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m Part 1

m What are symplectic manifolds, what are J-holomorphic
curves, and why do we care about them?

m What is known about the (moduli) space of J-holomorphic maps

m In particular, how do we construct a compact moduli space of
J-holomorphic maps?

m Part 2

m | will introduce certain moduli spaces of J-holomorphic curves
with extra tangency conditions

m | will discuss the motivation for studying such moduli spaces and
the known results

m | will finish by stating a NEW compactification result



Part 1



What is a Symplectic manifold?
E 2n-dim manifold X with
a closed (dw=0) and non-degenerate (w" #0) 2-form w
m Example: X =R?>"=C" with wgeg=dx1 Ady; + - -- + dz, Ady,
m Every (X,w) is locally isomorphic to (R?", weq)

® In real dimension 2 (C-dim 1), all Riemann surfaces are
symplectic manifolds

Sphere: g=0 Torus: g=1 g=2



Almost-complex structures compatible with w

m Almost complex structure: J: TX — TX sit. J? = —id
= Compatible with w: w(-, J-) is a metric

m Crucial observation: Space of compatible J is non-empty
(infinite dimensional) and contractible
In particular it is connected

A triple (X,w, J) is called an almost Kahler manifold

m Kahler manifold: If J comes from a complex structure on X

(Newlander-Nirenberg 1957) Nijenhueis (2, 1)-tensor measures
how far J is from defining a complex structure

Njy(u,v) = [u,v]+J[u, Jo]|+J[Ju,v]—[Ju, Jv] € T, X Vu,veT, X

m In dimension 2 all J's are holomorphic (N; = 0)



Smooth even dimensional manifolds

Almost complex manifolds

Symplectic manifolds

] Complex

Kahler manifolds submanifolds of
Complex projective //v cr
varities —T |
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What are J-holomorphic maps?
m (X,w,J) as before
® (X,j): a Riemann Surface with complex structure j

m (Gromov 85) J-holomorphic map
u: (3,j) — (X,J) st. Ou=du+Jduj=0

e dyu: 1Y — Ty ;)X is C-linear V x €%

m This is a non-linear Cauchy-Riemann (CR) equation

m Im(u) C X is called a J-holomorphic curve
It could be singular at some points

m One can also define J-holomorphic maps from Riemann surfaces
with boundary subject to some boundary conditions (Floer
theories)



Moduli spaces of J-holomorphic maps

m If h: 3 — Y is a holomorphic reparametrization =

m v’ =wuohis also J-holomorphic
m u and u’ are equivalent (define the same curve Im(u)=Im(u’))

m The homology class A€ Ha(X,Z) represented by u
and the Genus g of ¥ characterize the topological type of u

m (Set) My(X,A) = {(u, (E,j)) s Ou = 0}/ ~
m (Set) My i(X,A4) = {(u,(X,§,21,...,2)) : Ou=0}/ ~

genus 2 Riemann surface
with 3 marked points u



Why are these moduli spaces useful?

= Powerful tool to study global geometry/topology of symplectic
manifolds

To find periodic orbits of Hamiltonian ODE’s: Floer homology

Defining enumerative invariants: Gromov-Witten theory

String theory, Mirror Symmetry

Topology of 3-manifolds: Heegaard-Floer homology

m Connections to Seiberg-Witten theory and other Gauge theories



Example of Gromov-Witten theory

m Gromov-Witten theory formalizes and generalizes the
enumerative geometry in algebraic geometry which is about
finding/counting holomorphic curves of specific type

m Example 1: There is a unique holomorphic sphere of homology
class [1] € Ho(CP™, Z) = Z (called a line) passing through 2
points in CPP"

m Example 2: There are 2875 lines in a (generic) degree 5
Calabi-Yau hypersurface in CP*

= Evaluation maps: ev =[] ev;: M, (X, 4) — X*

(U,Z,j,Zh...,Zk) &) U(Zz) eX



Example of Gromov-Witten theory (continued)
= We want GW;f,’CA = evi (M, (X, A)) C X* to be a “nice” cycle

m Then, for cycles 31, ..., B representing homology classes
By, ...,Bre H.(X), we define

GW;{A(Bl,. . .,Bk) = #<GW;}CA N (ﬁ1 X -0 X ﬁk)> =/

m For this construction to work we need

1. a Topology/Smooth structure on M, (X, A)

2. a “nice” Compactification M, (X, A) of the correct “expected
dimension”

3. some control of Smoothness of M, (X, A)



Topology and smoothness of M, (X, A)

m For a fixed (3,j), £ € Z4, and p > 1 with ¢p > 2,

£ & =WP(S,08 @uTX)

5| |
B =W, X) ={(v,%,j): u € L5} u
= By elliptic regularity: 9(0) = {(u,%,j): Ou =0}
m D0 WHP(S,u*TX) — WP (S, Q%) @ w'TX)
is a linear CR operator
®m (u*TX,u*J) is a holomorphic vector bundle and

D, 0 = Ogq + first order operator



Smoothness of M, (X, A) (continued)

= In particular D, has finite dimensional kernel and cokernel (it
is Fredholm) and by Riemann-Roch

dimgker(D,,0) — dimgcoker(D,,0) = 2 < ((TX),A)y+n(l— g))

m If D,0 is surjective < O-section is transverse at u
Then, the Implicit Function Theorem implies that the space of
J-holomorphic maps on (3,j) around u is a manifold with
tangent space ker(D,0) at u

m Expected real dimension of M (X, A) is
2((cl(TX), A) + (n =3)(1 = g) + )

m The idea around the transversality issue is to consider global
(Ruan-Tian) or local (Li-Tian, Fukaya-Ono, etc) deformations
Ou = v of CR equation



How do we compactify M, (X, A)?

m Symplectic area (energy) of J-holomorphic maps in M, (X, A)
is fixed and coincides with the L2-norm

A) = / ufw :/ ||dul|?
b by
m J-holomorphic maps are minimal surfaces

m LP-bound with p > 2 would have implied compactness but
energy bound is not enough

m For a sequence of J-holomorphic maps over a fixed domain
(X,j), energy may bubble off at finitely many points

S=4
NGO



Compactification (continued)

m (Gromov 85) The limiting curves can be realized as the image of
J-holomorphic maps from nodal domains

A genus 4 nodal Riemann surface with 2 marked points

M, (X, A)={stable J-holomorphic maps of total homology

class A from genus g k-marked nodal domains }/ ~

m Theorem. If (X,w) is a closed symplectic manifold and J is
compatible with w, then M, (X, A) has a sequential
convergence topology which is compact and metrizable



Part 2

Moduli space of J-holomorphic maps for pairs (X, D)
of a symplectic manifold and a “divisor”

End Goal: Construct a compactification of the
correct expected dimension



What is a divisor?
m Divisor in holomorphic manifolds: a holomorphic hypersurface,
i.e. of C-codimension 1 (possibly singular)
m Curves and Divisors are dual:

(1) C holomorphic curve in X, (2) D divisor in X, (3) C¢Z D
= D N C = a finite set of points with positive multiplicities

m Smooth symplectic divisors:
R-codimension 2 symplectic submanifolds

® (X,w) symplectic manifold, D smooth symplectic divisor, then
the space of J compatible with both w and D is still non-empty
and contractible

m How do we define singular divisors (varieties) in symplectic
topology?



Simple Normal Crossings (SNC) divisors

m SNC divisor in a holomorphic manifold: a transverse union
D = J!", D; of smooth divisors

NOT a NC configuration

X = Cg, D, = (.I‘Z = 0) = CQ, etc.

m Definition (2014, —, McLean, Zinger). An SNC symplectic
divisor is a transverse union of smooth ones which are “positively
intersecting” along each stratum

Dr=(\Di VICA{l,...,m}
el



SNC divisors and J-holomorphic Curves

= Theorem (2014, —, McLean, Zinger). For an SNC symplectic
divisor D C (X,w), there is a “good” space of compatible .J

m Given A€ Hy(X,Z), keN, D = J;*, D; as above with
A-D;>0foralli=1,...,m, fix k vectors

m m
S1,...,8, e N 5 = (Sij)jzl s.t.

k
A'Dj:ZSij ijl,...,m
1=1

m With s = (s1,..., sg), define

My (X, A) D Mys(X, D, A) =
{(U,E,],Zl,.. ) ( ) and ordzi(u, DJ) = Sij}

m s =0=u(z)Z D;j



Example

Mo s=((3.2)(0,1)(0,0)) (CP?, D, [3]) € Mo 3(CP?, [3])

29 =00

Dlz(l‘lzo) $2=CUx
21=0

u(z) = [23, 2%, az3 + b2% + cz + d

X = CPQ[Il,.’L'Q, 5173]

s1=(3,2)
u(z1)

Dip=pt=[0,0,1] u(zzzo y
s2=(0,




Big Question:

How to construct a compactification M, (X, D, A)
of the correct expected dimension?



Why are the moduli spaces M, (X, D, A) interesting?

m Geometry of singularities. Hironaka's Theorem (1964):
Singular varieties can be blown up to a smooth variety with a snc
exceptional divior

m Exact complements: If PD(w) is a multiple of D, the
complement would be an “exact” symplectic manifold

m Atiyah-Floer conjecture is about a relation between the
instanton Floer homology of suitable 3-dimensional manifolds
with the symplectic Floer homology of moduli spaces of flat
connections over surfaces. Proposed proof of Fukaya-Daemi
(2017) uses Floer homology relative to snc divisors.

m Mirror symmetry

m Smooth divisors could be complicated



Previous works (smooth D, early 2000)

m Jun Li (algebraic), lonel-Parker and Li-Ruan (symplectic)

m idea: In order to construct a (so called relative)
compactification, they also degenerate the target

m issue 1: Changing the target makes the analysis hard (still
incomplete after 15 years)

m issue 2: It does not generalize to snc case



Previous works (SNC D and more, mid 2000-current)

m Gross-Siebert, Abramovich-Chen, ... (algebraic case)

m idea: They consider pairs of holomorphic maps and maps
between certain sheaves of monoids on domains and a fixed
sheaf of monoids on the target

m issue 1: complicated for computations
m issue 2: specific to the algebraic category

m Brett Parker (analytical, certain almost Kahler cases)

m idea: Similarly, pairs of holomorphic maps and maps of certain
analytical sheaves

m issue 1: very very complicated

m issue 2: it essentially works in the Kahler category



The main difficulty for constructing a compactification

m A sequence of J-holomorphic maps can partially sink into the

divisor in the limit
m The intersection data s gets lost in the limit

m Observation:

In the limit we get C2 =Im(u2) and C; = Im(uy)
+ameromorphic section ¢ € Imero(uiNDX) ¢
z 22 D

/.‘ G = ) /C2

C
\
& v/ ? ?

D

D

m ord;, ({)=s1, ord,, (¢)=s2, ord,y(() = —ordy(ug, D)



A new definition: log tuple

m Only C*-equivalence class [(] of ¢ is well-defined
= Definition. Given (X, D=J", D;,J), a log tuple
f=(u,X%,j,[Glier) supported at py,...,ps €Y consists of
m a smooth Riemann Surface (%,j)
m a J-holomorphic map u: ¥ — Dj = N1 D; (with Dg=X)
m C*-class of meromorphic sections (; € ' mero(u*Np, X)

such that ord,(f) =0 € Z™ for x # p1,...,ps

(g AD

S2 S; = ordy, (f) € z



A new definition: log J-holomorphic maps

A genus 2 nodal curve
with 3 marked points

(=
(o

= Definition (-, 2017). Given (X, D=2, D;,J), a k-marked
genus g degree A log map f of contact type s1,...,s,€N™
consists of

Labeled Dual Graph G(V,E,L)

m a k-marked genus g nodal Riemann Surface ¥

m a log tuple f, = (Uy, Xy, jv, [Co,ilicr,) for each component ¥, of
> supported at the nodes and marked points on X,

such that the following conditions hold:



> W~

the underlying map u = (uy),ev represents the homology class A
contact order at the i-th marked point z; is s;
contact orders at the nodal points are negative of each other
there exist vectors {s, € Z™},cy such that

Sy — Sy = AeSe for some A, >0
for any oriented edge ¢ from v; to vy

A genus 2 nodal curve
with 3 marked points

Labeled Dual Graph G(V,E,L)



5. AND: there exist a group G associated to (G, and a group
element gy € G associated to f; we want this group element to
be 1€Gq

= Theorem (-, 2017). For any (X,w, D=, D;), suitable
choice of J, and s1,...,s, €N,

m the moduli space M, (X, D, A) of all equivalence classes of
k-marked genus g degree A log maps of contact type
s = (s1,...,5k) EN™ is compact, metrizable, and of the expected
dimension

m the natural forgetful map M, (X, D, A) — M, (X, A) is an
embedding if g = 0, and it is a locally-embedding if g > 0



What is left to be done?

m Extending to a bigger class of J

m Deformation theory

m Constructing Virtual Fundamental Cycle (addressing the
transversality problem)

m Comparing to the log moduli spaces constructed in the algebraic
case

m Calculating the resulting Gromov-Witten type invariants

m .

Thank you for your attention



