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Abstract

Given a symplectic manifold (X,ω), an almost complex structure J , and an antisym-

plectic involution φ, we study genus zero real J-holomorphic curves in X. There are

two types of such curves, those that can be divided into two J-holomorphic discs and

those that cannot. Moduli spaces of J-holomorphic discs are more studied in the

literature; in this case, we develop and use some degeneration techniques to add to

the previous results and get a better understanding of these moduli spaces. We also

study the second case, for which the orientation problem is different and define (and

calculate) some invariants using these moduli spaces. As shown in this thesis, these

two cases are tied together and often need to be combined to get a fully well-defined

theory.
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Chapter 1

Introduction

Let (X,ω, φ) be a symplectic manifold, which we will assume to be connected through-

out this thesis, with a real structure φ, i.e a diffeomorphism φ : X → X such that

φ2 = idX and φ∗ω = −ω. Let L = Fix(φ) ⊂ X be the fixed point locus of φ; L

is a Lagrangian submanifold of (X,ω) which can be empty. In the simplest case of

(X,ω) = (P1, ωFS), where ωFS is the Fubini-Study symplectic form, there are involu-

tions of both types. An almost complex structure J on TX is called (ω, φ)-compatible

if φ∗J = −J and ω(·, J ·) is a metric.

Fix a compatible almost complex structure J . Let u : P1 → X be an n-marked

somewhere injective J-holomorphic sphere, i.e.

du+ J ◦ du ◦ j = 0, u−1(u(z)) = {z} for almost every z ∈ P1,

where j is the complex structure of P1. We call such a J-holomorphic map real if its

image (as a marked curve) is invariant under the action of φ. In this case, pulling

back φ to P1, we get an involution on P1, which may or may not have fixed points

and preserves the set of marked points.

There are two isomorphism classes of antisymplectic involutions on P1: those

that have fixed points and those that do not. After a change of coordinates, an
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antisymplectic involution with fixed points can be written as

τ : P1 → P1, τ([z, w]) = [w̄, z̄],

while a fixed point free involution can be written as

τ : P1 → P1, τ([z, w]) = [w̄,−z̄].

We define Ml(X,A)φ,η to be the moduli space of degree A genus zero J-

holomorphic curves u : P1 → X satisfying

u = φ ◦ u ◦ η

with l = n
2

pairs of disjoint conjugate marked points. Similarly, we define

Mk,l(X, β)φ,τ to be the moduli space of degree A genus zero J-holomorphic curves

u : P1 → X satisfying

u = φ ◦ u ◦ τ (1.1)

with k real marked points and l = n−k
2

pairs of disjoint conjugate marked points. By

[20, Appendix C], these moduli spaces have real virtual dimension

dimvirMl(X,A)φ,η, dimvirMk,l(X,A)φ,τ = dimCX + c1(A) + n− 3.

Every n-marked J-holomorphic map u : P1 → X satisfying (1.1) corresponds to

two J holomorphic discs

u : (D2, S1)→ (X,L)

with k boundary marked points and l interior marked points, with k+ 2l = n, repre-

senting some relative homology classes β,−φ∗β ∈ H2(X,L). We defineMdisc
k,l (X,L, β)

to be the moduli space of such J-holomorphic discs. The two discs above need not
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be in the same homology class, but both have the same Maslov index and symplec-

tic area; see [7, Definition 2.4.17]. In the presence of an involution, we define an

equivalence relation ∼ on H2(X,L) by

β1 ∼ β2 ⇔ µ(β1) = µ(β2), ω(β1) = ω(β2). (1.2)

In the the definition of Mdisc
k,l (X,L, β), we often consider β to be an element of

H2(X,L)/ ∼, instead of H2(X,L). For an arbitrary pair (X,L), we define the moduli

space Mdisc
k,l (X,L, β) without any involution.

In all cases above, let Mn(X,A)φ,η, Mn(X,A)φ,τ , and Mdisc

k,l (X,L, β) be the sta-

ble map compactifications of Mn(X,A)φ,η, Mn(X,A)φ,τ , and Mdisc
k,l (X,L, β); see [7,

Section 7] for the definition. Let

evi : Ml(X,A)φ,η → X, evi([u,Σ, (ξj = (zj, η(zj)))
l
j=1]) = u(zi),

evBi : Mdisc

k,l (X,L, β)→ L, evBi ([u,Σ, (wj)
k
j=1, (zj)

l
j=1)]) = u(wi),

evi : M
disc

k,l (X,L, β)→ X, evi([u,Σ, (wj)
k
j=1, (zj)

l
j=1)]) = u(zi),

(1.3)

be the natural evaluation maps.

For the classic moduli space Mn(X,A) of J-holomorphic spheres in homology

class A, Gromov-Witten invariants are defined via integrals of the form

〈θ1, · · · , θn〉A =

∫
[Mn(X,A)]vir

ev∗1(θ1) ∧ · · · ∧ ev∗n(θn), (1.4)

where θi’s are cohomology classes on X (see [6],[17],[24]). For these integrals to

make sense and to be independent of J ,Mn(X,A) should have a virtually orientable

fundamental cycle without real codimension one boundary.

3



One would like to define similar invariants for the moduli spaces and evaluation

maps in (1.3). The existence of such invariants for Mdisc

k,l (X,L, β) is predicted by

physicists ([1], [13], [22], [32]), but there are obstacles to defining such invariants

mathematically. In addition to the transversality issues (which are also present in the

classical case), issues concerning orientability and codimension one boundary arise.

1.1 Open GW invariants

Open GW invariants, i.e. invariants arising from the moduli space Mdisc

k,l (X,L, β),

have been defined in a number of settings by Liu [18], Welschinger [26],[27],[28],

Solomon [25], Fukaya [5], and Georgieva [9].

The moduli spaces Mdisc

k,l (X,L, β) have two types of codimension one boundary;

see Figure 1.1. The first type, called disc bubbling, consists of maps from two discs

with a boundary point in common. This boundary breaks into unions of components

isomorphic to

Mdisc
1+k1,l1

(X,L, β1)×(evB1 ,evB1 )Mdisc
1+k2,l2

(X,L, β2)/G, (1.5)

where

k1 + k2 = k, l1 + l2 = l, β1 + β2 = β, G =


Z2, if k, l = 0, β1 = β2;

{1}, otherwise.

The second type, called sphere bubbling, appears only if k = 0 and β lies in the image

of the natural homomorphism j : H2(X) → H2(X,L). It consists of maps from P1
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Figure 1.1: The codimension one boundary in Mdisc

k,l (X,L, β)

taking an extra marked point to L. This boundary is isomorphic to

⊔
β̃∈j−1(β)

M1+l(X, β̃)×ev1 L. (1.6)

The boundary problem is present in nearly all cases. It has been overcome in a number

of cases by either adding other terms to compensate for the effect of the boundary

([30], [31], [5]) or by gluing boundary components to each other to get moduli spaces

without boundary ([25], [9]). None of these methods can address the issue of sphere

bubbling; we return to this issue in Section 1.3.

Whereas moduli spaces of closed curves have a canonical orientation induced by J ,

Mdisc

k,l (X,L, β) is not necessarily orientable. Moreover, if it is orientable, there is no

canonical orientation. If L has a spin structure, thenMdisc

k,l (X,L, β) is orientable and

a choice of spin structure canonically determines an orientation on Mdisc

k,l (X,L, β);

see [7, Section 8].

In [25], the disc bubbling problem is resolved by using the involution φ on X

to identify the disc bubbling boundary components and thus define a moduli space

without such boundary. If the sphere bubbling does not happen, e.g. when ∂β 6= 0 ∈
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H1(X,L), the resulting moduli space is orientable and gives rise to some invariants

of (X,ω, φ).

Open GW counts for (X,L), when X is a Calabi-Yau threefold and L ∼= S3, are

defined in [5]. These counts depend on the choice of almost-complex structure via

a wall-crossing formula, due to the sphere bubbling issue. They are a priori real

numbers, which are predicted in [5] and shown in this thesis to be rational; see [5,

Conjecture 8.1] and Corollary 1.2 below.

We use degeneration techniques to get a better understanding of moduli spaces

of J-holomorphic discs and to compute open GW invariants. If the Lagrangian L is

Sn or RPn, we degenerate the symplectic manifold X to a nodal singular symplectic

manifold, X+ ∪D X−, where D is the intersection divisor, through a family of sym-

plectic manifolds over a small disk, π : X → ∆. We then relate the moduli spaces in

the smooth fibers to some fiber product of the moduli spaces in the singular fiber.

The benefit of this approach is that we can transfer some of the obstacles mentioned

above to better known symplectic manifolds (e.g. projective spaces) independent of

the original manifold. As an application, we obtain the following result.

Theorem 1.1. Let (X2n, ω) be a symplectic manifold with n ≥ 3 and c1(TX) = 0.

If L ⊂ X is a Lagrangian submanifold diffeomorphic to Sn and E ∈ R+, there is an

open subset UE of the set J of all (ω, L)-compatible almost-complex structures such

that the moduli space Mdisc
(X,L, J, β) is empty whenever ω(β) < E and J ∈ UE.

This result is also stated in [29, Corollary 4.3]. Its proof in [29] involves de-

generating the almost-complex structure to a singular one obtained by stretching a

neighborhood of the Lagrangian and studying the behavior of the moduli space in

the limit. This stretching surgery appears in Symplectic Field Theory [4] and can

be performed near any Lagrangian manifold in any symplectic manifold, but the re-

sult is a non-compact manifold. By contrast, our techniques work only if there is a

Hamiltonian S1-action in T ∗L, but we get closed symplectic manifolds in the end. We
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show that as we move toward certain exotic almost complex structures, the sphere

bubbling happens for all J-holomorphic discs and they all disappear.

Corollary 1.2. The disc counts for (X,L), where (X,ω) is a Calabi-Yau threefold

and L ⊂ X is a Lagrangian submanifold diffeomorphic to S3, defined by [5] are

rational numbers.

This corollary, which confirms [5, Conjecture 8.1], follows immediately from The-

orem 1.1, since the wall crossing changes the disc counts defined in [5] by rational

numbers; see [5, Section 6].

Corollary 1.3. Let (X2n, ω) be a symplectic manifold with n ≥ 3 and c1(TX) = 0.

If L ⊂ X is a Lagrangian submanifold diffeomorphic to Sn, then L is not displacable,

i.e. there exists no Hamiltonian isotopy ψt : X → X such that ψ1(X) ∩X = ∅.

This corollary is a special case of [7, Theorem H], but our argument avoids the

technical issues that are the focus of [7]. Since there are no J-holomorphic discs in

(X,L), there is no difficulty in defining the Floer homology groups for Lagrangians

L1, L2, with either L1 = L2 or L1 t L2, as described in [7, Section 1.1], or showing

that they are preserved when either Lagrangian is deformed by a Hamiltonian isotopy.

Thus, if ψt : X → X is any Hamiltonian isotopy such that L t ψ1(L), then

HF ∗(L, ψ1(L)) ∼= HF ∗(L,L) ∼= H∗(L),

which implies that L is not displacable.

Let π : X → ∆ be a family of symplectic manifolds over a disk ∆ ⊂ C obtained

from the symplectic sum construction for X+ ∪D X−; see the paragraph preceding

Theorem 1.1. An antisymplectic involution φ on X such that L = Fix(φ) is Sn or RPn

then induces an antisymplectic involution φX on X covering the standard conjugation
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on ∆ such that Fix(φX ) ∩X+ = ∅; see Corollary 2.9. In particular, Proposition 1.5

below applies to (X+, φ+). On the other hand, (X−, φ−) is a symplectic manifold

with a real structure independent of X. For example, if L ∼= RPn, then (X−, φ−)

is symplectomorphic to (Pn, ωFS, τn), where ωFS is some multiple of Fubini-Study

metric and τn is the standard complex conjugation; if L ∼= Sn, then (X−, φ−) is

symplectomorphic to (Qn, ωFS, τn+1), where Qn ⊂ Pn+1 is a quadratic hypersurface

given by a real equation.

By contrast with the spherical case of Theorem 1.1, non-trivial open GW invariants

do exist when L is diffeomorphic to the real projective plane. For example, the odd-

degree open invariants of the quintic threefold computed in [23] are not zero. In [23],

equivariant localization technique is used to reduce the computation in the open case

to the closed case. Our approach is different, but similar in flavor: we use degeneration

to reduce many computations in the open case to the closed relative case.

Theorem 1.4. Let (X6, ω, φ) be a symplectic manifold with c1(TX) = 0 and L ∼=

RP3. For any equivalence class β ∈ H2(X,L)/ ∼ with ∂β 6= 0 ∈ H1(L), the open GW

invariants Ndisc
β are a universal linear combination of the relative GW invariants of a

pair (X+, D), where X+ is a symplectic 6-fold with c1(X+) = 0 canonically constructed

from X and D is a smooth divisor diffeomorphic to P1 × P1.

This is proved in Section 5.2, where we derive an explicit formula relating the

open GW invariants of X and relative invariants of (X+, D). Although we state these

theorems for Calabi-Yau manifolds, our degeneration technique can be used for any

manifold X, as long as L is Sn, RPn, or some other special Lens space; see Chapter 2.

1.2 Real GW invariants

The moduli spaces Mn(X,A)φ,η have mostly been ignored in the literature. As we

show, the codimension one boundary consists of maps from a wedge of two spheres
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taking node to L. The restriction of each map to the two spheres determines elements

of M1+n(X,A/2), where A ∈ H2(X)/ ∼, that differ by the involution

φM : M1+n(X,A/2)×ev1 L→M1+n(X,A/2)×ev1 L,

φM[u(z), (z0, · · · , zl)] = [φ ◦ u ◦ c, (−z̄0, · · · ,−z̄n)],

(1.7)

where c : P1 → P1, c(z) = −z̄. Thus, the codimension one boundary breaks into

unions of components isomorphic to

M1+n(X,A/2)×ev1 L/Z2. (1.8)

In particular, if Fix(φ) = ∅, there are no codimension boundary components, and we

obtain the following result.

Proposition 1.5. If (X,ω, φ) is a symplectic manifold with a real structure φ and

Fix(φ) = ∅, Mn(X,A)φ,η has a topology with respect to which it is compact and

Hausdorff. It has a Kuranishi structure without boundary of virtual real dimension

d = c1(A) + dimCX − 3 + 2n.

Thus, it determines an element of Hd(Mn(X,A)φ,η,O), where O is the orientation

bundle.

This proposition is proved in Chapter 3. In order to define invariants, we also

need to consider the orientation problem, which has not been studied before. A real

structure on a vector bundle E → X is an anticomplex linear involution φE : E → E

covering φ. A real square root of any complex line bundle E → X with real structure

φE is a complex line bundle E ′ → X with real structure φE′ such that

(E, φE) ∼= (E ′ ⊗ E ′, φE′ ⊗ φE′).

9



The involution φ on X canonically lifts to an involution φKX on the complex line

bundle KX = Λtop
C T ∗X.

Theorem 1.6. Let (X,ω, φ) be a symplectic manifold with a real structure. If

(KX , φKX ) admits a real square root, all moduli spaces Mn(X,A)φ,η are orientable.

Moreover, a choice of a real square root canonically determines an orientation on

Mn(X,A)φ,η.

This theorem is proved in Section 3.3.

Remark 1.7. If L → P1 a holomorphic line bundle with a complex antilinear lift η̃

of η : P1 → P1, for all k ∈ Z there is a decomposition

H0(L⊗ (TP1)⊗k) = H0
+(L⊗ (TP1)⊗k)⊕H0

−(L⊗ (TP1)⊗k)

into the ±1 eigenspaces of the endomorphism

H0(L⊗ (TP1)⊗k)→ H0(L⊗ (TP1)⊗k), ξ → η̃ ◦ ξ ◦ η;

the two eigenspaces are interchanged by J . Since the action of η on P1 has no fixed

points and H0(L⊗ (TP1)⊗k) is nonzero for k large enough, the zeros of every element

of H0
+(L ⊗ (TP1)⊗k) come in pairs and thus degL is even. Hence, if Mn(X,A)φ,η

is non-empty, then 2|KX(A). Thus, if KX has a real square root, then 4|KX(A)

whenever Mn(X,A)φ,η is non-empty.

Remark 1.8. If (X,ω, φ) is a Kahler manifold with a complex conjugation φ and

E ′ → X is a holomorphic bundle, then E ′ ⊗ φ∗E ′ is a holomorphic line bundle with

a real structure. Hence, if E → X is a holomorphic line bundle, E = 2E ′, and

φ∗E ′ = E ′, then E admits a real structure. Since φ∗KX = KX , it follows that KX

admits a real square root if 4|KX .
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Conjecture 1.9. If 4|KX(A), then Mn(X,A)φ,η is orientable.

An example withMn(X,A)φ,η non-orientable is described in Section 3.3. However,

we are not aware of any example with X simply connected and Mn(X,A)φ,η not

orientable.

These invariants in some cases are computed in Chapter 6 and compared to similar

disc invariants. If c1(TX) = 0, then dimvirM(X,A)φ,η = 0; in this case we define

N real
A to be the virtual count

N real
A (X) = #[M(X,A)φ,η]vir ∈ Q.

1.3 Mixed GW invariants

If the sphere bubbling is present, we cannot define disc invariants. In this case, instead

of the moduli spaceMdisc
0,l (X, β), we consider its Z2-quotientM0,l(X,A)φ,τ (or simply

Ml(X,A)φ,τ ). As described in Sections 1.1 and 1.2, the codimension one boundary

corresponding to sphere bubbling inMl(X,A)φ,τ is the same as the codimension one

boundary of Ml(X,A)φ,η. By attaching Ml(X,A)φ,τ and Ml(X,A)φ,η along their

common boundary, we obtain a moduli space Ml(X,A)φ whose codimension one

boundary corresponds to disc bubbling in Mdisc

0,l (X, β). We then use the method

of [25] to identify the boundary components of Ml(X,A)φ and get a moduli space

M̃l(X,A)φ without boundary. If L ∼= S3 and X is a real symplectic Calabi-Yau

threefold, then M̃(X,A)φ is zero-dimensional and orientable. Therefore, we can define

mixed real GW invariants of (X,φ) by

Nφ
A(X) = #[M̃(X,A)φ]vir, A ∈ H2(X)/ ∼ .

By applying our degeneration technique, we prove the following statement in Sec-

tion 5.
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Theorem 1.10. Let (X6, ω, φ) be a real symplectic manifold with c1(TX) = 0. If

L ∼= S3, then

Nφ
A(X) = N real

A (X+).

In Chapter 2, we describe our degeneration setting, reviewing the symplectic cut

and sum constructions along the way. We also show that ever antisymplectic invo-

lution φ is ”standard” in a properly chosen Weinstein neighborhood of Fix(φ); see

Lemma 2.8. In Chapter 3, we investigate the boundary and orientation problems for

moduli spaces of real curves without fixed point and define some new invariants. In

Chapter 4, we first review the definition of open GW invariants, then discuss some

examples for Calabi-Yau threefolds, and finally introduce the notion of relative open

invariants. In Chapter 5, we construct moduli spaces of discs over a family of sym-

plectic manifolds obtained by the symplectic sum, paying special attention to the

moduli space over singular fiber, and then prove Theorems 1.4 and 1.10. Finally, in

Chapter 6, we compute some real and open GW invariants of P3 and compare them

with each other.
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Chapter 2

A fibration corresponding to Lens

spaces

The symplectic cut procedure, introduced in [14], is a surgery technique for symplectic

manifolds by means of which we can decompose a given symplectic manifold into two

pieces, each again a symplectic manifold. There is an inverse operation, the symplectic

sum, that glues two manifolds into one.

Let ∆ ⊂ C denote a disk centered at the origin and ∆∗ = ∆ \ 0. If π : X → ∆

is any map and λ ∈ ∆, let Xλ ≡ π−1(λ) be the fiber over λ. A symplectic fibration is

a pair (π : X → ∆, ωX ) such that π is surjective, (X , ωX ) is a symplectic manifold,

Xλ is a symplectic submanifold of (X , ωX ) for every λ ∈ ∆∗, and X0 is a union of

symplectic submanifolds of (X , ωX ) meeting along smooth symplectic divisors. A

Lagrangian subfibration of (π : X → ∆, ωX ) is a submanifold L ⊂ X disjoint from the

singular locus of X0 such that π(L) = ∆ and Lλ ⊂ Xλ is a Lagrangian submanifold

for every λ ∈ ∆. Thus, L ∼= L0×∆ as fibrations over ∆ and (Xλ, Lλ) is symplectically

isotopic to (Xλ′ , Lλ′) for all λ, λ′ ∈ ∆∗.

An admissible almost complex structure on a symplectic fibration (π : X → ∆, ωX )

is an ωX -compatible almost complex structure on X which preserves ker dπ, restricts
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to an almost complex structure on the singular locus D of X0, and satisfies

NJX (u, v) ∈ TxD ∀ u ∈ TxD, v ∈ TxX0, x ∈ D,

where NJX is the Nijenhuis tensor of JX . We denote the set of all admissible almost

complex structures on X by JX . A real structure on a symplectic fibration (π :

X → ∆, ωX ) is an anti-symplectic involution φX : X → X covering the standard

complex conjugation on ∆. A φX -compatible admissible almost complex structure on

(π : X → ∆, ωX ) is an element JX ∈ JX such that φ∗XJX = −JX . We denote the set

of such almost complex structures by JφX .

A Lens space is the quotient of Sn by a free Zk-action by isometries. Every fixed-

point free map Sn → Sn is homotopic to the antipodal map, which has degree −1 if

n is even. Thus, if Zk acts freely on Sn with n even, then k ≤ 2. If n = 2m−1, a free

action of Zk on Sn ⊂ Cm by isometries is generated by a map of the form

Sn → Sn, (z1, . . . , zm)→ (ξ1z1, . . . , ξmzm),

for some primitive k-th roots ξ1, . . . , ξm of 1. Any such action extends to an action on

Qn ≡
{

[z0, . . . , zn+1]∈Pn+1 : z20 =

n+1∑
j=1

z2j
}
⊃ QnR ≡ Qn ∩ RPn ∼= Sn,

[z0, . . . , zn+1]→


[z0,−z1, . . . ,−zn+1], if k=2,

[z0, ξ
R
1 z1+ξiR1 z2, ξ

R
1 z2−ξiR1 z1, . . . , ξRmzn+ξiRm zn+1, ξ

R
mzn+1−ξiRm zn], ifn=2m−1,

where ξRj and ξiRj are the real and imaginary parts of ξj, respectively. This extension

preserves the divisor

Dn ≡
{

[z0, . . . , zn+1]∈Qn : z0 =0
} ∼= Qn−1.
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We call a Lens space Sn/Zk archetypal if k = 1, 2 or if the induced action of Zk on

Qn is free. Furthermore, Qn
R is the fixed-point locus of the restriction τQn to Qn of the

standard involution

τn+1 : Pn+1 → Pn+1, [z0, . . . , zn+1]→ [z̄0, . . . , z̄n+1].

This restriction induces an anti-symplectic involution on the quotient Qn/Zk, which

we still denote by τQn .

Proposition 2.1. Let (X,ω) be a symplectic n-fold with a Lagrangian L diffeomor-

phic to an archetypal Lens space Sn/Zk. There exists a symplectic fibration π : X →∆

with a Lagrangian subfibration L and X0 = X−∪DX+, where X− and X+ are sym-

plectic manifolds and D = X− ∩X+, so that

1. (Xλ, ωX |Xλ , Lλ) is symplectically isotopic to (X,ω, L) for every λ ∈ ∆∗;

2. L0 ⊂ X− and (X−, ωX |X− , D, L0)is symplectomorphic to (Qn/Zk, ωFS, Dn/Zk, QnR/Zk);

3. c1(TX+) =
2k−δk,2−n

k
PDX+ [D] if c1(TX) = 0.

Moreover, the space JX is non-empty and path-connected.

If in addition L = Fix(φ) for a real structure φ on (X,ω), the above symplectic

fibration can be chosen so that it admits a real structure φX with L = Fix(φX ),

(Xλ, ωX |Xλ , φ|Xλ) symplectically isotopic to (X,ω, φ) for every λ ∈ ∆∗, and

(X−, ωX |X− , D, φX |X−) symplectomorphic to (Qn/Zk, ωFS, Dn/Zk, τQn ). In this case,

the space JφX is non-empty and path-connected.

Remark 2.2. If the action of Zk on Qn is not free, then Qn/Zk may be an orbifold

and we get a fibration X which is singular along D. By resolving the singularities

we get a fibration similar to that of Proposition 2.1, but in this thesis we are only

interested in the k = 1, 2 cases.
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Remark 2.3. Let SM be the category of all projective varieties (of any dimension).

Let SM+ be the free abelian group generated by SM and RS ⊂ SM+ be the set

of all double point relations

[X]− [X−]− [X+] + [P(N
X±
D ⊕ C)],

where X is the symplectic sum of (X±, D) and P(N
X±
D ⊕C) is a P1 bundle over D. By

[15, Corollary 3], SM+/RS is generated by the product of projective spaces. Thus,

theoretically a problem can be reduced to one for projective spaces if we know how

things change in a symplectic sum/cut.

In Section 2.1, we review the symplectic cut procedure and apply it to a canon-

ical S1-action on T ∗Sn. In Section 2.2, we outline the symplectic sum procedure,

apply it to the result of the symplectic cut of the previous section, and build the

symplectic fibration of Proposition 2.1. Finally in Section 2.3, we show that a real

structure on the starting manifold induces an involution on the symplectic fibration

of Proposition 2.1.

2.1 Symplectic cut

Let (X2n, ω) be a symplectic manifold and V 2n−1 ⊂ X be a smooth orientable sub-

manifold of X with a free Hamiltonian S1-action on some open neighborhood U of

V . Let h : U → R be its moment map. Assume that a ∈ R is a regular value for

h and that V = Va = h−1(a) ⊂ X. Since Va is then invariant under the S1-action,

we can construct the quotient space D = V/S1. It inherits a symplectic structure

from X and has real dimension dimRX − 2; see [21, Theorem 1]. We construct a

new symplectic manifold (Xcut, ωcut) by cutting X along Va and contracting the two

boundaries with respect to the S1-action in such a way that Xcut contains two copies

of D as symplectic divisors with dual normal bundles.

16



More precisely, extend the S1-action on U ⊂ X to (U×C, ω⊕ω0) by multiplication

by e±iθ in the second factor. This is a Hamiltonian action with moment map

h± : U × C→ R, (x, z)→ h(x)∓ |z|
2

2
,

for which a ∈ R is still a regular value. Let V± = h−1
± (a) and U± = V±/S

1. The

smooth open manifold U± inherits a symplectic structure ω± from ω ⊕ ω0. The

symplectic divisors

D = D± = (V± ∩ (U × {0}))/S1

are identical to the symplectic manifold D = h−1(a)/S1 and N
U−
D
∼= (N

U+

D )∗. Define

Xcut to be the closed symplectic manifold obtained by gluing the open charts U± and

X \ V via the symplectic gluing map

U±(h−a)>0 ⊂ X \ V → U± \D, x→ (x,
√
±(h(x)− a)) ∈ V±

proj−→ U±, (2.1)

on the overlap. If V seperates X into two connected components, then Xcut is a union

of two symplectic manifolds (X±, ω±) with X± containing U±.

Suppose L ∼= Sn or RPn. There is a metric g on TL with respect to which all

geodesics are circles of fixed length. The metric g on TL induces a metric g−1 on

T ∗L, where T ∗L is the cotangent bundle with its canonical symplectic form ωL. Let

(x1, · · · , xn, y1, · · · , yn) be local coordinates on T ∗L obtained by the representation∑
yidx

i of 1-forms. Consider the length function h(x, y) =
√
yiyjgij on T ∗L associ-

ated to g−1. This function is smooth away from the zero section L0 of T ∗L. Let ϕt

be the Hamiltonian flow corresponding to h on T ∗L \ L0. Every trajectory of ϕt is

dual with respect to g to γ′ ⊂ TL for some geodesic γ in L. Therefore, ϕt is a free

Hamiltonian S1-action on T ∗L \ L0. Applying the symplectic cut procedure to this

S1-action in a neighborhood of Va = h−1(a), a > 0, we get two symplectic manifolds
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(T ∗L)+ and (T ∗L)−. Since L = {h ≡ 0} ⊂ (h < a), we get a copy of L inside (T ∗L)−,

which is disjoint from the symplectic divisor D ∼= h−1(a)/S1. Up to a scalar factor,

the symplectic geometry of ((T ∗L)−, w−) only depends on L.

If L ⊂ X is a Lagrangian manifold, by Weinstein neighborhood theorem, a neigh-

borhood UL ⊂ X of L is symplectomorphic to a neighborhood of L0 ⊂ T ∗L. There-

fore, if L is a Lens space, there is an S1-action on UL \ L (for UL small enough).

Let X± be the symplectic manifolds obtained by symplectic cut with respect to this

action.

If L ∼= Sn/Zk is an archetypal Lens space other than Sn and RPn, the isometric

action of Zk on Sn extends to T ∗Sn and maps the S1-orbits to the S1-orbits. Thus,

it extends to an action of Zk on (T ∗Sn)±. By definition, this action is free and we

define (T ∗L)± to be quotient of T ∗Sn with respect to this action.

2.2 Symplectic sum

In this section, we review the symplectic sum construction, following [12, Section 2].

Throughout this section (X±, D) are two symplectic manifolds each containing a copy

of a symplectic divisor D so that their normal bundles N
X±
D are dual to each other.

The symplectic sum construction involves gluing three open symplectic charts:

X± = (X± \D)×∆, Xneck = {(p, x, y)∈NX+

D ⊕N
X−
D | |x|, |y| ≤ 1, |xy| < δ},

where ∆ ⊂ C is a small disk, δ ∈ R+ is sufficiently small, and | · | denotes a Hermitian

norm on N
X+

D and the dual Hermitian norm on N
X−
D
∼= (N

X+

D )∗. The symplectic

structure on X± is isomorphic to ω± ⊕ ω0.

Given a complex line bundle π : E → D, fix a hermitian metric on E. Let

ρ : E → R, ρ(x) =
1

2
|x|2, ρ∗ : E∗ → R, ρ∗(y) =

1

2
|y|2.
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A Hermittian connection in E defines a 1-form α on E\D with α(∂θ) = 1. This is the

pull-back of the connection form to the circle bundle viewed as a principal S1-bundle.

On the total space of E, we define a symplectic form by

ωE = π∗ωD + d(ρα).

It extends across the zero section and is S1-invariant. The dual bundle E∗ inherits a

dual connection α∗. Hence, we get a symplectic form on π : E ⊕ E∗ → D,

ωneck = π∗ωD + d(ρ ∧ α) + d(ρ∗ ∧ α∗)

= π∗ωD + (ρ− ρ∗)π∗F + dρ ∧ α + dρ∗ ∧ α∗,

where F is the curvature 2-form of α. This space admits an S1-action given by

(p, x, y)→ (p, eiθx, e−iθy)

with moment map ρ∗ − ρ. There is also a natural S1-invariant map

λ : E ⊕ E∗ → C, (p, x, y)→ xy ∈ C.

Putting E = N
X+

D , we obtain a symplectic form ωneck on Xneck.

Let X be the smooth manifold obtained by gluing the three charts by the diffeo-

morphisms

ψ± : Xneck \NX∓
D → X±, (p, x+, x−)→ ((p, x±), x+x−). (2.2)

The map λ : Xneck → C extends to the whole of X and gives X the structure of a

fibration over ∆ such that the fiber over zero is X− ∪D X+ and the other fibers are

smooth manifolds.
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Remark 2.4. If the manifolds X± are obtained from the symplectic cut procedure on

(X,ω) along V = h−1(a) ⊂ U ⊂ X, then X± ∼= X±(h−a)>0×∆ and Xneck
∼= h̃−1(a)/S1,

where

h̃ : U × C× C→ R, h̃(p, x, y) = h(p)− 1

2
|x|2 +

1

2
|y|2,

is the moment map for the S1-action (p, x, y)→ (p, eiθx, e−iθy) and ωneck is the sym-

plectic structure induced from ω ⊕ ω0 ⊕ ω0 via symplectic cut.

We next define a symplectic structure on X . By the Symplectic Neighborhood

Theorem [19, Chapter 3], a neighborhood of D in X± is symplectomorphic to the

disc bundle of radius ε ≤ 1 in N
X±
D . We can assume ε = 1 (by some re-scaling). Let

ω0 = rdrdθ be the symplectic form on C. In the overlap region, where 1− δ < |x| < 1

and |y| < δ,

ωneck = ωX+ + d(ρ∗α∗) and ψ∗+(ωX+ ⊕ ω0) = ωX+ + λ∗ω0,

because of the symplectic neighborhood identification. We have

λ∗(2rdrdθ) = d(|λ|2λ∗dθ) = 4d(ρρ∗λ∗dθ) = 4d(ρρ∗(α + α∗)).

We can smoothly merge λ∗ω0 into d(ρ∗η∗) by replacing 2ρ∗ρ(α + α∗) by

η(2ρ∗ρ(α + α∗)) + (1− η)ρ∗α∗,

where η(|x|) is a cutoff function such that η(|x|) = 1 if |x| ≥ 1, η(x) = 0 if |x| ≤ 1−δ,

and dη < 2/δ. If δ is sufficiently small, the closed two-form

ωX+ + d(η(2ρ∗ρ(α + α∗)) + (1− η)ρ∗α∗)
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is non-degenerate; see [12, Section 2]. We can do the same procedure for the other

overlap, thus obtaining a symplectic form ωX on X .

Suppose c1(TX) = 0. Let A ∈ H2(X+) and s = A · D. After multiplying A by

some scalar, there is B ∈ H2(X−) such that B ·D = s. We can glue A#B and deform

it into a homology class C in the smooth fibers Xλ. By [12, Lemma 2.4],

0 = KXλ(C) = KX−(B) +KX+(A) + 2s.

In each case, KX− is equal to 1−(k0+n)
k

· [D], where k0 = 1 + δk,2 is the order of the

branching of Qn → X− along Qn−1, since

KQn = π∗KX− + (k0 − 1)[Qn−1].

and since KQn = −n[Qn−1], this confirms (3) in Proposition 2.1.

Remark 2.5. If k = 2, then L = RPn and (X−, ω−) ∼= (Pn, ωFS). Moreover, if n = 3,

then c1(TX+) = 0.

The statement of Proposition 2.1 concerning JX follows from [12, Lemma 2.3] and

[11, Theorem A.2].

2.3 Involution on the symplectic cut and sum

It remains to prove the claim of Proposition 2.1 concerning antisymplectic involutions.

We call an antisymplectic involution φ and an S1-action eiθ : U → U with moment

map h : U → R compatible if h = h ◦ φ. Since the Hamiltonian flow for h ◦ φ is

φ ◦ e−iθ ◦ φ, φ ◦ eiθ = e−iθ ◦ φ for a φ-compatible S1-action.
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If D ⊂ X is a symplectic submanifold preserved by an involution φ on X, the

differential dφ induces a linear map

φ∗ : N
X
D → NX

D , v → dφ(v) + Tφ(p)D ∀v ∈ TpX, p ∈ D,

covering φ : D → D.

Lemma 2.6. Let (X,ω, φ) be a symplectic manifold with a real structure, h : U → S1

be the moment map for a free Hamiltonian S1-action on an open subset U ⊂ X,

and a ∈ R be a regular value of h so that the hypersurface Va ≡ h−1(a) is non-

empty. Let Xcut be the corresponding symplectic manifold obtained from (X,ω) by

symplectically cutting along Va as in Section 2.1 and let D± ∼= D ⊂ Xcut be the

corresponding divisors. If the S1-action is compatible with φ, there is a real structure

φcut on Xcut preserving D± such that the canonical projection map X → Xcut/D+ ∼

D− intertwines the involution φ and φcut and

(NXcut
D+
⊗NXcut

D−
, (φcut)∗ ⊗ (φcut)∗) ∼= (D × C, φcut × c),

where c is the standard complex conjugation on C. If in addition Fix(φ) ∩ Va = ∅,

then Fix(φcut) ∩D± = ∅.

Proof. We continue with the notation of the symplectic cut construction in Sec-

tion 2.1. We define φcut on Xcut by

φcut : X \ V → X \ V, x→ φ(x), φ± : U± → U±, [x, z]→ [φ(x), z̄].

Since the moment maps h± are invariant with respect to the involution (x, z) →

(φ(x), z̄) on U ×C and φ ◦ eiθ = e−iθ ◦φ, the second map above is well-defined. Since

it is induced by an antisymplectic map on U × C, it is antisymplectic.
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Suppose φ preserves an orbit S1 · p ⊂ Va. then φ(p) = eia · p for some eia ∈ S1 and

φ(eiθ · p) = ei(a−2θ) · eiθ · p ∀eiθ ∈ S1.

Thus, eia/2 · p ∈ Fix(φ) ∩ Va. This implies the last claim.

Remark 2.7. If Va seperates X into two connected components, then φcut restricted

to X± is an involution φ± agreeing on the common divisor D.

Lemma 2.8. Let (X,ω, φ) be a symplectic manifold with a real structure and L =

Fix(φ). Then there exist a neighborhood N(L) ⊂ T ∗L of the zero section, a neighbor-

hood U ⊂ X of L, and a diffeomorphism

ψ : (N(L), L)→ (U,L) s.t. ψ∗ω = ωL, ψ−1 ◦ φ ◦ ψ = τL,

where τL and ωL are the canonical antisymplectic involution and symplectic form on

T ∗L, respectively.

Proof. The proof is a modification of the proofs of [19, Theorem 3.33] and [19,

Lemma 3.14]. Let J be an (ω, φ)-compatible almost complex structure on X and

denote by gJ the associated metric. Let

Φq : T ∗q L→ TqL, gJ(Φq(v
∗), v) = v∗(v) ∀v∗ ∈ T ∗q L, v ∈ TqL,

be the isomorphism induced by the metric gJ . Define

ψ : T ∗L→ X by ψ(q, v∗) = expq(JqΦq(v
∗)).

Since φ is an isometry of gJ ,

φ(expq(Jqu)) = expq(Dφ(Jqu)) = expq(−JqDφ(u)) = expq(−Jqu) ∀v ∈ TqL.
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Therefore, ψ−1◦φ◦ψ(q, v∗) = (q,−v∗) = τL(q, v∗). By the proof of [19, Theorem 3.33],

ψ∗ω|L = ωL.

Define ω1 = ψ∗ω and ω0 = ωL; then ω0 and ω1 are two symplectic forms on N(L)

such that τ ∗Lωi = −ωi. By [19, Lemma 3.14], there is a path of symplectomorphisms

ϕt such that ϕ∗1ω1 = ω0. We show that ϕt can be chosen to commute with τL, i.e.

τL ◦ ϕt = ϕt ◦ τL. (2.3)

If σ is as in [19, (3.7)], dσ = ω1 − ω0 and α ≡ σ+τ∗Lσ

2
is a τL-invariant closed 1-form.

Replacing σ by σ − α
2
, we can assume that τ ∗Lσ = −σ. This implies that the path of

symplectomorphisms ϕt given by the vector field Xt such that

σ = ιXt(tω1 + (1− t)ω0)

satisfies (2.3).

Corollary 2.9. Let (X,ω, φ) be a symplectic manifold with a real structure and L =

Fix(φ). If L is an archetypal Lens space, there is a symplectic cutting of X into

symplectic manifolds (X±, ω±) with antisymplectic involutions φ± and φ±-invariant

symplectic divisor D so that Fix(φ+) = ∅, Fix(φ−) = L, and there are isomorphisms

(X−, ω−, D, L) ∼= (Qn/Zk, ωFS, Dn/Zk, Qn
R/Zk),

(N
X+

D ⊗NX−
D , (φ+)∗ ⊗ (φ−)∗) ∼= (D × C, φ± × c).

Proof. If L is a Lens space and U is a Weinstein neighborhood as in Lemma 2.8, then

φ|U ∼= τL is compatible with the associated S1-action of L described in the second half

of Section 2.1 and therefore descends to the symplectic cut by Lemma 2.6.

We next obtain a similar statement for φ-invariant symplectic submanifolds.
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Lemma 2.10. Let (X,ω, φ) be a symplectic manifold with a real structure and D⊂X

a symplectic divisor preserved by φ. Then there exist a neighborhood N(D) ⊂ NX
D of

the zero section, a neighborhood U ⊂ X of D, and a diffeomorphism

ψ : (N(D), D)→ (U,D) s.t. ψ−1 ◦ φ ◦ ψ : N(D)→ N(D),

is equal to φ∗.

Proof. The proof is a modification of the proof of [19, Theorem 3.30]. Let J be an

(ω, φ)-compatible almost complex structure on X and denote by gJ the associated

metric. There is an isomorphism NX
D
∼= TDω, where TDω is the orthogonal comple-

ment of TD in TX|D. Let exp: TDω → X be the exponential map associated to gJ .

Since φ is an isometry with respect to gJ ,

φ
(

exp(v)
)

= exp
(
φ∗(v)

)
∀ v ∈ TDω.

The restriction ψ of exp to some neighborhood N(D) of D ⊂ TDω is a diffeomorphism

onto an open subset U ⊂ X.

Lemma 2.11. Let (X±, ω±, φ±) be symplectic manifolds with real structures and D ⊂

X± be a common symplectic divisor preserved by φ± such that φ−|D = φ+|D. If

(N
X+

D ⊗NX−
D , (φ+)∗ ⊗ (φ−)∗) ∼= (D × C, φ± × c), (2.4)

where c is the standard complex conjugation on C, the corresponding symplectic sum

fibration X → ∆ as in Section 2.2 can be constructed so that it admits an antisym-

plectic involution φX such that φX|X± = φ±.

Proof. For the purposes of the symplectic sum construction, we identify neighbor-

hoods of D in X± and in N
X±
D as in Lemma 2.10 and use an isomorphism as in 2.4.
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With notation as in Section 2.2, the involutions φ± on X± extends to X by

X± → X±, (p, z)→ (φ±(p), z̄),

Xneck → Xneck, (p, x, y)→ (φ±(p), (φ+)∗x, (φ−)∗y).

By (2.2) and (2.4), these involutions agree on the overlaps and are intertwined by λ

with the conjugation on ∆. For this involution to be compatible with the symplectic

structure on X , we choose the bump function η used in the merging procedure to be

symmetric with respect to the involution.

The statement of Proposition 2.1 concerning JφX follows from the proofs of [12,

Lemma 2.3] and [11, Theorem A.2], since each step in the proofs is compatible with

the involution.

A (D,φ)-compatible almost complex structure on X can be constructed by viewing

X± as symplectic cuts of X = Xλ for some λ ∈ ∆∗. Start from an almost complex

structure J on X which is compatible with the involution and the S1-action on U .

We know that Xneck = h̃−1(a)/S1, where

h̃ : U × C× C→ R, h̃(p, x, y) = h(p)− 1

2
|x|2 +

1

2
|y|2,

is the moment map. The almost complex structure J ⊕ j ⊕ j on U × C × C, where

j is the standard complex structure on C, induces an almost complex structure Jneck

on Xneck, which has the required compatibility properties. There is also a natural

extension of J to an almost complex structure J± on X±. Merging the corresponding

metrics, ωneck(·, Jneck·) and ω±(·, J±·), away from D and applying the polarization

procedure of [11, Appendix], we get an almost complex structure on the total space.
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Chapter 3

Moduli spaces of real curves

without fixed points

In this chapter, we study the moduli space of real curves of genus zero without real

points. As before, let

η, τ : P1 → P1, η(z) =
−1

z̄
, τ(z) =

1

z̄
, (3.1)

be the standard representatives for the two isomorphism classes of antiholomorphic

involutions on P1. Denote by Gη the set of Mobius transformations (automorphisms

of P1), ρ(z) =
az + b

cz + d
, commuting with η. Similarly, let Gτ be the set of Mobius trans-

formations commuting with τ and preserving each of the two discs in the complement

of Fix(τ) ∼= S1.

There is an exact sequence

{1} → U(1)→ U(2)→ Gη → {1}.

Therefore, Gη
∼= U(2)/U(1) ∼= S3 is a compact orientable Lie group. It acts freely

and transitively on the sphere bundle S(TP1) of TP1. The orientation on S(TP1) as
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the boundary of the disc bundle D(TP1) with its complex orientation thus induces

an orientation on Gη. Similarly, Gτ acts freely and transitively on

T (IntD2) ∼= (IntD2)× S1

and thus inherits an orientation from D2 × S1.

Remark 3.1. Unlike Gη, Gτ is a non-compact Lie group. As a manifold of holomor-

phic maps from (D2, ∂D2) to itself, Gη admits a natural compactification as D2×S1,

which is a manifold with boundary S1×S1. As described in Chapter 1, the moduli

spaces Ml(X,A)φ,η and Mk,l(X,A)φ,τ exhibit a similar pattern: if Fix(φ) 6= ∅, then

the latter moduli space has many more boundary components than the former moduli

space.

There are many symplectic manifolds (X,ω) admitting antisymplectic involutions

without fixed points:

• Odd-dimensional projective spaces. The involutions η, τ : P1 → P1 are

special cases of the antiholomorphic involutions η2m−1, η2m−1 : P2m−1 → P2m−1,

where

η2m−1

(
[z1, z2, . . . , z2m−1, z2m]

)
=
(
[−z̄2, z̄1, . . . ,−z̄2m, z̄2m−1]

)
, (3.2)

τ2m−1

(
[z1, z2, . . . , z2m−1, z2m]

)
=
(
[z̄2, z̄1, . . . , z̄2m, z̄2m−1]

)
. (3.3)

We note that Fix(η2m−1) = ∅ and Fix(τ2m−1) ∼= RP2m−1.

• Symplectic manifolds obtained from symplectic cut surgery. Let

(X,ω, φ) be an arbitrary symplectic manifold with an antisymplectic involution

so that L = Fix(φ) is diffeomorphic to a Lens space Sn/Zk. By Proposition 2.1,

there exists a symplectic manifold (X+, ω+) with an antisymplectic involution
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φ+ so that (X\L, ω) ∼= (X+\D,ω+) for a symplectic divisor D ⊂ X+, φ ∼= φ+

outside of small neighborhoods of L and D, but Fix(φ+) = ∅.

• Lagrangian torus fibrations. A large class of symplectic manifolds with SYZ

fibrations and antisymplectic involutions is constructed in [3, Section 1.4]. In

many cases, these involutions have no fixed points.

3.1 Moduli spaces of real curves

Let (X,ω, φ) be as before. An almost complex structure J compatible with ω is

called real if φ∗J = −J . Denote the set of such almost complex structures by Jφ.

For any J ∈ Jφ, we call a J-holomorphic curve u : P1 → X real if the image of u is

invariant under the involution φ. If u is somewhere injective, then pulling back φ to

P1 via u, we get an induced involution σu on P1. If σu has any fixed points, then the

Lagrangian submanifold L = Fix(φ) is non-empty. In this case, we can divide u into

two J-holomorphic discs with boundary on L. In this chapter, we focus primarily on

the case when σu has no fixed points and therefore in suitable coordinates σu = η,

with η as in (3.1), and thus Im(u) ⊂ X \ L. This is the case for any u if φ has no

fixed points.

Using the same techniques as in the proof of [20, Theorem 3.1.5], but preserv-

ing φ-invariance, it is straight-forward to establish the following generic regularity

statement.

Lemma 3.2. Let (X,ω, φ) be a symplectic manifold with a real structure. For a

generic almost complex structure J ∈ Jφ, Mn(X,A)φ,η is a smooth manifold of real

dimension c1(A) + 2n+ dimCX − 3 .
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The involution φ on X induces an involution φ̃ on the moduli space M2n(X,A)

of all degree A 2n-marked somewhere injective J-holomorphic spheres:

φ̃
(
[u, z1, z2, . . . , z2n−1, z2n]

)
= [φ ◦ u ◦ η, η(z2), η(z1), . . . , η(z2n), η(z2n−1)].

The fixed point locus of φ̃ is precisely Mn(X,A)φ,η. Therefore, intuitively,

Mn(X,A)φ,η has half the dimension of M2n(X,A).

Remark 3.3. For every J-holomorphic sphere u0 : P1 → X, there exists at most one

antiholomorphic involution ηu0 such that Fix(ηu0) = ∅ and u0 = φ ◦ u0 ◦ ηu0 .

Let Mn(X,A)φ,η denote the stable map compactification of Mn(X,A)φ,η. This

is a closed subset of M2n(X,A) consisting of maps [u, z1, . . . , z2n] with the property

that there exists an antiholomorphic involution ηu on the domain Σu of u such that

|Fix(ηu)| ≤ 1, u = φ ◦ u ◦ ηu, φu(z2) = z1, . . . , φu(z2n) = z2n−1.

Thus, there are two possible cases for ηu : Σu → Σu:

1. Σ = Σ0 ∪
⋃
i(Σi t Σī), ηu : Σ0 → Σ0 is an antiholomorphic involution with-

out fixed points, and ηu : Σi → Σī is an antiholomorphic map with inverse

ηu : Σī → Σi;

2. Σ =
⋃
i(Σi ∪ Σī), ηu : Σi → Σī is an antiholomorphic map with inverse

ηu : Σī → Σi.

In the second case, ηu fixes a node of Σu. Since it must be mapped by u to Fix(φ),

Mn(X,A)φ,η contains no such elements if Fix(φ) = ∅.

Lemma 3.4. Let (X,ω, φ) be a symplectic manifold with a real structure. If Fix(φ) =

∅, all boundary strata of Mn(X,A)φ,η are of virtual codimension at least two.
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Proof. The virtual codimension of a boundary stratum ofMn(X,A)φ,η is the number

of nodes in the domains of the elements of the stratum. Since Mn(X,A)φ,η contains

no elements of the second type above, its boundary strata have codimension at least

two.

Thus, Mn(X,A)φ,η is a moduli space without codimension one boundary in this

case, and there is a hope of defining GW-type invariants directly from Mn(X,A)φ,η.

In order to do this, it remains to study the orientation problem.

Remark 3.5. If Fix(φ) 6= ∅, ∂Mn(X,A)φ,η need not be empty, but it also appears as

the boundary ofM0,n(X,A)φ,τ . After studying the relevant orientations, we identify

the two moduli spaces along their common boundaries and obtain a new moduli space

which (after some other modifications special to J-holomorphic discs) has no bound-

ary. As noted in [23, Section 1.5], the moduli spacesM0,n(X,A)φ,τ andMn(X,A)φ,η

often need to be combined in order to get well-defined invariants. We explain this in

more detail in Chapters 4, 5, and 6.

Remark 3.6. If ũ : P1 → X is any J-holomorphic map such that ũ = φ ◦ ũ ◦ η, then

ũ = u ◦ πr for some degree r branched covering πr : P1 → P1 such that πr ◦ η = η ◦ πr

and somewhere injective J-holomorphic map u : P1 → X such that u = φ ◦ u ◦ η.

The commutative condition on πr implies that the zeros and poles of πr (viewed as a

rational function on C) are interchanged by η and the degree r is odd.

In Section 3.2, we construct a Kuranishi structure for the moduli space

Mn(X,A)φ,η. In Section 3.3, we discuss the orientation problem.

31



3.2 Kuranishi structure on the moduli of real

curves

Let (X,ω, φ) be as before and fix some J ∈ Jφ. In this section, we briefly explain

how to construct a Kuranishi structure for the moduli space Mn(X,A)φ,η. Such a

construction for Mk,l(X,A)φ,τ is described in [25, Section 7]; we only describe the

necessary adjustments. For simplicity, we ignore the marked points until the end of

this construction.

For (u, (zi, zi)
n
i=1) ∈Mn(X,A)φ,η, let

Eu ≡ u∗TX → P1, E0,1
u ≡ (T ∗P1)0,1 ⊗C Eu.

There are commutative diagrams

Eu

π

��

Tφ // Eu

π

��

E0,1
u

π

��

T 1
φ // E0,1

u

π

��
P1

η // P1 P1 id // P1

(3.4)

where Tφv = dφ(v) and T 1
φα = dφ ◦ α ◦ dη. The deformation theory of M0(X,A)φ,η

is described by the linearization of the Cauchy-Riemann operator,

LJ,u : W k,p(Eu)→ W k−1,p(E0,1
u ), p > 2, k ≥ 1; (3.5)

see [20, Chapter 3] for a similar situation. If ∇ is the Levi-Civita connection of the

metric ω(·, J ·), LJ,u can be written as

LJ,u(ξ) =
1

2
(∇ξ + J∇ξ ◦ j)− 1

2
J(∇ξJ)∂J(u).
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These all fit into a commutative diagram

W k,p(Eu)

T̃φ
��

LJ,u // W k−1,p(E0,1
u )

T̃ 1
φ

��
W k,p(Eu)

LJ,u // W k−1,p(E0,1
u )

where {T̃φξ}(z) = Tφ(ξ(η(z))) and {T̃ 1
φα}(z) = T 1

φ(α(z)). Let

W k,p(Eu)R = {ξ ∈ W k,p(Eu) | T̃φ(ξ) = ξ},

W k−1,p(E0,1
u )R = {α ∈ W k−1,p(E0,1

u ) | T̃ 1
φ(α) = α}

(3.6)

denote the spaces of real sections. Let H0(Eu)R and H1(Eu)R be the kernel and

cokernel, respectively, of the restricted operator

LJ,u : W k,p(Eu)R → W k−1,p(Eu0, 1)R.

If H1(Eu)R = 0, then Mn(X,A)φ,η is a manifold near u of real dimension

dimRH
0(Eu)R − dimGη = indR(LJ,u)− 3 = c1(A) + dimCX − 3; (3.7)

see [20, Theorem C.1.10]. Each pair of conjugate marked points increases the dimen-

sion by two and we get the dimension formula in Lemma 3.2.

If H1(Eu)R 6= 0, we construct a Kuranishi chart around u. For this aim, we choose

finite-dimensional complex subspaces Eu ⊂ W k,p−1(E0,1
u ) such that

1. every ξ ∈ Eu is smooth and supported away from the boundary and marked

points;

2. T̃ 1
φ(Eu) = Eu;

3. LJ,u modulo Eu is surjective.
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We then choose our Kuranishi neighborhood to be V (u) = [∂̄−1(Eu)]R (modulo

Gη), which is a smooth manifold of dimension

c1(A) + dimCX − 3 + 2n+ dimC(Eu).

The obstruction bundle E(u) at each f ∈ V (u) is obtained by parallel translation

of Eu with respect to the induced metric of J . We thus get a Kuranishi neighborhood

(V (u), E(u)). The Kuranishi map in this case is just the Cauchy-Riemann operator

f → ∂̄(f).

In order to construct Kuranishi charts for u in the boundary of Mn(X,A)φ,η, we

need gluing theorems as in [7, Chapter 7]. The gluing theorems are identical to those

for J-holomorphic discs; we thus omit the details and refer the reader to [7].

If L = Fix(φ) is non-empty, Mn(X,A)φ,η might have non-empty boundary. A

boundary curve is of the form (u,Σ = Σ1 ∪q Σ2), where Σi = P1, η : Σ1 → Σ2,

and u(q) ∈ L. After a suitable reparametrization, we may assume q = 0 ∈ P1 and

η(z) = −w. For real parameters ε 6= 0, we can glue the domain into a family of

smooth curves

Σε = {(z, w) ∈ C : zw = ε}.

For ε ∈ R, Σε inherits a complex conjugation from η:

ηε : Σε → Σε, ηε(z, w) = (−w,−z).

For ε < 0, ηε has an S1 set of fixed points and for ε > 0, ηε is fixed point free.

By smoothing in one direction (ε positive), we get real curves without fixed points

in M(X,A)φ,η; by smoothing in the other direction (ε negative), we get real curves

with fixed points inM(X,A)φ,τ . Thus,M(X,A)φ,η andM(X,A)φ,τ have a boundary

in common; this boundary is described in (1.8). We identify the common boundary
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and glue the two moduli spaces to get a new moduli space whose only boundary com-

ponent comes from the real sphere bubbling (disc bubbling). We defineM0,n(X,A)φ

to be the resulted space. We come back to this moduli space later. We summarize

these arguments in the following proposition.

Proposition 3.7. Let (X,ω, φ) be a symplectic manifold with a real structure. The

moduli space Ml(X,A)φ has a topology with respect to which it is compact and

Hausdorff. It has a Kuranishi structure with boundary of virtual real dimension

c1(A) + dimCX − 3 + 2l. Moreover, the boundary strata can be expressed in terms of

fiber products of the form

M1,l1(X,A1)φ,τ ×(evB1 ,evB1 )M1,l2(X,A2)φ,τ/G,

where

l1 + l2 = l, A1 + A2 = A, G =


Z2, if l = 0, A1 = A2;

{1}, otherwise.

3.3 Orientation

In the orientation problem forMn(X,A)φ,η, it is sufficient to consider the case n = 0

because any pair of marked points (zi, zi) increases the tangent space by TziP1, which

has a canonical orientation. Let P0(X,A)φ,η be the moduli space of parametrized

J-holomorphic maps (before quotienting by Gη) so that

M0(X,A)φ,η = P0(X,A)φ,η/Gη.

In fact, P0(X,A)φ,η is a principal S3-bundle over moduli space. In order to put an

orientation on M0(X,A)φ,η, it is enough to orient P0(X,A)φ,η. For this, we need to
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orient the determinant of the index bundle

ΛtopH0(E)R ⊗ Λtop(H1(E)R)∗,

where E = u∗TX and H0(E)R and H1(E)R are the kernel and cokernel of a real

Cauchy-Riemann operator. Recall that E admits an anticomplex linear involution

Tφ; see the left diagram in (3.4).

Definition 3.8. Let E → P1 be a complex vector bundle with a real structure φ

covering η. We call a trivialization of E over C∗,

E

π

��

ψ // C∗ × Cm

π

��
C∗ id // C∗

admissible if the involution φψ(z) = ψη(z) ◦ φ ◦ ψ−1
z coincides with the standard invo-

lution C := (z, v) → (η(z), v̄). Admissible trivializations ψ and ψ′ of (E, φ) over C∗

are called homotopic if there is a family of such trivializations ψt, t ∈ [0, 1], such that

ψ0 = ψ and ψ1 = ψ′.

Lemma 3.9. For every complex vector bundle E → P1 with a real structure φ covering

η, there are two homotopy classes of admissible trivializations over C∗. Moreover, for

every admissible trivialization ψ and every map of the form

R(εi) : C∗ × Cm → C∗ × Cm, R(εi)(z, v) = (ε1v1, · · · , εmvm), εi = ±1,

R◦ψ is another admissible trivialization which is in same homotopy class as ψ if and

only if
∏
εi = 1.
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Proof. Existence. As a complex vector bundle, E is trivial over C∗. Therefore, we

can fix a trivialization ψ : E → C∗×Cm. The involution φ then corresponds to a map

φψ : C∗ → GL(2m,R)

whose image lies in the set of anticomplex linear matrices. We find a change of

trivialization matrix

A : C∗ → GL(m,C) s.t. Aη(z) ◦ φψ ◦ A−1
z = C. (3.8)

Let Bψ(z) = C ◦ φψ(z) ∈ GL(m,C). Composing on the left by C, we can rewrite

(3.8) to get the equivalent equation

Aη(z) ◦Bψ ◦ A−1
z = Im. (3.9)

Since φψ is an involution, Bψ(η(z))Bψ(z) = Im. For z ∈ H \ {0}, where H is the

closed upper half plane, let α(z) ∈ GL(m,C) be a family of matrices such that

α(r) =

 Im if r ∈ R+;

Bψ(η(r)) if r ∈ R−.

Next define

A(z) =

 α(z)Bψ(z) if z ∈ H− {0};

α(η(z)) if z ∈ H− {0}.

It is easy to check that A is well-defined and satisfies (3.9).
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Homotopy classes of admissible trivializations. If ψ is an admissible trivi-

alization, any other admissible trivialization is of the form A ◦ ψ, where

A : C∗ → GL(m,C) and A(η(z))A(z)−1 = Im. (3.10)

The question is whether A is homotopic to identity through a family At of matrices

satisfying the same equation as (3.10). Let

G =
{
γ : [0, 1]→ GL(m,C) | γ(0) = γ(1)

}
, G0 = {γ ∈ G : γ(0) = Im};

the set G is a group under pointwise multiplication, while G0 is its subgroup.

The restriction of A to the upper semi-circle, {z = eiπt | t ∈ [0, 1]}, determines

an element of G. In fact, the space of A’s satisfying (3.9) is homotopic to G. The

map

G→ GL(m,C), γ → γ(0),

is a fiber bundle with fiber G0. From the associated long exact sequence,

· · · → π1(GL(m,C))→ π0(G0) ∼= π1(GL(m,C))→ π0(G)→ π0(GL(m,C))→ 0

we conclude that π0(G) = Z/2Z.1 Therefore, there are two homotopy classes of

trivializations.

The remaining claim of the lemma is checked by chasing the maps in the long

exact sequence.

Lemma 3.10. Let E → P1 be a complex vector bundle with a real structure φ lifting η.

Every admissible trivialization of (E, φ) over C∗ ⊂ P1 canonically determines an ori-

1The homomorphism π1(GL(m,C)) → π0(G0) ∼= π1(GL(m,C)) ∼= Z is multiplication by -2 for
the following reason. The loop γ : [0, 1] → GL(m,C) of the diagonal matrices with the first entry
e2iπt and the remaining entries 1 generates π1(GL(m,C)). It lifts to the path s→ γs in G given by
γs(t) = γ((1− 2s)t); the end point of this path is an element of π1(GL(m,C)) homotopic to −2γ.
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entation of ΛtopH0(E)R⊗Λtop(H1(E)R)∗. The two orientations given by two different

admissible trivializations coincide if and only if they are in the same homotopy class.

Proof. The proof is analogous to that of [7, Proposition 8.1.4]. Contracting each of

the two circles

C0,r = {z ∈ C∗ | |z| = r} and C∞,r =

{
z ∈ C∗ | |z| = 1

r

}
,

to a point, we obtain a nodal curve Σ = Σtop ∪ Σ0 ∪ Σdown (picture below) with an

induced fixed point free involution ηΣ. We denote the quotient map by π : P1 → Σ.

Denote by q and ηΣ(q) the nodal points of Σ. We may assume that q and ηΣ(q) are

respectively 0 and ∞ in Σ0
∼= P1.

Via the given trivialization, the bundle (E, φ) descends to a bundle (Ẽ, φ̃) over Σ

so that

Ẽ |Σ0
∼= P1 × Cm

and the involution φ̃ |Σ0 sends (z, v) to (ηΣ(z), v̄). Over Σtop ∪ Σdown, φ̃ is an anti-

complex linear map of the form

φ̃ : Ẽ |Σtop→ Ẽ |Σdown
.

A section of (Ẽ, φ̃) is of the form ξ = (ξtop, ξ0, ξdown), with matching conditions at the

nodes. A section ξ is real if and only if

ξdown(ηΣ(z)) = φ̃(ξtop(z)) and ξ0 ∈ Γ(Ẽ |Σ0)R.
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Therefore, it is determined by an arbitrary section of Ẽ |Σtop and a real section of

Ẽ |Σ0 which match at q.

The matching condition at the nodes gives a short exact sequence

0→ W 1,p(Ẽ)→ W 1,p(Ẽ |Σtop)⊕W 1,p(Ẽ |Σ0)⊕W 1,p(Ẽ |Σdown
)→ Cm

q ⊕ Cm
ηΣ(q) → 0.

The associated index of the pair (Ẽ, φ̃) is given by the Cauchy-Riemann operator

∂̄Ẽ : W 1,p(Ẽ)R → Lp(Λ0,1 ⊗ Ẽ |Σtop)⊕ Lp(Λ0,1 ⊗ Ẽ |Σ0)⊕ Lp(Λ0,1 ⊗ Ẽ |Σdown
).

This index bundle is equivalent to

indR∂̄(W 1,p(Ẽ |Σtop)⊕W 1,p(Ẽ |Σ0)⊕W 1,p(Ẽ |Σdown
))⊗ (indR(Cm

q ⊕ Cm
ηΣ(q)))

∗.

Therefore, by orienting the index bundle of the middle and right terms in the short

exact sequence, we get an orientation of the left-hand side. Over Σ0, we have the

trivial complex bundle with the canonical complex conjugation and the index bundle

is canonically isomorphic (after deforming the Cauchy-Riemann operator) to

ΛtopH0(P1 × Cm)R = Λtop
R Rm ⊂ Λtop

C Cm.

It inherits an orientation from the choice of trivialization. From the discussion of real

sections above, we know that there is a canonical isomorphism

indR(Ẽ |Σtop∪Σdown
) ∼= indC(Ẽ |Σtop).

Since indC(Ẽ |Σtop) carries an orientation induced by its complex structure, the above

isomorphism gives an orientation of the left-hand side of the equation. Similarly,
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the right-hand side of the short exact sequence has a canonical orientation, being a

complex vector space.

By Lemma 3.10, a systematic way of orienting u∗TX over C∗ ⊂ P1 would orient

the moduli space Pn(X,A)φ,η. Let KX = Λtop
C T ∗X be the canonical complex line

bundle over X. It inherits an involution Kφ : KX → KX (covering φ) from Tφ.

Therefore, it is a complex line bundle with an involution. Any admissible trivialization

of u∗TX |C∗ canonically induces an admissible trivialization of u∗KX |C∗ and changing

the homotopy class of admissible trivialization of the former changes the homotopy

class of the induced admissible trivialization. We can therefore reduce the orientation

problem to the problem of finding a canonical way of admissibly trivializing u∗KX .

This is an easier problem because KX is just a line bundle and has less structure

than TX.

Let (L, φL) → (X,φ) be any complex line bundle over X with an anticomplex

linear involution φL covering φ. The line bundle L⊗2 inherits an involution from the

one on L by

φL⊗2(v1 ⊗ v2) = φL(v1)⊗ φL(v2).

Every admissible trivialization of u∗L |C∗ induces an admissible trivialization of

u∗L⊗2 |C∗ . However, changing the homotopy class of trivialization of L does not

change the homotopy class of the induced trivialization on L⊗2, since changing the

trivialization of L by the complex linear map R−1 of Lemma 3.9 changes the homotopy

class of admissible trivialization of L⊗2 by R−1 ⊗R−1 = id.

Corollary 3.11. The complex line bundle (L⊗2, φL ⊗C φL) as above has a canonical

admissible trivialization.

Proof of Theorem 1.6. If KX has a real square root, then by Corollary 3.11 there is

a canonical choice of admissible trivialization. Therefore, Pn(X,A)φ,η is orientable.

Moreover, a choice of trivialization is canonically determined by the choice of a real
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square root for KX . Therefore, if KX has a real square root, then Mn(X,A)φ,η is

orientable.

In this thesis, we are interested in the following examples in which KX has a square

root. In Chapter 6 we consider (P3, η3); since 4|KP3 , it has a real square root. If KX is

trivial as a complex line bundle (i.e X is a symplectic Calabi-Yau manifold), then KX

has a real square root; moreover, in this case we can fix an admissible trivialization

of KX itself over X (independent of any map u) and thus determine an orientation

of moduli space Mn(X,A)φ,η.

As illustrated by the two examples below, there are cases where the index bundle

is not orientable. The first example is similar to the non-orientable example of [7,

Section 8.1.2].

Example 3.12. Let E = C× P1 × S1 → P1 × S1. Define a family of involutions,

φs : E |P1×{s}→ E |P1×{s}, φs(z, v) = (η(z), e2πisv) ∀s ∈ S1.

The real line bundle F → S1 given by Fs = H0(E |P1×{s})R is then not orientable.

Example 3.13. Let X = R2/Z2 × P1 × P1, A = {pt} × P1 × {pt} ∈ H2(X),

φ : X → X, φ(s, t, z, w) = (s,−t,−1

z̄
, e2πisw),

Y = {(s, t, w) ∈ R2/Z2 × P1 : (−t, e2πisw) = (t, w)}.
(3.11)

The space Y is a union of two Klien bottles with double cover

R ∪ {∞} × R/Z× {0, 1/2} → Y, (a, s, t)→ (2s, t, ae2πis).

Let π : X → R2/Z2 × P1 be the projection to the first and third factors. Since

f :M(X,A)φ,η → Y, [u]→ π(Im(u)),

42



is well-defined and is a diffeomorphism, it follows that M(X,A)φ,η is not orientable.

If γ ⊂M(X,A)φ,η is the preimage of the map S1 → Y , s→ (s, 0, 0),

γ∗det(TM(X,A)φ,η) = ΛtopH0
R(γ∗TX)⊗ (ΛtopLie(Gη))

∗ = R⊗ F,

where F is the unorientable line bundle in Example 3.12.
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Chapter 4

J-holomorphic discs and open GW

invariants

Throughout this section (X,ω, φ, L) denotes a symplectic manifold equipped with an

antisymplectic involution φ whose fixed-point set is a Lagrangian L. We assume that

L is orientable and spin and fix an orientation and a spin structure σ on L. In this

case, open invariants are defined in [25] using perturbed Cauchy-Riemann equations.

In Section 4.1 below, we review the construction of these invariants in the language of

Kuranishi structures. In Section 4.2, we outline the construction of a relative version

of open invarinats.

4.1 Review of open GW invariants

The involution φ on X induces an involution on Mdisc
k,l (X,L, β),

τM : Mdisc
k,l (X,L, β)→Mdisc

k,l (X,L, β),

τM([u, ~z, ~w]) = [φ ◦ u ◦ c, (z1, zk−1, · · · , z2), (w̄1, · · · , w̄l)].
(4.1)
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where c(z) = z̄. It naturally extends to maps with bubble domain, inducing an

involution on Mdisc

k,l (X,L, β). We call a Kuranishi structure on Mdisc

k,l (X,L, β) τM-

invariant if τM extends to a map on Kuranishi neighborhoods and multisections. For

β ∈ H2(X,L)/ ∼, there is an ètale double covering

Mdisc

k,l (X,L, β)→Mk,l(X, 2β)φ,τ ,

with τM acting on the fibers. If k = l = 0, dimCX = 3, and 4|µ(β), the action

of τM is orientation-preserving; see [8, Theorem 1.4] Therefore, an orientation on

Mdisc
(X,L, β) descends to an orientation of M(X, 2β)φ,τ .

Proposition 4.1 ([8],[7, Chapter 7]). Let (X,ω, φ) be a symplectic manifold with a

real structure. The moduli space Mdisc

k,l (X,L, β) has a topology with respect to which

it is compact and Hausdorff. It has a τM-invariant oriented Kuranishi structure with

boundary and with virtual real dimension

dimvir(Mdisc

k,l (X,L, β)) = dimCX + µ(β) + k + 2l − 3.

The codimension one boundary components of Mdisc

k,l (X,L, β) are described by (1.5)

and (1.6), in a way that respects the Kuranishi structures. A spin structure σ on L

determines an orientation of Mdisc

k,l (X,L, β).

Let Mdisc

k,l (X,L, β)σ denote the moduli space equipped with the orientation in-

duced by σ. We are interested primarily in manifolds of real dimension six. Since

the tangent bundle of every orientable manifold L of dimension three is trivial, L is

automatically spin. A choice of trivialization of the tangent bundle of L determines

an orientation onMdisc
k,l (X,L, β). Therefore, in this case by a spin structure we simply

mean a choice of trivialization of TL.
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If (X,L) has vanishing Maslov class and real dimension six, then

Mdisc
(X,L, β) ≡Mdisc

0,0 (X,L, β)

has virtual dimension zero. We would like to define invariants by counting the number

of elements inMdisc
(X,L, β). Fix a choice of τM-invariant multisection s (see [25, Sec-

tion 7]) whose zero locus is close to that of the Kuranishi map. Let [Mdisc
(X,L, β)σ]s

be the virtual fundamental class determined by the multisection s. Since the moduli

space is zero-dimensional, its degree is a rational number, which we denote by Ndisc
β,J,s;

a priory it depends on J and s.

Given two different choices of (Ji, si), i = 0, 1, let {Jt ∈ Jφ}, t ∈ [0, 1], be a path

of almost-complex structures joining J0 and J1. Let

π : Mdisc
(X,L, {Jt} , β) ≡

∐
t∈[0,1]

Mdisc
(X,L, Jt, β)→ [0, 1],

be the projection map. There is an analogue of Proposition 4.1 forMdisc
(X,L, {Jt} , β).

In fact, ∂1Mdisc
(X,L, {Jt} , β) is a union of Mdisc

(X,L, Ji, β) and the boundary

terms of the form (1.5) and (1.6).

Choose a τM-invariant multisection s forMdisc
(X,L, {Jt} , β) such that s|π−1(i) =

si and let [Mdisc
(X,L, {Jt} , β)σ]s be the one-dimensional fundamental chain of s.

Then,

∂[Mdisc
(X,L, {Jt} , β)σ]s = [∂Mdisc

(X,L, {Jt} , β)σ]s

and

Ndisc
β,J1,s1

−Ndisc
β,J0,s0

= #[M1(X, {Jt} , β̃)×ev1 L]s

+ #[Mdisc
1,0 (X,L, {Jt} , β1)σ ×(evB1 ,evB1 )Mdisc

1,0 (X,L, {Jt} , β2)σ]s.

(4.2)
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We would like to see if the right-hand side of this equation vanishes. For this, define

an involution τglue on Mdisc
1,0 (X,L, {Jt} , β1)×(evB1 ,evB1 )Mdisc

1,0 (X,L, {Jt} , β2) by

(u1, u2)→ (u1, τM(u2)).

Remark 4.2. Every

u1 ∪ u2 ∈Mdisc
1,0 (X,L, {Jt} , β1)×(evB1 ,evB1 )Mdisc

1,0 (X,L, {Jt} , β2)

is also an element

u2 ∪ u1 ∈Mdisc
1,0 (X,L, {Jt} , β2)×(evB1 ,evB1 )Mdisc

1,0 (X,L, {Jt} , β1).

Therefore, τglue is not well-defined by the above. In order to avoid this ambiguity, we

will assume that β is odd (β 6= 2β′) and therefore βi are different and we can fix the

class that we flip. Moreover, if we assume H2(L) = Z2, then for β = β1 + β2 with

∂β 6= 0, there is a unique one with ∂βi 6= 0 and we can decide to always flip this one.

Note that in this case, all boundary strata are of disc bubbling type. For a general β,

we will instead considerM(X, 2β)φ,τ and then there is a well-defined flip independent

of the ordering the terms.

Proposition 4.3 ([8, Theorem 4.9]). Let (X,ω, φ) be a symplectic manifold of real

dimension six with a real structure. Suppose L = Fix(φ) is orientable and c1(TX) = 0.

Then τglue is an orientation-reversing involution.

Corollary 4.4. If β is odd, the terms on the right-hand side of(4.2) come in pairs

with opposite signs. Therefore, the right-hand side of (4.2) is zero, and the numbers

Ndisc
β,J,s are independent of J and of the multisection s.
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With the same argument, if β is even, the terms corresponding to disc bubbling

cancel out and we get

Ndisc
β,J1,s1

−Ndisc
β,J0,s0

= #[M1(X, {Jt} , β̃)×ev1 L]s. (4.3)

Remark 4.5. There is a mistake in the statement of [8, Theorem 4.9], which claims

that some other map, τclop, is also orientation-reversing, which is not true. That would

imply that disc invariants of even degree are well-defined, but as we mentioned before,

we also need to add the contribution of M(X, 2β)φ,c to get well-defined invariants.

For (X,ω, L, φ) as before and ∂β 6= 0, the numbers Ndisc
β = Ndisc

β,J,s defined above

are called open Gromov-Witten invariants of (X,L) in the class β ∈ H2(X,L)/ ∼.

These numbers are independent of the choices of real almost-complex structure J , of

φ-compatible Kuranishi structure and multisection s, and of isotopy class of antisym-

plectic involution fixing L. In a similar fashion, one can define open GW invariants

for other symplectic manifolds and with marked points.

4.2 Relative open GW invariants

Let (X,ω, φ) be as before and D ⊂ X be a smooth symplectic divisor invariant under

φ such that L∩D = ∅. The definition of relative open GW invariants is a combination

of the definitions of open GW invariants and of ordinary relative GW invariants. In

Section 5.3, we outline the construction of Kuranishi structures for the compactified

relative open moduli spaces. We use these relative moduli spaces to derive a sum

formula, as done in [12] for closed GW invariants, to relate the open GW invariants

of (X,L) defined in Section 4.1 and the ordinary relative GW invariants of (X+, D).
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Definition 4.6. An almost-complex structure J ∈ Jφ is said to be compatible with

D if J preserves TD and

NJ(ξ, v) ∈ TxD ∀v ∈ TxD, ξ ∈ TxX, x ∈ D.

whereNJ is the nijenhuis tensor of J .

A J-holomorphic map u : (Σ, ∂Σ)→ (X,L) is called regular if it has no components

mapped into D. If J ∈ Jφ is D-compatible, a regular J-holomorphic map intersects D

in a finite set (p1, · · · , pk) of points with positive multiplicities (s1, · · · , sk), just as in

the holomorphic situation and s = s1+· · ·+sk = [u]·D; see [33, Section 2]. The vector

ρ = (s1, · · · , sk) is called the intersection pattern. Since L ∩ D = ∅, all intersection

points are interior points. In relative open GW theory, we are interested in the moduli

space Mdisc
k,l (X,L,D, ρ, β), whose elements are [(Σ, ∂Σ), u, ~z, ~w, ~ξ], where

• u : (Σ, ∂Σ)→ (X,L) is a regular genus zero J-holomorphic map,

• ~z and ~w are tuples of k boundary and l interior marked points, respectively,

• [u] = β ∈ H2(X,L) and u−1(D) =
∑
siξi, i.e. ~ξ is the set of ordered marked

points corresponding to intersection points with D with contact of order si

at u(ξi),

such that the marked map (u,Σ, ∂Σ, ~w, ~z, ~ξ) is stable.

We next describe a suitable compactification of this moduli space, denoted by

Mdisc

k,l (X,L,D, ρ, β), and an orientable closed virtual cycle with which to define GW

invariants.

The limiting maps in the stable compactification of this moduli space might not

be regular and might have several components mapping into D. Since L∩D = ∅, all

the components of a limiting curve which are mapped into D are maps from closed
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curves attached to other components away from the boundary. So the definitions of

relative stable maps in [11] and [16] readily extend to this case.

The normal bundle NX
D of D in X is a complex line bundle with an inner product

and a compatible connection induced by the Riemannian connection on X. Define

YD = P(NX
D ⊕ C).

The bundle map ι : (NX
D )→ YD defined by ι(x) = [x, 1] on each fiber is an embedding

onto the complement of the infinity section D∞ ⊂ YD. There is a C∗-action on

YD which comes from scalar multiplication on NX
D . Over each point of D, we can

identify the fiber of YD with P1 and give it the Kähler structure (ωε, j) of the 2-sphere

of radius ε. Then ι : C→ YD is a holomorphic map with ι∗ωε = dψε ∧ dθ, where

ψε(r) =
2ε2r2

1 + r2
.

This construction globalizes by interpreting r as the norm on the fibers of NX
D , re-

placing dθ by the connection 1-form α of NX
D , and including the curvature F of that

connection. Thus,

ι∗ωε = π∗ωD + d(ψε ∧ α)

is a closed form which is nondegenerate for small ε and its restriction to each fiber of

NX
D agrees with the volume form on the 2-sphere of radius ε. Furthermore, at each

point p ∈ NX
D , the connection identifies TpN

X
D with the fiber of NX

D ⊕TD at π(p), and

thus induces a complex structure on YD. Note that we have two copies of D inside

YD, corresponding to the zero section and the section at infinity, which we denote by

D0 and D∞, respectively.

Let X[n] be the singular space obtained by attaching n copies of YD to X in such

a way that the divisor D0 of the i-th copy is attached to the divisor D∞ of the (i+1)-
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Figure 4.1: The singular manifold X[n].

th copy; see Figure 4.1. Similar to Chapter 2, X[n] can be realized as the singular

central fiber of a symplectic fibration π : X [n]→ ∆n whose generic fiber is a smooth

symplectic manifold isotopic to X.

Let Dn be the last copy of D0 in the sequence and D[i], for i = 1, · · · , n, be the

i-th copy of D∞ in the sequence. The space X[n] contains a copy of L which lies in

X itself and is disjoint from all YD. There is an action of Gn = (C∗)n on X[n] which

comes from the C∗ action on each copy of YD.

Definition 4.7. A stable relative genus zero bordered J-holomorphic map to X[n] is

a tuple [u, (Σ, ∂Σ), ~z, ~w, ~ξ], where

1. Σ = Σ0∪ · · ·∪Σn is a connected bordered nodal curve of arithmetic genus zero,

Σi, i ≥ 1, is a closed curve (not necessarily connected), and ∂Σ ∼= S1,

2. ~z, ~w, ~ξ are tuples of distinct smooth points on Σ, ~z is a tuple of boundary marked

points in an anticlockwise order, ~w is a tuple of interior marked points, and ~ξ

is a tuple of marked points on the last layer Σn,
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3. u : Σ0 → X is a regular J-holomorphic map into X and u : Σi → YD[i] are

regular JYD -holomorphic maps,

4. u−1(D[i]) = {ξi,1, · · · , ξi,ji} is discrete for i = 1, · · · , n, each ξi,j is a node of Σ

connecting Σi−1 and Σi, and u |Σi−1
and u |Σi have same contact orders with

D[i],

such that the automorphism group of f = [u, (Σ, ∂Σ), ~w, ~z, ~ξ]

Aut(f) =
{

(h, σ) | σ ∈ Gn, h ∈ Aut(Σ, ~z, ~w, ~ξ) σ ◦ u = u ◦ h
}
,

is finite.

Let Mdisc

k,l (X,L,D, ρ, β) denote the set of the equivalence classes of all bordered

stable relative maps in class β and with intersection pattern ρ. This moduli space

is Hausdorff and compact. In Section 5.3, we outline the construction of a virtual

fundamental class for this space.

Let

ev = (evB~z , ev~w, ev~ξ) : Mdisc

k,l (X,L,D, ρ, β)→ Lk ×X l ×Dl(ρ),

where l(ρ) = m if ρ = (s1, · · · , sm), be the total evaluation map. Open relative

GW invariants are obtained by integrating pull-backs under ev of differential forms on

Mdisc

k,l (X,L,D, ρ, β). As in the absolute case, we encounter issues concerning codimen-

sion one boundaries and orientation. If L is the fixed point set of an antisymplectic

involution compatible with D, we can use the same technique as in Section 4.1 to de-

fine relative open invariants. The antisymplectic involution on X extends to X[n] and

induces an involution onMdisc

k,l (X,L,D, ρ, β). Therefore, we can get a cancellation of

boundary terms as in Proposition 4.3.
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Remark 4.8. We also need to consider relative invariants with disconnected domains,

(Σ, ∂Σ) = (Σ0, ∂Σ0) ∪ Σ1 ∪ · · · ∪ Σk,

where Σi (1 ≤ i ≤ k) has no boundary and ∂Σ0 ∼ S1. We fix homology classes

β0 ∈ H2(X,L)/ ∼ and βi ∈ H2(X)/ ∼, for 1 ≤ i ≤ k, with β = β0 +
∑
βi. With Γ

denoting the above topological data, let Mdisc

k,l (X,L,D, ρ,Γ) be the moduli space of

relative maps u : (Σ, ∂Σ)→ (X[n], Dn) so that over each component u has the given

topological type.

Example 4.9. Let (X,ω, φ, L,D) = (CP3, ωFS, τ3,RP3, Q), where Q = Q2 is the

quadratic hypersurface with the real defining equation

x2
0 + x2

1 + x2
2 + x2

3 = 0.

Since H2(P3,RP3) ∼= 1
2
Z, we write the elements of H2(X,L) by [d

2
]. Note that µ([d

2
]) =

4d ≡ 0 mod 4. Let ρ0 = (1, · · · , 1), d be odd, and

evξ : Mdisc
(P3,RP3, Q, ρ0, [

d

2
])→ Qd

be the evaluation map at the contact points. Consider the incidence condition

γ := {p1, τ3(p1)} × · · · × {pd, τ3(pd)} ⊂ Qd,

where p1, · · · , pd are d general points in Q. Then Mdisc
(P3,RP3, Q, ρ0, [

d
2
]) ×evγ has

virtual dimension zero and virtually counts the number of holomorphic discs inter-

secting Q at certain fixed points determined by γ. For d odd, the rational number

αrel,disc
d =

1

2d
#[Mdisc

(P3,RP3, Q, ρ0, [
d

2
])×ev γ]vir (4.4)
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is well-defined; for d even, we need extra terms to make it invariant. These open

relative GW invariants appear as coefficients in the proof of Theorem 1.4 and are the

only open relative invariants we need later. Note that we chose γ symmetric with

respect to the involution in order to makeMdisc
(P3,RP3, Q, ρ0, [

d
2
])×evγ closed under

the involutions τglue and τM.

For a non-connected domain Σ = (Σ0, ∂Σ0) ∪
⋃k
i=1 Σk, let Γ be a topological

type as before with β0 ∈ H2(CP3,RP3) and βi ∈ H2(CP3), for i = 1, · · · , k. Let

di = µ(βi)/4 ∈ Z and

γΓ = γ0 × γ1 × · · · × γk, (4.5)

where γ0 = γ as before and γi = {qi1}× · · · × {qidi} is a single point in Qdi , whenever

i ≥ 1. We define

αrel,disc
Γ =

1

2d0
#[Mdisc

(P3,RP3, Q, ρ0,Γ)×ev γΓ]vir. (4.6)

These numbers are invariant under deformations of almost complex structure and γi’s

and are generalizations of the above invariants to non-connected domains. Since

Mdisc
(P3,RP3, Q, ρ0,Γ) =Mdisc

(P3,RP3, Q, ρ0, [
d0

2
])×

k∏
i=1

M(P3, Q, ρ0, [di]),

we find that

αrel,disc
Γ = αrel,disc

d0
×

k∏
i=1

αrel
di
.

This shows that disconnected invariants reduce to connected ones.

Since P3 is Fano and ρ0 = (1, · · · , 1), αrel,disc
d = 1

2d
Ndisc
d , where Ndisc

d is the number

of degree d disks in P3 passing through d pairs of conjugate points. This number can

be computed by equivariant localization; see Chapter 6.

54



Chapter 5

Degeneration of moduli spaces

In this chapter, we build a cobordism between moduli spaces of holomorphic discs in

a smooth fiber and the fiber product of moduli spaces of relative maps in the singular

fiber in the fibration π : X → ∆ constructed in Chapter 2. Using this cobordism, we

prove Theorems 1.1, 1.4 and 1.10.

5.1 Proof of Theorem 1.1

Given (X,ω, L) as in the statement of Theorem 1.1, let π : X → ∆ be the associated

fibration constructed in Chapter 2. Let J l
X be the set of compatible almost-complex

structures J of class C l on X , given by Proposition 2.1. Restricted to X+, any such J

is D-compatible in the sense of Definition 4.6. LetMreg(X+, A) be the moduli space

of D-regular degree A genus zero somewhere injective J |X+-holomorphic curves. By

[20, Theorem 3.1.5] and Proposition 2.1

dimvir
R (Mreg(X+, A)) = 2(n− 3) +−2(n− 2) [A] · [D],

which is a negative number if [A] · [D] > 0 and n > 2.
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Lemma 5.1. There is a dense subset J l,reg
X ⊂ J l

X such that Mreg(X+, A) = ∅ for

every J ∈ J l,reg
X and every A ∈ H2(X+,Z) with [A] · [D] > 0.

Proof. Let

Mreg(X+,J l
X , A) =

∐
J∈J lX

Mreg(X+, J, A)

be the universal moduli space. By [20, Chapter 6], the linearization map

DJ,u : W k,p(P1, u∗TX+)⊕ TJJ l
X → W k−1,p(P1, u∗TX+ ⊗J Λ0,1

J TP1),

DJ,u(ξ, Y ) = LJ,u(ξ) +
1

2
Y (u)du ◦ j,

of the Cauchy-Riemann operator is surjective for every (u, J) ∈ Mreg(X+,J l
X , A).

The projection map π : Mreg(X+,J l
X , A) → J l

X is Fredholm, and the kernel and

cokernel of dπ are isomorphic to the kernel and cokernel of LJ,u. By the Sard-Smale

theorem [20, Theorem A.5.1], the set of regular values of π is of the second category,

provided l − 1 ≥ 0, ind(LJ,u). On the other hand, J ∈ J l
X being a regular value

for dπ means that LJ,u is surjective, and soMreg(X+, J, A) is a negative-dimensional

smooth moduli space and therefore empty. Taking intersection over all curve classes

A ∈ H2(X+,Z), we find a dense set of almost-complex structures for which all the

moduli spaces Mreg(X+, J, A) with [A] · [D] > 0 are empty.

Given J ∈ J l,reg and λ ∈ ∆, let Jλ = J |Xλ as before. Suppose E > 0, λi ∈ ∆∗

is a sequence converging to 0 and [ui] is a sequence of Jλi-holomorphic discs such

that ωX ([ui]) < E. This sequence is a sequence of J-holomorphic discs in a compact

subset of X with a uniform energy bound. By the Gromov Compactness Theorem,

there is a J0-holomorphic map u0 : B → X0 and a sequence of orientation-preserving

diffeomorphisms ψ of the domains of ui such that a subsequence of ui ◦ ψi converges

to u0. Furthermore, every component of u0 has image in either X− or X+ and least

one component maps to X+ intersecting D in a nonempty discrete set. The last

claim holds for the following reason. Each uλi intersects L, so u0 has non-empty
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intersection with L ⊂ X−, which means there is a nonzero irreducible component

u− of u0 mapped into X−. We know D is obtained by a symplectic cut along some

hypersurface Va = h−1(a) ⊂ X. Consider the contact hypersurfaces Va+ε (for ε > 0

small) in X. After performing symplectic cut along Va, we get copies of Va+ε in X+

which are the boundaries of a tubular neighborhood of D ⊂ X+. Each uλi has a non-

empty intersection with Va+ε, because the symplectic form inside the neighborhood

of L surrounded by Va+ε is exact and so there are no Jλi-holomorphic disc completely

inside Va+ε. Thus, the limit curve u0 has a non-empty intersection with Va+ε ⊂ X+,

and so there are some irreducible components of u0 mapped into X+ and not contained

in D ⊂ X+. Since the domain of u0 is connected, a component of u0 mapped into X+

and not contained in D intersects D. Since J0|X+ is D-compatible, this component

intersects D at finitely many points. However, by Lemma 5.1, Mreg(X+, J, A) = ∅

if J ∈ J l,reg
X and A · D > 0. Thus, Mdisc

(X,L, Jλi , β) = ∅ for all λ ∈ ∆∗ small

and β ∈ H2(X,L) such that ω(β) < E. Once again, by the Gromov Compactness

Theorem this also holds for some neighborhood UE of Jλ ∈ JXλ . Since X ∼= Xλ, this

finishes the proof of Theorem 1.1.

5.2 Proof of Theorems 1.4 and 1.10

Let (X,ω, φ) be a symplectic manifold with a real structure such that c1(TX) = 0

and L ∼= S3 or RP3. Let π : X → ∆ be the associated fiberation of Chapter 2

and Y = π−1([0, 1]) ⊂ X . Each fiber of Y → [0, 1] is invariant under the induced

involution φX . Fix some compatible J on X and define

Mdisc
(Y , L, {Jt}t∈(0,1] , β) =

⋃
t∈(0,1]

Mdisc
(Xt, L, Jt, β).
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Let Mdisc
(Y , L, {Jt}t∈I , β), I = [0, 1], be the relative stable map compactification of

Mdisc
(Y , L, {Jt}t∈(0,1], β), similar to [12], [16], and Section 4.2, including maps to the

fiber over zero.

Every element (u,Σ) ofMdisc
(Y , L, {Jt}t∈I , β) in X0 belongs to a fiber product of

relative moduli spaces over X− and X+ with matching conditions on D,

(u,Σ) ∈Mdisc
(X−, L,D, ρ,Γ−)×(evξ− ,evξ+ )M(X+, D, ρ,Γ+), (5.1)

where Mdisc
(X−, L,D, ρ,Γ−) and M(X+, D, ρ,Γ+) are the relative moduli spaces

with the same intersection pattern ρ, ξ± are contact points with D, and Γ± encodes

the data corresponding to the topological types of the domain and image.

There is a fiber-wise involution τM on Mdisc
(Y , L, {Jt}t∈[0,1], β) as before. Fix a

spin structure σ on L. For a tuple ρ = (s1, · · · , sk), |ρ| =
∏
si.

Proposition 5.2. Let (X6, ω, φ) be a symplectic manifold with c1(TX) = 0.

The moduli space Mdisc
(Y , L, {Jt}t∈I , β) has a topology with respect to which

it is compact and Hausdorff. It has a τM-invariant oriented Kuranishi struc-

ture of virtual dimension 1 with respect to which the projection π is smooth.

The codimension one boundary components correspond to the moduli spaces

of the form (1.5), (1.6), the fiber over λ = 1, and (5.1) via a gluing map

M(X0, ρ,Γ−,Γ+)

|ρ|−covering π

��

ι(Γ−,Γ+)
// ∂Mdisc

(Y, L, {Jt}t∈I , β)

Mdisc(X−, L,D, ρ,Γ−)×(evξ− ,evξ+ )M(X+, D, ρ,Γ+)

which is compatible with the Kuranishi structures and the orientation induced by

the spin structure σ.

We use this proposition to prove Theorems 1.4 and 1.10. In Section 5.3 below, we

describe the Kuranishi structure and the covering space M(X0, ρ,Γ−,Γ+).

For A ∈ H2(X,Z), let

M(Y , {Jt}t∈I , A)φ =M(Y , {Jt}t∈I , A)φ,τ ∪M(Y , {Jt}t∈I , A)φ,η,
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with the common boundaries on the left-hand side identified. There is a Kuran-

ishi structure on M(Y , {Jt}t∈I , A)φ,η similar to one on the Mdisc
(Y , L, {Jt}t∈I , β),

given in Proposition 5.2, and these two Kuranishi structures give a Kuranishi struc-

ture on M(Y , {Jt}t∈I , A)φ. Fix one such Kuranishi structure and multisection s on

M(Y , {Jt}t∈I , A)φ.

Since X is a symplectic Calabi-Yau 3-fold and TL is trivial, M(Y , {Jt}t∈I , A)φ,η

and M(Y , {Jt}t∈I , A)φ,τ are orientable; see Sections 3.3 and 4.1. The orientation on

M(Y , {Jt}t∈I , A)φ,τ depends on the choice of trivialization of TL, while the orientation

onM(Y , {Jt}t∈I , A)φ,η depends on the choice of admissible trivialization of KX . Both

induce orientations on L.

Lemma 5.3. For c corresponding to either η or τ and the gluing parameter ε ∈ R≥0,

the gluing map

(M1(Y , {Jt}t∈I , β̃)×ev1 L)× R≥0 →M(Y , {Jt}t∈I , A)φ,τ or η

is orientation-preserving, provided the Lagrangian on the left-hand side is oriented by

the chosen trivialization of TL in the c = τ case and of (KX |L)R in the c = η case.

Proof. A curve in the common boundary of these two moduli spaces is of the form

f = [u,Σ = P1
top ∪q P1

down], with the involution c over Σ having one fixed point,

Fix(c) = q, the node q. We replace each such f , with the unstable map

f̃ = [u,Σ′ = P1
top ∪ P1

0 ∪ P1
down],

taking u to be constant u(q) over the central part P1
0. The automorphism group of f̃

is S1. We can view f̃ as an element of ∂M(Y , {Jt}t∈I , A)φ,τ by extending involution

to P1
0 via c |P1

0
= τ and as an element of ∂M(Y , {Jt}t∈I , A)φ,η by extending involution
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to P1
0 via c |P1

0
= η. The claim is then obtained following [7, Section 8.3] and [7, Section

7.4.1]).

Lemma 5.3 implies that if the induced orientation on ΛtopT ∗L and (KX |L)R ∼=

ΛtopT ∗L are reverse of each other, the induced orientation on the common boundary

(M1(Y , {Jt}t∈I , β̃) ×ev1 L) of ∂M(Y , {Jt}t∈I , A)φ,τ and ∂M(Y , {Jt}t∈I , A)φ,η are

reverse of each other and M(Y , {Jt}t∈I , A)φ is oriented.

Proof of Theorem 1.10. By Proposition 2.1, c1(TX+) = −PD(D). Therefore, for

every curve class B ∈ H2(X+), B ·D > 0,

dimvir(M(X+, D, ρ,Γ+)) ≤ c1(TX+)(B) < 0,

whenever the image curves of type Γ+ are in homology class B. Thus, the zero locus

of a multisection for M(X+, D, ρ,Γ+)φ is empty, unless Γ+ contains no homology

class with positive intersection with D. Therefore, the only non-trivial component in

the fiber over zero is M(X+, A)φ,c. We conclude that

Nφ
A = Nφ

(A,J |π−1(1),s|π−1(1))
= N real

A (X+)

+
∑

A1+A2=A

#[M1,0(Y , L, {Jt}t∈(0,1) , A1)φ,τ×(ev1,ev1)M1,0(Y , L, {Jt}t∈(0,1) , A2)φ,τ ]s.

The last term above is zero by Proposition 4.3, which establishes Theorem 1.10.

We now turn to the proof of Theorem 1.4. By Proposition 5.2,

Ndisc
(β,J |π−1(1),s|π−1(1))

=
∑

(Γ−,Γ+),ρ

1

Aut(Γ−,Γ+)
#[M(Y0, ρ,Γ−,Γ+)]s

−#[Mdisc

1,0 (Y , L, {Jt}
t∈
◦
I
, β1)×(ev1,ev1)M

disc

1,0 (Y , L, {Jt}
t∈
◦
I
, β2)]s,
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where
◦
I = (0, 1) and Aut(Γ−,Γ+) is the finite automorphism group of (Γ−,Γ+) con-

figuration. By Proposition 4.3, the last term above is zero. Therefore,

Ndisc
β =

∑
(Γ−,Γ+),ρ

1

Aut(Γ−,Γ+)
#[M(Y0, ρ,Γ−,Γ+)]s. (5.2)

The sum on the left-hand side of (5.2) corresponds to the boundary terms coming

from the central fiber, in a similar way to [16, Theorem 3.15] or [12, Theorem 12.3].

Therefore, (5.2) is an open version of the symplectic sum formula.

If ρ = (s1, · · · , sk)

dimvir(M(X+, D, ρ,Γ+)) = k −
∑

si.

Therefore, the only ρ for which we get a non-trivial contribution is the trivial one,

ρ0 = (1, · · · , 1). By Proposition 5.2, if ρ = ρ0, then

M(X0, ρ0,Γ−,Γ+) =Mdisc
(X−, L,D, ρ0,Γ−)×(evξ− ,evξ+ )M(X+, D, ρ0,Γ+).

It remains to understand the fiber-product term on the right. SinceM(X+, D, ρ0,Γ+)

has virtual dimension zero and τM-invariant Kuranishi structure,

evξ+ [M(X+, D, ρ0,Γ+)]s ⊂ Dk

is a φX+-invariant zero-dimensional chain, which we denote by γΓ+. Then N rel
Γ+

=∣∣γΓ+

∣∣ ∈ Q is the closed relative GW invariants of the class Γ+ counting elements of

the corresponding relative moduli space. Therefore,

[Mdisc
(X−, L,D, ρ0,Γ−)×(evξ− ,evξ+ )M(X+, D, ρ0,Γ+)]s

= [Mdisc
(X−, L,D, ρ0,Γ−)×evξ−

γΓ+ ]s.
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Figure 5.1: A typical J-holomorphic map in singular fiber.

Lemma 5.4. With the notation as above,

#[Mdisc
(X−, L,D, ρ0,Γ−)×evξ−

γΓ+ ]s = αrel,disc
Γ−

N rel
Γ+
,

where αrel,disc
Γ−

are the numbers defined in (4.6).

Proof. A typical element ofMdisc
(X−, L,D, ρ0,Γ−)×(evξ− ,evξ+ )M(X+, D, ρ0,Γ+) rep-

resents a curve as in Figure 5.1. In this figure, the domain of Γ+ consists of three

rational curves, while the domain of Γ− consists of a disc component and a rational

curve. Since Γ−#Γ+ is a degeneration of the disc, the unique bordered component

of Γ−, say (Σ0, ∂Σ0), intersects the domain of Γ+ in disjoint irreducible components.

Thus, if the topological type of Γ− over (Σ0, ∂Σ0) is [d0

2
] ∈ H2(CP3,RP3), then Γ+

has at least d0 components.

Let (ξ1, · · · , ξd0) denote the intersection points of Σ0 with the common divisor D,

and let (ξ1, · · · , ξk) ∈ Dk be the set of all intersection points. For ε = (ε1, · · · , εl) ∈ Zl2,

let cε : D
l → Dl be the map which is equal to the identity on i-th factor if εi = 0 and

to τ3 if εi = 1.
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If (ξ1, · · · , ξk) ∈ γΓ+ , then (cε(ξ1, · · · , ξd0), cε′(ξd0+1, · · · , ξk)) is also in γΓ+ , where

ε is arbitrary and ε′ depends on Γ+ and ε. This is because Σ1 meets Γ+ at disjoint

components Σi, and for every J+-holomorphic map u : Σi → X+, τM(u) is also a J+-

holomorphic map with same the topological type; that is, we can flip each individual

component of Γ+ using the induced involution φ+ on X+.

Given (ξ1, · · · , ξk) ∈ γΓ+ , let S be the set of the 2d0 tuples obtained from

(ξ1, · · · , ξk). Let q = (qd0+1, · · · , qk) ∈ Dk−d0 . For each point cε′(ξd0+1, · · · , ξk) as

above, choose a path γε′(t), 0 ≤ t ≤ 1, in D(k−d0) connecting these two points. Let St

be the set obtained by replacing a point of the form (cε(ξ1, · · · , ξd0), cε′(ξd0+1, ·, ξk))

with (cε(ξ1, · · · , ξd0), γε′(t)). Then, S1 is of the form γ0 × {q} ∈ Dk as in (4.5).

For each St, define

Mdisc
t,Γ− =Mdisc

(X−, L,D, ρ0,Γ−)×evξ−
St,

to be the zero-virtual-dimensional relative moduli space with incidence condition

determined by St and

Mdisc
Γ− =

⋃
t∈I

Mdisc
t,Γ−

to be their union. Then [MΓ− ]s is a one-dimensional cobordism between [Mdisc
0,Γ−

]s

and [Mdisc
1,Γ−

]s, because the part of the incidence condition which corresponds to the

disc part (Σ1, ∂Σ1) of Γ− is fixed, and so the disc part of each curve in cobordism is

fixed, and so disc-bubbling does not happen in the middle. We conclude that

#[Mdisc
(X−, L,D, ρ0,Γ−)×evξ−

S0]s = #[Mdisc
(X−, L,D, ρ0,Γ−)×evξ−

S1]s

= 2d0αrel,disc
Γ−

.

Performing this for all points in the 0-chains γΓ+ and then adding up all the terms

gives the desired result.
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Proof of Theorem 1.4. By (5.2) and Lemma 5.4,

Ndisc
β =

∑
Γ−#Γ+=β

1

Aut(Γ−,Γ+)
N rel

Γ+
αrel,disc

Γ−
. (5.3)

Thus, the open invariants of (X,L) can be expressed as a linear function of the relative

GW invariants of the symplectic manifold X+ and the universal constants αrel,disc
Γ−

.

5.3 Kuranishi structure on Mdisc
(X,L,D, ρ, β)

This section outlines a construction of Kuranishi structure on the relative moduli

spaceMdisc
(X,L,D, ρ, β). It includes all the steps needed to put Kuranishi structure

on the other moduli spaces in this thesis. The case with marked points can be

treated similarly. We refer to [7] and [25] for the definition and basic properties of

Kuranishi structures and to [20, 12] for the details on gluing theorems that we use

here. Throughout this chapter (X,ω) denotes a symplectic manifold, L ⊂ X and

D ⊂ X a Lagrangian submanifold and a symplectic hypersurface, β ∈ H2(X,L)/ ∼,

ρ = (s1, · · · , sk), l(ρ) = k. We fix a compatible almost complex structure J .

5.3.1 Kuranishi neighborhood of irreducible regular maps

Let u : (D2, S1)→ (X,L) be a regular J-holomorphic map; thus, Im(u)∩D is finite.

We denote the set of such maps by M∗,reg,disc(X,L,D, ρ, β). There are l(ρ) marked

points ~ξ corresponding to the contact points with D. Define

Eu = u∗TX, Fu = u|∗S1TL, and E0,1
u = (T ∗D2)0,1 ⊗C Eu.

Fix p > 2 and l > max si. Let W l,p(Eu, Fu)ρ be the set of vector fields of class

W l,p vanishing to order si at each intersection point ξi with D and tangent to TL

along S1. Similarly, let W l−1,p(E0,1
u )ρ be the set of Eu-valued (0, 1)-forms of class
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W l−1,p vanishing to order si− 1 at each ξi. The linearized Cauchy-Riemann operator

then is a map

Du : W l,p(Eu, Fu)ρ → W l−1,p(E0,1
u )ρ.

Choose finite-dimensional subspaces Eu ⊂ W l−1,p(E0,1
u )ρ and Eũ ⊂ W l−1,p(E0,1

ũ )ρ such

that every η ∈ Eu is smooth and supported away from the boundary and marked

points, Du modulo Eu is surjective, and T̃ 1
φ(Eu) = Eũ. The last condition guarantees

that τM induces an involution on the Kuranishi structure.

We take our Kuranishi neighborhood to be V (u) = (π ◦ Du)
−1(0) (modulo the

automorphism group PSL(2,R) of the disc), which is a smooth manifold of dimension

µ(β) + n− 3 + 2l(ρ) + dim(Eu)− 2D · β.

The obstruction bundle at each f ∈ Vu is obtained by parallel translation of Eu

with respect to the induced metric of J . Thus, we get a vector bundle E(u) and a

Kuranishi neighborhood (V (u), E(u)). The Kuranishi map in this case is just the

Cauchy-Riemann operator f → ∂̄f . If there are additional boundary or interior

marked points, the tangent space is bigger and includes the tangent spaces of marked

points. In this case the Kuranishi structure is a product of Kuranishi structure of the

map and the moduli space of marked points.

5.3.2 Kuranishi neighborhoods for nodal regular maps

Let [u,Σ] ∈Mreg,disc
(X,L,D, ρ, β)\M∗,reg,disc(X,L,D, ρ, β) be so that the domain is

nodal, but the image is still regular. Write Σ =
∐

Σi, where each Σi is a smooth curve

isomorphic to either the disc or the sphere. Then each ui = u |Σi is an irreducible map.

For simplicity we assume there are only two components Σ1, Σ2 in the decomposition;

we can further assume that the two components are discs with a boundary point in
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common. The cases with more components or with sphere components can be treated

similarly.

We can assume that the node is given by 1 ∈ Σi for each of the two discs. Let

q = ui(1) ∈ L. If [u1] = β1 and [u2] = β2, then

(ui,Σi, 1) ∈M∗,reg,disc
1,0 (X,L,D, ρi, βi)

[u,Σ] ∈M∗,reg,disc
1,0 (X,L,D, ρ1, β1)×(ev1,ev1)M∗,reg,disc

1,0 (X,L,D, ρ2, β2).

Let (V (ui), E(ui)) be the Kuranishi neighborhoods constructed in the previous section

and

V (u1, u2) = (ev1 × ev1)−1(∆),

where ∆ is the diagonal in L× L and ev1 : V (ui)→ L are the evaluation maps. For

V (u1, u2) to be a manifold, we need (ev1 × ev1) to be a submersion. We can choose

Eui big enough so that both evaluation maps ev1 are submersions. For a fixed β,

there are only finitely many topological types of nodal maps which can appear in the

limit, and so by induction we can choose obstruction bundles at each step big enough

so that the induced Kuranishi structures on the corners of the moduli space for β

obey the required conditions. Thus, with correct choice of obstruction bundles Eui ,

V (u1, u2) is a smooth manifold with projections

(π1, π2) : V (u1, u2)→ V (u1)× V (u2).

Then Ef1,f2 = π−1
1 Ef1 ⊕ π−1

2 Ef2 gives the fiber of corresponding obstruction bun-

dle over V (u1, u2) and the Kuranishi map is as before. Thus, we get a Kuranishi

neighborhood (V (u1, u2), E(u1, u2)) of u in the boundary component

M∗,reg,disc
1,0 (X,L,D, ρ1, β1)×(ev1,ev1)M∗,reg,disc

1,0 (X,L,D, ρ2, β2).
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In order to extend this Kuranishi neighborhood to a Kuranishi neighborhood V (u) =

V (u1, u2) × [0, ε) of u in the original moduli space, we glue the domain and deform

the nodal maps in V (u1, u2) into J-holomorphic discs modulo obstruction.

Lets z1, z2 be local coordinates near 1 ∈ D2, modeled on the closure of upper

half-plane as neighborhoods of 0 ∈ H. For each positive real gluing parameter µ,

consider the Riemann surface Σµ
∼= D2 obtained by gluing Σ1 and Σ2 via z1z2 = −µ.

This gluing respects the orientation of the boundary on each part. Since the divisor

D is disjoint from L, a straightforward modification of the proof of [7, Proposition

7.2.12] yields the following.

Proposition 5.5. There is a continuous family of embeddings

ιµ : V (u1, u2)→ W 1,p(X, β), µ ∈ (0, ε),

with the following properties:

1. fµ = ιµ(f1, f2) converges to (f1, f2) as µ→ 0;

2. ∂̄Jfµ ∈ Ef1,f2, where Ef1,f2 is a subspace of W l−1,p(E0,1
fµ

) obtained via parallel

translation;

3. every map f ′ close enough to some f ∈ V (u1, u2) with ∂̄Jf
′ ∈ Ef ′ is in the image

of some ιµ.

5.3.3 Kuranishi neighborhood for non-regular maps

We now consider the case [u,Σ] is not regular. This means some component of u is

mapped into the divisor D. As we will see, the part mapped into the D will satisfy

certain properties, and not every such map can be a limit of a regular stable relative
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maps. By Section 4.2, every non-regular map

[u] ∈Mdisc
(X,L,D, ρ, β) \Mreg,disc(X,L,D, ρ, β)

can be modeled as a stable map into the singular space X[n] as in Definition 4.7.

Therefore, we can write Σ =
∐

Σi such that u0 = u |Σ0 is a regular map into the

(X,D), possibly from a disconnected domain, and ui = u |Σi , i > 0, is a regular map

into (YD, D0 ∪D∞). Thus,

[u0] ∈Mreg,disc(X,L,D, ρ0,Γ0),

[ui] ∈Mreg(YD, D0 ∪D∞, ρ0
i ∪ ρ∞i ,Γi)/C∗, i > 0,

where

• Γi describes the topological type of the domain and βi is the homology class of

the image;

• ρ0
i describes the intersection pattern of the map with D0 ⊂ YD and ρ∞i , i > 0,

describes the intersection pattern of ui with D∞ ⊂ YD, and ρ0
i = ρ∞i+1;

• there is a C∗-action on the space of maps into YD which comes from the C∗-

action on the P1 fibers.

For simplicity, we assume that Σ = Σ0 ∪ Σ1 and u0 and u1 are not nodal. The

general case is an easy extension of this case. From the previous subsections, we have

Kuranishi neighborhoods (V (ui), E(ui)) and evaluation maps

evi = ev~ζi : V (ui)→ Dl(ρ0),
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where ρ0 = ρ0∞
1 is the intersection pattern between two components and ~ζi are contact

points with D. Let

V (u0, u1) = (ev0 × ev1)−1(∆)

be the inverse image of the diagonal map. For each (f0, f1) ∈ V (u0, u1), let Ef0,f1 =

Ef0⊕Ef1 . If V (ui) is big enough, V (u0, u1) is a manifold. This way we get a Kuranishi

neighborhood of [u] in

Mreg,disc(X,L,D, ρ0,Γ0)×(ev0,ev1)Mreg(YD, D0 ∪D∞, ρ0
i ∪ ρ∞i ,Γi)/C∗.

A gluing theorem similar to Proposition 5.5 is needed to extend this to a Kuranishi

neighborhood of [u] on M
disc

(X,L,D, ρ, β). Contrary to the previous case, the gluing

will not be unique, and we get a gluing map from some covering space of V (u0, u1).

This is the space M(X0, ρ,Γ−,Γ+) which appears in the statement of Proposition

5.2.

Let (f0, f1) ∈ V (u0, u1). Since the obstruction bundle is supported away from the

marked and nodal points, ui is J-holomorphic near the intersection points ~ζi of ui

with D. Let ~q = ev0(~ζ0) = ev1(~ζ1) be the set of intersection points with D. By the

symplectic sum procedure of Chapter 2, we can construct a family X over some small

disc ∆ whose central fiber is X ∪D YD and whose other fibers are isotopic to X itself.

Moreover, in this case, X is obtained by blowing up X×∆ along D×{0}. We denote

by J to be the complex structure on X .

We choose a set of local coordinate charts on X around the points ~q as follows. Fix

a C-linear identification of TqiD with Cn−1 and extend it to normal coordinates (vji )

around qi in D. Let L− be the normal bundle of D in X and let L+ be the normal

bundle of D in YD. Identifying L− |qi with C, taking a direct sum with the dual,

and parallel translating along radial lines in the v-coordinates, we obtain coordinates

(x, y) : (L− ⊕ L+)→ C⊕ C. This gives a coordinate chart (v, x, y) near each qi such
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that the projection X → ∆ is given by (v, x, y) → xy ∈ L− ⊗ L+ = C. In these

coordinates, the almost-complex structure J on X agrees with the standard almost-

complex structure on Cn−1⊕C⊕C at the origin, and J has the form JD⊕JC⊕JC along

D. By [11, Lemmas 3.2,3.4], in these coordinates and around each qi, f ∈ V (u0, u1)

can be written in the form

f(zi, wi) = f0(zi)#f1(wi) = (hv(z, w), aiz
si
i (1 + hx), biw

si
i (1 + hy)),

with hv(0, 0) = hx(0, 0) = hy(0, 0) = 0. In order to glue the two parts of a map f to

get a map fµ ∈ W 1,p(X,L) with ∂̄Jfµ ∈ Efµ , we first have to glue the domains. Let

µ = (µ1, · · ·µk) be a tuple of (sufficiently small) complex numbers and define Σµ to

be the Riemann surface obtained by gluing the domains around the interior marked

points ~ζi via the equation zjwj = µj. So we are replacing the node with a small

cylinder described by the gluing parameters µi at each node. If we can glue two parts

of f and get a map fµ as above for small µ, then the part of fµ which is mapped to

the neck can be written in the form fµ(zi, wi) = (vµi , xµi , yµi) with xµiyµi = ε for some

fixed ε ∈ ∆. For small ε, the maps fµ are closely approximated by (qi, aiz
si
i , biw

si
i )

near the intersection point qi, see [12, Section 5]. So for fµ to be in Xµ, we need

aibiµ
si
i = ε. (5.4)

This shows that there are altogether |ρ| =
∏
si possibilities for choosing µ (for a fixed

ε), and each choice leads to a different map. The coefficients ai and bi are the si-jets

of the components of fj normal to D at ζ ij modulo higher order terms, and so

ai ∈ (T ∗ζi0
Σ0)si ⊗ L−,qi , bi ∈ (T ∗ζi1

Σ1)si ⊗ L+,qi .
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Let Lji , i = 0, 1, be the relative cotangent bundle to Σi at ζji . These are complex

line bundles over the Deligne-Mumford moduli space and the leading coefficients are

sections

ai ∈ Γ((Li0)si ⊕ ev∗0iL−) and bi ∈ Γ((Li1)si ⊕ ev∗1iL+).

We conclude that µ is a multisection of the bundle

⊗
[(Li0)∗ ⊗ (Li1)∗]→ V (u0, u1).

We define Ṽ (u0, u1) to be the total space of this multisection. This is an ètale covering

of V (u0, u1) and we can pull back the obstruction bundle to get a Kuranishi chart

(Ṽ (u0, u1), E(u0, u1)).

In order to finish the construction of a Kuranishi structure onMdisc
(X,L,D, ρ, β),

we need a gluing theorem to extend the Kuranishi neighborhood (Ṽ (u), E(u)) to a

Kuranishi neighborhood of [u] on Mdisc
(X,L,D, J, β). This gluing theorem is pro-

vided by a slight modification (to accommodate obstruction bundles) of the gluing

theorem in [12, Sections 5–8].

Proposition 5.6. There is a continuous family of orientation-preserving embeddings

ιµ : Ṽ (u0, u1)→ W 1,p(X, β), aibiµ
si = ε

with the following properties:

1. fµ = ιµ(f0, f1) converges to (f1, f2) as µ→ 0;

2. ∂̄Jfµ ∈ Efµ, where Efµ is the subspace of E0,1
fµ

obtained via parallel translation;

3. any map f ′ close enough to some f ∈ Ṽ (u) with ∂̄Jf
′ ∈ Ef ′ is in the range of

some ιµ.
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Chapter 6

Computations

Let [d] ∈ H2(P3) ∼= Z be the homology class of a degree d curve. The elements of the

moduli space Md(P3, [d])η3,η whose elements are degree d real curves with d pairs of

complex conjugate marked points, ξ1 = (z1, z1), · · · , ξn = (zd, zd). By the result of

Section 3.3, this moduli space is oriented. Let

evi : Md(P3, [d])η3,η → P3, evi((u,Σ, (ξj))) = u(zi) ∈ P3,

be the evaluation maps corresponding to the marked points. Let H3 = PD(pt) be

the homology class of a point, where H is the class of hyperplane. We are interested

in the real invariants

N real
d =

∫
[Md(P3,[d])η3,η ]

ev∗1(H3) ∧ · · · ∧ ev∗d(H
3). (6.1)

Geometrically, this is the number of genus zero real curves of degree d passing through

d generic points of P3. For instance, N1 = 1 because for any point of P3, there is

a unique real line passing though that point (and its conjugate). In this section,

we compute these invariants and compare them to the invariants of P3 obtained by
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counting J-holomorphic discs with respect to the other involution on P3 which has

fixed points (denoted by τ3).

6.1 Preliminaries

Let T = {ζ ∈ C | |ζ| = 1} be the unit circle. The torus T4 acts on P3 by

(ζ1, ζ2, ζ3, ζ4) · [z1, z2, z3, z4] = [ζ1 · z1, ζ2 · z2, ζ3 · z3, ζ4 · z4].

Under the injection i : T2 → T4, given by (ζ1, ζ2)→ (ζ1, ζ
−1
1 , ζ2, ζ

−1
2 ), we get an action

of T2 on P3 which commutes with the action of involution η3. The action of T4 on

P3 has four fixed points,

p1 = [1, 0, 0, 0], · · · , p4 = [0, 0, 0, 1].

The action of T2 has the same set of fixed points and the involution η3 permutes

these points,

p1 ←→ p2, p3 ←→ p4.

By composition on the left, T2 also acts on the moduli space Md(P3, [d])η3,η.

Lemma 6.1. The irreducible T2-invariant curves in P3 are the lines Lij, connecting

pi and pj. Moreover, the irreducible real T2-invariant curves are L12 and L34.

Let λi to be the equivariant first Chern class of O(1)P3 restricted to pi in H∗
T4(pt).

Then,

H∗T4(pt) = Q[λ1, λ2, λ3, λ4].

73



The weights of TP3 at the point pi are {λi − λj}j 6=i; see [10, Chapter 27]. Let α, β be

the generators of H∗
T2(pt) defined by

i∗ : H∗T4(pt)→ H∗T2(pt), i∗(λ1) = α, i∗(λ2) = −α, i∗(λ3) = β, i∗(λ4) = −β.

For notational convenience, we often omit the pull-back map i∗ and write

λ1 = α, λ2 = −α λ3 = β, λ4 = −β.

Let u : (Σ, (ζi)) → P3 be a holomorphic map in Md(P3, [d])η3,η defined on nodal

domain Σ with marked points (ξi) whose image as a marked curve is fixed under the

action of T2. Since there are no T2-fixed points in P3 that are also fixed by η3,

Σ = Σ0 ∪
∐

Σi

∐
Σī

has a unique central component Σ0
∼= P1, which is invariant under the involution,

and others come in conjugate pairs; see Section 3.1. Every nodal and marked point is

mapped to one of the fixed points pi. If u |Σi has degree di, then d = d0 + 2
∑
di. We

call such a curve of type d0. By Remark 3.6, d0 is odd, i.e. [M2k(P3, [2k])η3,η]T
2

= ∅.

Corollary 6.2. For d ∈ 2Z, N real
d = 0.

Remark 6.3. For d even, a localization calculation shows that N τ3
d is zero. This

implies that the conclusion of Theorem 1.10 for L ∼= RP3 and β even holds, i.e.

Nφ
β (X) = N real

β̃
(X+).

Therefore, from now on, we assume d0 is odd. For every T2-fixed curve of type

d0, after removing the central component, we get two irreducible closed curve

(u′,Σ′ =
∐

Σi), (u′′,Σ′′ =
∐

Σī),
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Figure 6.1: A typical decorated graph (a) and its half (b).

each of degree l = d−d0

2
. Each of these has d + 1 marked points, (zi)

d
i=0, so that z0

corresponds to the nodal point shared with Σ0 and rest of the marked points are

decorated by ± signs depending on whether it is the first point of ξ or not. If the

new marked point z0 is mapped into pi, we say that the map is of type (d0, pi).

As described above, every curve in [Md(P3, [d])η3,η]T
2

can be modeled on a sym-

metric labeled tree, Γ, where the symmetry comes from complex conjugation.

6.2 Localization calculation of odd degree real GW

invariants

Such a tree has a central edge e0 corresponding to the central component, a degree for

each component, and open edges corresponding to the marked points. Figure 6.1(a)

shows one such Γ of total degree 5 and 5 pairs of conjugate marked points. Removing

e0 from Γ, we get a disconnected graph Γ′∪η(Γ′). Choose one of the components (say

Γ′) and add the corresponding half edge in place of the central edge, Figure 6.1(b).

We denote the total half graph by Γhalf; it has a unique half edge corresponding to

the central part. All calculations below are based on this half graph; one can check

that the result is independent of which half we choose.
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For any flag F = (v, e), let v(F ) = Im(v) ∈ {pi} be the corresponding fixed point.

For every (f,Σ, (ξi)) in the fixed point locus, there is an exact sequence

0→ Aut(Σ, (ξi))R → Def(f)R → Def(f,Σ, (ξi))R → Def(Σ, (ξi))R → 0.

Thus,

e(NΓ) = e(Def(f,Σ, (ξi))
mov
R ) =

e(Def(f)mov
R )e(Def(Σ, (ξi))

mov)R
e(Aut(Σ, (ξi))mov

R )
, (6.2)

where ”mov” means the moving part (the part with non-zero weights) and e(−) means

the top Chern class. Following [10, Chapter 27], we drive a formula for e(NΓ) for any

odd-dimensional projective space, P2m−1.

• The bundle Aut(Σ, (ξi))R. For each non-contracted component of Σ, there is a

torus-fixed piece coming from the infinitesimal automorphisms of the component

fixing the two special points. This fixed part cancels with a similar weight-zero

term in Def(f). There are, however, more automorphisms. They correspond to

vertices v of valence 1 (note that they come in conjugate pairs). In this case,

the point mapping to some fixed point pi is not a special point. Hence, we have

an additional automorphism corresponding to moving these points. For each

such point v ∈ Σ′, this is a complex one-dimensional space, isomorphic (as a

T-representation) to the tangent space to v, i.e.

e(Aut(Σ, (ξi))
mov
R ) =

∏
val(v)=1

wF ,

where F is the unique flag containing v ∈ Γhalf, connecting v to v′ by edge e of

degree de, and wF = λ(v)−λ(v′)
de

.

• The bundle Def(Σ, (ξi))R. A deformation of the contracted components (as a

marked curve) is a weight-zero deformation of the map that yields the tangent

space Def(Σ)fix
R as a summand of Def(f,Σ, (ξi))

fix
R . The other deformations come
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from smoothing (conjugate pairs of) nodes of Σ. The one-dimensional space

associated to each node is identified with the tensor product of the tangent

spaces of the two components at the node. For every node corresponding to

a vertex v, there are two possibilities. If val(v) = 2 and v connects two non-

contracted components (we also have valence two vertices which correspond to

a single marked point on a non-contracted component), the contribution is

∏
val(v)=2

(wF1 + wF2),

where F1, F2 are the flags attached to v ∈ Γhalf. If val(v) ≥ 3, there is a stable

component mapping to a fixed point and the contribution is

∏
F∈Γhalf
val(v(F ))>2

(wF − ψF ),

where ψF is the ψ-class corresponding to the marked point determinded by F

on the contracted curve.

• The bundle Def(f)R = H0(Σ, f ∗TP2m−1)R. There is an exact sequence

0→ H0(Σ, f ∗TP2m−1)R

→ H0(Σe0 , f
∗TP2m−1)R ⊕

⊕
v

H0(Σv, f
∗TP2m−1)⊕

⊕
e6=e0

H0(Σe, f
∗TP2m−1)

→
⊕
F

Tv(F )P2m−1 → 0.

For e 6= e0, the contribution of H0(Σe, f
∗TP2m−1) to e(Def(f)mov) is classical

and is equal to

(−1)de
de!

2

d2de
e

(λi − λj)2de

de∏
a=0

∏
k 6=i,j

(
a

de
λi +

de − a
de

λj − λk),
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where i and j are the two vertex labels of the edge e and de is the degree of the

edge e; see [10, Section 27.4].

The half edge e0 corresponds to a map of odd degree to one of the lines L2i−1,2i.

So it is given by

f2i−1 : [z0, z1]→ [0, · · · , 0, zl0, zl1, 0, · · · , 0] or

f2i : [z0, z1]→ [0, · · · , 0, zl1, zl0, 0, · · · , 0],

with the convention that [z0, z1] = [1, 0] is in the half graph. As an example, we

consider f1. In the open chart {z1 6= 0} = C2m−1 ⊂ P2m−1, f1 is given by

f1(z) = (zl, 0, · · · , 0).

The weights of the torus action on Tp1P2m−1 are −2α1, α2 − α1,−α2 − α1, · · · .

Every section of H0(Σe0 , f
∗
1TP2m−1)R is then of the form

(
2l∑
a=0

b2,az
a,

l∑
a=0

b34,az
a,

l∑
a=0

(−1)ab34,az
l−a, · · · ), b2,a = (−1)ab2,2l−a.

Therefore, b2,0, · · · , b2,l−1, b34,0, b34,l, · · · ∈ C and b2,l ∈ ilR give coordinates

on H0(Σe0 , f
∗
1TP2m−1)R. The part given by b2,0 + b2,lz

l + b2,0z
2l comes from

tangent vectors to Σe0 . The middle term has weight zero and cancels with

the weight zero factor in Aut(Σe0). So the non-zero weights correspond to

b2,0, · · · , b2,l−1, b34,0, b34,l, · · · ∈ C with weights

2α1(1− a

l
), 0 ≤ a < l, α1(1− 2a

l
)− α2, · · · , α1(1− 2a

l
)− αm, 0 ≤ a ≤ l.
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Therefore, up to a sign factor, the contribution is

If1 = (−1)
l+1
2

(m−1)

(
2α1

l

)l
l!

m∏
j=2

∏
0≤a≤l
a odd

((aα1

l

)2

− α2
j

)
.

• The only term left is the contribution of Tv(F )P2m−1, which is
∏

i 6=v(f)(λv − λi).

Putting all this together we get

1

e(NΓ)
=

1

e(NΓhalf
)

=
∏

F∈Flags
val(v(F ))>2

1

wF − ψF

∏
F∈Flags
u6=v(F )

(λv(F ) − λu)

∏
v∈vertices

∏
u6=v

1

λv − λu

∏
val(v)=2

1

wF1 + wF2

∏
val(v)=1

wF

∏
e 6=e0

(
(−1)ded2de

e

de!2(λi − λj)2de

∏
a+b=de

∏
k 6=i,j

1
a
de
λi + b

de
λj − λk

)

(−1)ε(−1)
l+1
2

(m−1)

(
l

2αi

)l
1

l!

m∏
j=1
j 6=i

l∏
a=1
a odd

1

(aαi
l

)2 − α2
j

,

where ε = 1 if the half edge is built over f2i−1 and ε = 0 if the half edge is built over

f2i. This extra ±1 factor is the consequence of the orientation.

Example 6.4 (d = 1). We denote the contribution of f1 by C(α, β). Summing over

all four possible cases, we get

N real
1 = 2(C(α, β) + C(β, α)), C(α, β) =

α2

2(α2 − β2)
.

From this we get,

N real
1 =

α2

α2 − β2
+

β2

β2 − α2
= 1,

as it should be.

79



d = 1 d = 3 d = 5
|N real

d | 1 1 5

Table 6.1: N real
d in low degrees.

Example 6.5 (d = 3). In this case threre are five possible types of Γhalf. Doing the

calculations we get

N real
3 = 4× [ −

(
3

2

)5(
α4

(α2 − β2)(α2 − 9β2)

β4

(β2 − α2)(β2 − 9α2)

)
+

1

32

α4 + β4

(α2 − β2)2
+

−β8(3α2 + 5β2)

(α2 − β2)4(9α2 − β2)

−α8(3β2 + 5α2)

(α2 − β2)4(9β2 − α2)

+
3

16

α4 + β4

(α2 − β2)2
+ 3

α2β6 + β2α6

(β2 − α2)4

+
3

8

α4 + β4

(α2 − β2)2
+ 3
−β2α4(3α2 + β2)− α2β4(3β2 + α2)

4(α2 − β2)4

+
α4 + β4

4(α2 − β2)2
+
α6(3α2 − β2) + β6(3β2 − α2)

2(α2 − β2)4

]
= −1.

From a similar but longer calculation, we get N5 = 5.

6.3 Comparison with the open GW invariants

The other involution, τ3, on P3 has fixed locus Fix(τ3) = RP3. Let [d/2] ∈ H2(P3,RP3)

be the relative homology class of d times of a half line. LetMdisc

0,d (P3,RP3, [d/2])dec be

the moduli space of degree d discs with one un-decorated and d− 1 decorated (deco-

rated with ±) interior marked points. If d is odd, ∂1Mdisc

0,d (P3,RP3, [d/2])dec consists

of only nodal discs. By gluing the boundary components of Mdisc

0,d (P3,RP3, [d/2])dec

via τglue, we get a moduli space

M̃disc
0,d (P3,RP3, [d/2])dec =Mdisc

0,d (P3,RP3, [d/2])dec/ ∼glue (6.3)
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without boundary. We can then define open GW-invariants Ndisc
d/2 by counting J-

holomorphic discs passing through d generic points as before. Applying localization,

M̃disc
0,d (P3,RP3, [d/2])dec and Md(P3, [d])η3,η have the same fixed point loci and thus

Ndisc
d/2 = N real

d .

Conjecture 6.6. The closed moduli spaces M̃0,d

disc
(P3,RP3, [d/2])dec andMd(P3, [d])η3,η

are isomorphic.

For example, for d = 1 both moduli spaces are isomorphic to the quadratic hy-

persuface in P3.
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