a finite alphabet modulo the Knuth relations. We

note now that the set of Young diagrams also have a semigroup structure multiplication. We

use the French convention for Young diagrams, with the number of boxes in each row increasing

going down.

The shapes of an echelon matrix remind one of Young diagrams. To each type τ we associate a

Young diagram Ys(τ) in a natural way by placing on each row i of Ys(τ) a number ki of boxes. The

Young diagram Ys(τ) has strictly increasing number of boxes in its row, and one can associate
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a Young diagram Y (τ) having ki − i+ 1 boxes in its i’th row (the number of boxes in the rows

of Y (τ) increase non-strictly going down). Note that τ is completely determined by its Young

diagram Ys(τ) and Y (τ). We also note that Y (τ) is the diagram of a partition of length equal to

k1+k2−1+· · ·+kt−(t−1). Thus length(Y (τ)) ≤ (n−t+1)+(n−t+2)−1+· · ·+(n−t+t)−(t−1) =

t(n − t). Further, there is a 1-1 bijection between Young diagrams (partitions) with t rows

of length at most t(n − t) and the set of types τ = (k1, . . . , kt) with kt ≤ n. Let us also

observe that the semigroups Πn can be embedded in each other via the natural embedding of

Mn(K) ⊂ Mn+1(K) which takes an n × n matrix and borders it with 0 down and to the right

to obtain an (n+ 1)× (n+ 1) matrix. Denote Π =
⋃

n

Πn; it is a semigroup (but not a monoid)

since each successive embedding Πn ⊂ Πn+1 is a semigroup map. Moreover, by the above there

is a 1-1 bijection between Π and the set Y of all Young diagrams, and also to the set Y ′ of

all strictly row increasing Young diagrams. Hence, Y has a semigroup structure introduced by

transporting the structure of Π.

More precisely, the y = (s1, . . . , st) is a partition (Young diagram with rows s1 ≤ · · · ≤ st),

let T (y) = (s1, s2 + 1, . . . , st + t − 1) ∈ Πn is a type for any n ≥ st + t − 1. If y, y′ are

two Young diagrams, then their multiplication is given by multiplying their associate types

τ = T (y), τ ′ = T (y′) as elements of the appropriate Πn and taking Young diagram of the

product.

y ∗ y′ = Y (T (y)T (y′))

Multiplication in the semigroup of Young diagrams

The multiplication of the Young diagrams can be described combinatorially as follows. Given

Young diagrams y = (s1, . . . , st), y
′ = (l1, . . . , lp), first construct the strictly row increasing

Young diagrams z, z′ by adding i− 1 boxes to the i’th non-empty row of y and y′ respectively.

Let z′′ be the Young diagram obtained as follows: count the number si of boxes on row i of

z, and then the number mi = lsi
of boxes on row si in the second Young diagram z′, if that

row is non-empty. The number of boxes on row i in z′′ is m or empty if the row si in z′ was

empty. Then the product y ∗ y′ is obtained by deleting appropriate boxes in z′′ to revert it to a

non-decreasing Young diagram, i.e. delete 1 box in the 2-nd row of z′′, 2 boxes in the third etc.

In view of the above connections of Π to Young diagrams and Grassmannians and to better

understand Grassmannian semigroups and Πn, it is interesting to attempt to study their repre-

sentation theory.

As before, let S be a Grassmannian semigroup, which we may assume to be in echelon form. Let

F[S] be its semigroup algebra over some field F. In what follows, we let R = F[S] or R = F[Πn];

the results will apply to both semigroup algebras. We denote as before the idempotents Ei ∈ S

having the first i entries equal to 1 on the main diagonal and 0 elsewhere (they are also elements

of Πn). Denote Z the zero element of S (in order to distinguish it from the element 0 in F[S]

and F[S]). We introduce some notation. In the remaining of this section we will use + and −

for the operations of R, that should be distinguished from the analogous operations on matrices

inside Mn(K). For each 1 ≤ i ≤ n let gi = Ei − Ei−1 ∈ R (the elements Ei and Ei−1 are, of

course, linearly independent), let Pi = giR and Mi = Span{(Ei − Ei−1)A|A ∈ S( or Πn), EiA 6=

Ei} ⊂ Pi. Let P0 = Z ·R = K{Z}. The following is key to the structure of the ring R.

Remark 5.1. For the duration of this remark only, let us denote ⊕ and ⊖ the addition and

subtraction of matrices in Mn(K) (in order to distinguish these from + and − in R). The

product in R of two elements in S is calculated as the usual product in Mn(K), so there is no

danger of confusion there. If A = (aij)i,j ∈ S then giAgj = 0 whenever i > j or aij = 0. To see
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this, note that we have

giAgj = EiAEj − Ei−1AEj − EiAEj−1 + Ei−1AEj−1

We now show that either

(1) EiAEj = Ei−1AEj and EiAEj−1 = Ei−1AEj−1, or

(2) EiAEj = EiAEj−1 and Ei−1AEj−1 = Ei−1AEj,

which will prove the claim. These equalities can be regarded as equalities in Mn(K); note that

we have assumed S (or Πn) is in upper triangular form, so A =
⊕
∑

k≤l

aklekl (meaning a sum in

Mn(K)), where ekl are the standard matrix basis in Mn(K). It is enough to show that either (1)

or (2) holds for A = aklekl, k ≤ l. Now aklEieklEj = aklEi−1eklEj is equivalent to akl(Ei ⊖

Ei−1)eklEj = 0; but Ei ⊖ Ei−1 = eii, so this is further equivalent to aklδikeilEj = 0. Thus, both

equalities in (1) hold if i 6= k, or akl = 0. Similarly, if j 6= l, one easily sees that both equalities

in (2) hold. If i = k, j = l, then i ≤ j the equalities hold since aij = 0 is assumed in this case.

Proposition 5.2. Let A ∈ S be such that EiA 6= Ei. If i ≥ j, then giAgj = 0.

Proof. By the previous remark, to show the identities (1) and (2) we can only consider the case

when i = k and j = l. As i ≥ j and k ≤ l, we have i = j, and in this case the assertion

follow from the previous remark if we prove that aii = 0. Indeed, if aii 6= 0, since A is in

echelon form, one easily sees that it must have pivots at least on lines 1, 2, . . . , i, and so, in

fact, A =

(

A1 A2

0 A3

)

, with A1 a i× i triangular matrix with 1 on diagonal. Using arguments

as before, for example, because the sequence (As)s stabilizes, it follows that A1 = Ii, and this

shows that EiA = Ei, a contradiction. �

The above easy computational observation helps determine the Jacobson radical of R. With the

notations above of Pi and Mi, we have:

Proposition 5.3. Each Mi, i ≥ 1, is a maximal submodule of Pi, and Pi are projective in-

decomposable. Moreover, J(R) = M1 ⊕ · · · ⊕Mn, J(R)n+1 = 0, and Si = Pi/Mi, i ≥ 1 and

S0 = P0 are, up to isomorphism, the n+ 1 types of simple right R-modules.

Proof. Let M = M1 ⊕ · · · ⊕Mn. Note that M , and each Mi, are right ideals of R. For this,

it suffices to show that if EiA 6= Ei with A ∈ S, then EiAB 6= Ei. This follows immediately

if we write the matrices Ei, A,B in block triangular form with two blocks of sizes i and n − i

respectively on the diagonal.

We now show that Mn+1 = 0. It is enough to consider an element x = xi1 . . . xinxin+1
, with

xit ∈Mit and show that x = 0, since every element in Mn+1 is a sum of such product elements

x. This x is an element of R of the type gi1A1gi2A2 . . . ginAngin+1
An+1, with At ∈ S, ∀t. As the

sequence i1, i2, . . . , in+1 is contained in {1, 2, . . . , n}, it cannot be strictly increasing, so there is

some is ≥ is+1. By the previous proposition, gisAsgis+1
= 0 since EisAs 6= Eis (gisAs ∈ Mis),

and so such a product equals 0 in R. Hence, M is a nilpotent right ideal, and so it must be

contained in J(R). Conversely, note that Pi/Mi is simple (it is 1-dimensional), so Mi is maximal

in Pi, and so J(R) ⊆ M . Now, one notes without difficulty that Mi = PiJ(R). This ends the

proof. �

Corollary 5.4. We have Ext1R(Sj , Si) = 0 if j ≥ i ≥ 0 and Ext1(Si, S0) = Ext1(S0, Si) = 0, so

the Ext quiver of R consists of a line with n vertices and an isolated point.
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Proof. This follows immediately since gjRgi = 0 for j > i and giJgi = giMigi = 0 so

HomR(Pi, Pj) = 0 if j > i and HomR(Pi, Pi) = F. The part about the extensions with

S0 = R · Z = F− Span{Z} is obvious. �

Hence, the Ext quiver of R is 1 −→ 2 −→ . . . −→ n ⊔ 0, the simple modules are 1 dimensional,

and the Jacobson radical is nilpotent.

Now let R = F[Πn], where Πn is the semigroup of the 2n possible types of echelon matrices of

size n. We may identify the elements Pτ of Πn with their type τ = (k1, . . . , kt). By Remark

5.1, we see that giPτgj = 0 if Pτ has 0 at position (i, j). This can be avoided only if ki = j.

In this case, note that multiplying Pτ to the left by some El retains the first l lines of Pτ and

everything else is made 0, and multiplying it by Ep to the right retains the upper left p× p part

of Pτ , and everything else is made 0. It is then not hard to notice that in R we have

giPτgj = P(k1,k2,...,ki) − P(k1,k2,...,ki−1)

if ki = j. These elements span giRgj and a basis for giRgj is given by the set {P(k1,k2,...,ki−1,j)−

P(k1,k2,...,ki−1)|1 ≤ k1 < · · · < ki−1 ≤ j − 1}. Hence, we have that

dim(giRgj) =

(

i− 1

j − 1

)

.

Hence, using the fact that Rgj =
⊕

i≤j

giRgj and giR =
⊕

i≤j

giRgj and well known combinatorial

identities, we obtain the following

Corollary 5.5. If R = F[Πn] then

dim(Rgi) = 2i−1 if i ≥ 1 and dim(Rg0).

dim(giR) =

(

n

i

)

if i ≥ 1 and dim(g0R) = 1.

Using the above, the structure of some of the algebras F[Πn] for small n can be easily determined.

We include the following result without proof, which is left to the reader, but note that (iii)

follows from the fact that dim(giRgi+1) = i = dim(Ext1R(Si+1, Si)).

Corollary 5.6. (i) F[P2] ∼= F × T2(F), where T2(F) is the algebra of upper triangular 2 × 2

matrices over F.

(ii) F[P3] decomposes into indecomposable projectives of dimensions 4, 2, 1, 1, as a left module and

into indecomposable projectives of dimensions (1, 3, 3, 1) as right modules, and it is isomorphic

to path algebra of the quiver

• • // •
$$

:: •

with one relation that identifies the two paths of length 2.

(iii) F[Pn] is a quotient of the path algebra of the quiver Qn with n+ 1 vertices

• • // • **
44 •

++
//
33 . . . ... **

n−2

44 •
$$

... **

n−1

44 •

where between vertex i and i+ 1 there are i arrows (all oriented to the right).

We also remark that F[Πn] has a bialgebra structure, as a semigroup bialgebra, with comulti-

plication given by ∆(x) = x⊗x and ε(x) = 1 for x ∈ Πn. Thus, representations of F[Πn] have a

natural tensor product, and the free abelian group on the equivalence classes of representations

of Πn becomes a ring - the representation ring (or Green ring) of F[Πn].
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It would perhaps be interesting to determine the structure of F[Πn] as a quiver algebra with

relations. As we have seen before,

giPτgj = P(k1,k2,...,ki) − P(k1,k2,...,ki−1)

and this the elements Rk1,k2,...,ki
= {P(k1,k2,...,ki−1,j) − P(k1,k2,...,ki−1)|1 ≤ k1 < · · · < ki−1 ≤

j − 1, ki = j} provides a basis for giRgj . One can show that the multiplication on this basis of

R consisting of these elements and including g0, is done as follows. If R(k(1),...,k(i)) ∈ giRgj is

such that k(i) = j and R(s(1),...,s(j)) ∈ gjRgk is such that s(j) = k, then

R(k(1),...,k(i)) ·R(s(1),...,s(j)) = R(sk(1),...,sk(i)); sk(i) = k

which makes the “non-zero” part
⊕

1≤i≤j

giRgj of F[Πn] into a monoid algebra. These elements

can be used to be identified with certain paths in the path algebra of the above quiver Qn.

One may also wonder what is the relation of F[Πn] and the Grassmann (exterior) algebra Λn(F).

Of course, they are not isomorphic: F[Πn] has n simple 1-dimensional modules, and is not

Frobenius, while Λn(F) is even a Hopf algebra (so it is Frobenius), and it is local.
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