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Part 1

What are symplectic manifolds, what are J-holomorphic
curves, and why do we care about them?

What is known about the (moduli) space of J-holomorphic maps

In particular, how do we construct a compact moduli space of
J-holomorphic maps?

Part 2
I will introduce certain moduli spaces of J-holomorphic curves
with extra tangency conditions

I will discuss the motivation for studying such moduli spaces and
the known results

I will finish by stating a NEW compactification result



Part 1



What is a Symplectic manifold?

2n-dim manifold X with
a closed (dω=0) and non-degenerate (ωn 6=0) 2-form ω

Example: X=R2n=Cn with ωstd=dx1 ∧ dy1 + · · ·+ dxn ∧ dyn

Every (X,ω) is locally isomorphic to (R2n, ωstd)

In real dimension 2 (C-dim 1), all Riemann surfaces are
symplectic manifolds



Almost-complex structures compatible with ω

Almost complex structure: J : TX −→ TX s.t. J2 = −id

Compatible with ω: ω(·, J ·) is a metric

Crucial observation: Space of compatible J is non-empty
(infinite dimensional) and contractible
In particular it is connected

A triple (X,ω, J) is called an almost Kähler manifold

Kähler manifold: If J comes from a complex structure on X

(Newlander-Nirenberg 1957) Nijenhueis (2, 1)-tensor measures
how far J is from defining a complex structure

NJ(u, v) ≡ [u, v]+J [u, Jv]+J [Ju, v]−[Ju, Jv] ∈ TxX ∀u, v∈TxX

In dimension 2 all J ’s are holomorphic (NJ ≡ 0)





What are J-holomorphic maps?

(X,ω, J) as before

(Σ, j): a Riemann Surface with complex structure j

(Gromov 85) J-holomorphic map

u : (Σ, j) −→ (X, J) s.t. ∂̄u = du+ Jduj = 0

i.e. dxu :TxΣ−→Tu(x)X is C-linear ∀ x∈Σ

This is a non-linear Cauchy-Riemann (CR) equation

Im(u)⊂X is called a J-holomorphic curve
It could be singular at some points

One can also define J-holomorphic maps from Riemann surfaces
with boundary subject to some boundary conditions (Floer
theories)



Moduli spaces of J-holomorphic maps

If h : Σ −→ Σ is a holomorphic reparametrization ⇒
u′ = u ◦ h is also J-holomorphic
u and u′ are equivalent (define the same curve Im(u)= Im(u′))

The homology class A∈H2(X,Z) represented by u
and the Genus g of Σ characterize the topological type of u

(Set) Mg(X,A) =
{(
u, (Σ, j)

)
: ∂̄u = 0

}
/ ∼

(Set) Mg,k(X,A) =
{(
u, (Σ, j, z1, . . . , zk)

)
: ∂̄u = 0

}
/ ∼



Why are these moduli spaces useful?

Powerful tool to study global geometry/topology of symplectic
manifolds

To find periodic orbits of Hamiltonian ODE’s: Floer homology

Defining enumerative invariants: Gromov-Witten theory

String theory, Mirror Symmetry

Topology of 3-manifolds: Heegaard-Floer homology

Connections to Seiberg-Witten theory and other Gauge theories



Example of Gromov-Witten theory

Gromov-Witten theory formalizes and generalizes the
enumerative geometry in algebraic geometry which is about
finding/counting holomorphic curves of specific type

Example 1: There is a unique holomorphic sphere of homology
class [1]∈H2(CPn,Z) ∼= Z (called a line) passing through 2
points in CPn

Example 2: There are 2875 lines in a (generic) degree 5
Calabi-Yau hypersurface in CP4

Evaluation maps: ev =
∏k
i=1 evi : Mg,k(X,A) −→ Xk

(u,Σ, j, z1, . . . , zk)
evi−→ u(zi) ∈ X



Example of Gromov-Witten theory (continued)

We want GWX,A
g,k = ev∗(Mg,k(X,A)) ⊂ Xk to be a “nice” cycle

Then, for cycles β1, . . . , βk representing homology classes
B1, . . . , Bk∈H∗(X), we define

GWX
g,A(B1, . . . , Bk) = #

(
GWX,A

g,k ∩ (β1 × · · · × βk)
)
∈ Z

For this construction to work we need

1. a Topology/Smooth structure on Mg,k(X,A)

2. a “nice” Compactification Mg,k(X,A) of the correct “expected
dimension”

3. some control of Smoothness of Mg,k(X,A)



Topology and smoothness of Mg,k(X,A)

For a fixed (Σ, j), ` ∈ Z+, and p > 1 with `p > 2,

E

π

��

Eu = W `−1,p(Σ,Ω0,1
Σ,j ⊗ u

∗TX) ∂̄u

B

∂̄

II

= W `,p(Σ, X) = {(u,Σ, j) : u ∈ L`,p} u

∂̄

OO

By elliptic regularity: ∂̄−1(0) =
{

(u,Σ, j) : ∂̄u = 0
}

Du∂̄ : W `,p(Σ, u∗TX) −→W `−1,p(Σ,Ω0,1
Σ,j ⊗ u

∗TX)
is a linear CR operator

(u∗TX, u∗J) is a holomorphic vector bundle and

Du∂̄ = ∂̄std + first order operator



Smoothness of Mg,k(X,A) (continued)

In particular Du∂̄ has finite dimensional kernel and cokernel (it
is Fredholm) and by Riemann-Roch

dimRker(Du∂̄)−dimRcoker(Du∂̄) = 2

(
〈c1(TX), A〉+n(1−g)

)
If Du∂̄ is surjective ⇔ ∂̄-section is transverse at u
Then, the Implicit Function Theorem implies that the space of
J-holomorphic maps on (Σ, j) around u is a manifold with
tangent space ker(Du∂̄) at u

Expected real dimension of Mg,k(X,A) is

2
(
〈c1(TX), A〉+ (n− 3)(1− g) + k

)
The idea around the transversality issue is to consider global
(Ruan-Tian) or local (Li-Tian, Fukaya-Ono, etc) deformations
∂̄u = ν of CR equation



How do we compactify Mg,k(X,A)?

Symplectic area (energy) of J-holomorphic maps in Mg,k(X,A)
is fixed and coincides with the L2-norm

〈ω,A〉 =

∫
Σ
u∗ω =

∫
Σ
||du||2

J-holomorphic maps are minimal surfaces

Lp-bound with p > 2 would have implied compactness but
energy bound is not enough

For a sequence of J-holomorphic maps over a fixed domain
(Σ, j), energy may bubble off at finitely many points



Compactification (continued)

(Gromov 85) The limiting curves can be realized as the image of
J-holomorphic maps from nodal domains

Mg,k(X,A)≡{stable J-holomorphic maps of total homology

class A from genus g k-marked nodal domains }/ ∼

Theorem. If (X,ω) is a closed symplectic manifold and J is
compatible with ω, then Mg,k(X,A) has a sequential
convergence topology which is compact and metrizable



Part 2

Moduli space of J-holomorphic maps for pairs (X,D)
of a symplectic manifold and a “divisor”

End Goal: Construct a compactification of the
correct expected dimension



What is a divisor?

Divisor in holomorphic manifolds: a holomorphic hypersurface,
i.e. of C-codimension 1 (possibly singular)

Curves and Divisors are dual:

(1) C holomorphic curve in X, (2) D divisor in X, (3) C 6⊂D
⇒ D ∩ C = a finite set of points with positive multiplicities

Smooth symplectic divisors:
R-codimension 2 symplectic submanifolds

(X,ω) symplectic manifold, D smooth symplectic divisor, then
the space of J compatible with both ω and D is still non-empty
and contractible

How do we define singular divisors (varieties) in symplectic
topology?



Simple Normal Crossings (SNC) divisors

SNC divisor in a holomorphic manifold: a transverse union
D =

⋃m
i=1Di of smooth divisors

X = C3, Di = (xi = 0) ∼= C2, etc.

Definition (2014, –, McLean, Zinger). An SNC symplectic
divisor is a transverse union of smooth ones which are “positively
intersecting” along each stratum

DI =
⋂
i∈I

Di ∀I ⊂ {1, . . . ,m}



SNC divisors and J-holomorphic Curves

Theorem (2014, –, McLean, Zinger). For an SNC symplectic
divisor D ⊂ (X,ω), there is a “good” space of compatible J

Given A∈H2(X,Z), k∈N, D =
⋃m
i=1Di as above with

A ·Di ≥ 0 for all i=1, . . . ,m, fix k vectors

s1, . . . , sk ∈ Nm, si = (sij)
m
j=1 s.t.

A ·Dj =

k∑
i=1

sij ∀ j=1, . . . ,m

With s = (s1, . . . , sk), define

Mg,k(X,A) ⊃Mg,s(X,D,A) ≡{
(u,Σ, j, z1, . . . , zk) : Im(u) 6⊂ D and ordzi(u,Dj) = sij

}
sij = 0⇒ u(zi) 6⊂ Dj



Example

M0,s=((3,2)(0,1)(0,0))(CP2, D, [3])⊂M0,3(CP2, [3])



Big Question:

How to construct a compactification Mg,s(X,D,A)
of the correct expected dimension?



Why are the moduli spaces Mg,s(X,D,A) interesting?

Geometry of singularities. Hironaka’s Theorem (1964):
Singular varieties can be blown up to a smooth variety with a snc
exceptional divior

Exact complements: If PD(ω) is a multiple of D, the
complement would be an “exact” symplectic manifold

Atiyah-Floer conjecture is about a relation between the
instanton Floer homology of suitable 3-dimensional manifolds
with the symplectic Floer homology of moduli spaces of flat
connections over surfaces. Proposed proof of Fukaya-Daemi
(2017) uses Floer homology relative to snc divisors.

Mirror symmetry

Smooth divisors could be complicated



Previous works (smooth D, early 2000)

Jun Li (algebraic), Ionel-Parker and Li-Ruan (symplectic)

idea: In order to construct a (so called relative)
compactification, they also degenerate the target

issue 1: Changing the target makes the analysis hard (still
incomplete after 15 years)

issue 2: It does not generalize to snc case



Previous works (SNC D and more, mid 2000-current)

Gross-Siebert, Abramovich-Chen, ... (algebraic case)

idea: They consider pairs of holomorphic maps and maps
between certain sheaves of monoids on domains and a fixed
sheaf of monoids on the target

issue 1: complicated for computations

issue 2: specific to the algebraic category

Brett Parker (analytical, certain almost Kähler cases)

idea: Similarly, pairs of holomorphic maps and maps of certain
analytical sheaves

issue 1: very very complicated

issue 2: it essentially works in the Kähler category



The main difficulty for constructing a compactification

A sequence of J-holomorphic maps can partially sink into the
divisor in the limit

The intersection data s gets lost in the limit

Observation:

ordz1(ζ)=s1, ordz2(ζ)=s2, ordp(ζ) = −ordp(u2, D)



A new definition: log tuple

Only C∗-equivalence class [ζ] of ζ is well-defined

Definition. Given
(
X,D=

⋃m
i=1Di, J

)
, a log tuple

f ≡ (u,Σ, j, [ζi]i∈I) supported at p1, . . . , p`∈Σ consists of

a smooth Riemann Surface (Σ, j)

a J-holomorphic map u : Σ −→ DI = ∩i∈IDi (with D∅≡X)

C∗-class of meromorphic sections ζi∈Γmero(u
∗NDi

X)

such that ordx(f) = 0 ∈ Zm for x 6= p1, . . . , p`



A new definition: log J-holomorphic maps

Definition (–, 2017). Given
(
X,D=

⋃m
i=1Di, J

)
, a k-marked

genus g degree A log map f of contact type s1, . . . , sk∈Nm
consists of

a k-marked genus g nodal Riemann Surface Σ

a log tuple fv = (uv,Σv, jv, [ζv,i]i∈Iv ) for each component Σv of
Σ supported at the nodes and marked points on Σv

such that the following conditions hold:



1. the underlying map u = (uv)v∈V represents the homology class A

2. contact order at the i-th marked point zi is si

3. contact orders at the nodal points are negative of each other

4. there exist vectors {sv ∈ Zm}v∈V such that

sv2 − sv1 = λes
~
e for some λe > 0

for any oriented edge
~
e from v1 to v2



5. AND: there exist a group GG associated to G, and a group
element gf ∈ GG associated to f ; we want this group element to
be 1∈GG

Theorem (–, 2017). For any
(
X,ω,D=

⋃m
i=1Di

)
, suitable

choice of J , and s1, . . . , sk∈Nm,

the moduli space Mg,s(X,D,A) of all equivalence classes of
k-marked genus g degree A log maps of contact type
s = (s1, . . . , sk)∈Nm is compact, metrizable, and of the expected
dimension

the natural forgetful map Mg,s(X,D,A) −→Mg,k(X,A) is an
embedding if g = 0, and it is a locally-embedding if g > 0



What is left to be done?

Extending to a bigger class of J

Deformation theory

Constructing Virtual Fundamental Cycle (addressing the
transversality problem)

Comparing to the log moduli spaces constructed in the algebraic
case

Calculating the resulting Gromov-Witten type invariants

...

Thank you for your attention


