On Moduli Spaces of J-holomorphic curves in Symplectic Manifolds

Mohammad Farajzadeh-Tehrani

The University of lowa February 2018

Outline

■ Part 1

- What are symplectic manifolds, what are J-holomorphic curves, and why do we care about them?
- What is known about the (moduli) space of J-holomorphic maps
- In particular, how do we construct a compact moduli space of J-holomorphic maps?
- Part 2
- I will introduce certain moduli spaces of J-holomorphic curves with extra tangency conditions
- I will discuss the motivation for studying such moduli spaces and the known results
- I will finish by stating a NEW compactification result

Part 1

What is a Symplectic manifold?

- $2 n$-dim manifold X with
a closed ($\mathrm{d} \omega=0$) and non-degenerate $\left(\omega^{n} \neq 0\right)$ 2-form ω
■ Example: $X=\mathbb{R}^{2 n}=\mathbb{C}^{n}$ with $\omega_{\text {std }}=\mathrm{d} x_{1} \wedge \mathrm{~d} y_{1}+\cdots+\mathrm{d} x_{n} \wedge \mathrm{~d} y_{n}$
- Every (X, ω) is locally isomorphic to $\left(\mathbb{R}^{2 n}, \omega_{\text {std }}\right)$
- In real dimension 2 (\mathbb{C}-dim 1), all Riemann surfaces are symplectic manifolds

Sphere: $\mathrm{g}=0$

Torus: $g=1$

$g=2$

Almost-complex structures compatible with ω
■ Almost complex structure: $J: T X \longrightarrow T X$ s.t. $J^{2}=-$ id

- Compatible with $\omega: \omega(\cdot, J \cdot)$ is a metric

■ Crucial observation: Space of compatible J is non-empty (infinite dimensional) and contractible In particular it is connected

- A triple (X, ω, J) is called an almost Kähler manifold

■ Kähler manifold: If J comes from a complex structure on X
■ (Newlander-Nirenberg 1957) Nijenhueis (2,1)-tensor measures how far J is from defining a complex structure
$N_{J}(u, v) \equiv[u, v]+J[u, J v]+J[J u, v]-[J u, J v] \in T_{x} X \quad \forall u, v \in T_{x} X$

- In dimension 2 all J 's are holomorphic ($N_{J} \equiv 0$)

Smooth even dimensional manifolds

What are J-holomorphic maps?

- (X, ω, J) as before

■ ($\Sigma, \mathfrak{j})$: a Riemann Surface with complex structure \mathfrak{j}

- (Gromov 85) J-holomorphic map

$$
u:(\Sigma, \mathfrak{j}) \longrightarrow(X, J) \quad \text { s.t. } \quad \bar{\partial} u=\mathrm{d} u+J \mathrm{~d} u \mathfrak{j}=0
$$

i.e. $\mathrm{d}_{x} u: T_{x} \Sigma \longrightarrow T_{u(x)} X$ is \mathbb{C}-linear $\forall x \in \Sigma$

- This is a non-linear Cauchy-Riemann (CR) equation

■ $\operatorname{Im}(u) \subset X$ is called a J-holomorphic curve It could be singular at some points

■ One can also define J-holomorphic maps from Riemann surfaces with boundary subject to some boundary conditions (Floer theories)

Moduli spaces of J-holomorphic maps

- If $h: \Sigma \longrightarrow \Sigma$ is a holomorphic reparametrization \Rightarrow
- $u^{\prime}=u \circ h$ is also J-holomorphic
- u and u^{\prime} are equivalent (define the same curve $\operatorname{Im}(u)=\operatorname{Im}\left(u^{\prime}\right)$)
- The homology class $A \in H_{2}(X, \mathbb{Z})$ represented by u and the Genus g of Σ characterize the topological type of u

■ (Set) $\mathcal{M}_{g}(X, A)=\{(u,(\Sigma, \mathfrak{j})): \bar{\partial} u=0\} / \sim$
$■($ Set $) \mathcal{M}_{g, k}(X, A)=\left\{\left(u,\left(\Sigma, \mathfrak{j}, z_{1}, \ldots, z_{k}\right)\right): \bar{\partial} u=0\right\} / \sim$

Why are these moduli spaces useful?

■ Powerful tool to study global geometry/topology of symplectic manifolds

■ To find periodic orbits of Hamiltonian ODE's: Floer homology

- Defining enumerative invariants: Gromov-Witten theory
- String theory, Mirror Symmetry
- Topology of 3-manifolds: Heegaard-Floer homology
- Connections to Seiberg-Witten theory and other Gauge theories

Example of Gromov-Witten theory

- Gromov-Witten theory formalizes and generalizes the enumerative geometry in algebraic geometry which is about finding/counting holomorphic curves of specific type
- Example 1: There is a unique holomorphic sphere of homology class $[1] \in H_{2}\left(\mathbb{C P}^{n}, \mathbb{Z}\right) \cong \mathbb{Z}$ (called a line) passing through 2 points in $\mathbb{C P}^{n}$

■ Example 2: There are 2875 lines in a (generic) degree 5 Calabi-Yau hypersurface in $\mathbb{C P}^{4}$
■ Evaluation maps: $\mathrm{ev}=\prod_{i=1}^{k} \mathrm{ev}_{i}: \mathcal{M}_{g, k}(X, A) \longrightarrow X^{k}$

$$
\left(u, \Sigma, \mathfrak{j}, z_{1}, \ldots, z_{k}\right) \xrightarrow{\mathrm{ev}_{i}} u\left(z_{i}\right) \in X
$$

Example of Gromov-Witten theory (continued)

- We want $\mathrm{GW}_{g, k}^{X, A}=\mathrm{ev}_{*}\left(\mathcal{M}_{g, k}(X, A)\right) \subset X^{k}$ to be a "nice" cycle

■ Then, for cycles $\beta_{1}, \ldots, \beta_{k}$ representing homology classes $B_{1}, \ldots, B_{k} \in H_{*}(X)$, we define

$$
\mathrm{GW}_{g, A}^{X}\left(B_{1}, \ldots, B_{k}\right)=\#\left(\operatorname{GW}_{g, k}^{X, A} \cap\left(\beta_{1} \times \cdots \times \beta_{k}\right)\right) \in \mathbb{Z}
$$

■ For this construction to work we need

1. a Topology/Smooth structure on $\mathcal{M}_{g, k}(X, A)$
2. a "nice" Compactification $\overline{\mathcal{M}}_{g, k}(X, A)$ of the correct "expected dimension"
3. some control of Smoothness of $\overline{\mathcal{M}}_{g, k}(X, A)$

Topology and smoothness of $\mathcal{M}_{g, k}(X, A)$
■ For a fixed $(\Sigma, \mathfrak{j}), \ell \in \mathbb{Z}_{+}$, and $p>1$ with $\ell p>2$,

$$
\begin{array}{cc}
\left.\mathcal{E}\right|_{u} ^{\mathcal{E}} \mathcal{E}_{u}=W^{\ell-1, p}\left(\Sigma, \Omega_{\Sigma, \mathfrak{j}}^{0,1} \otimes u^{*} T X\right) & \bar{\partial} u \\
\mathcal{B} & \\
\overline{\mathcal{B}} & W^{\ell, p}(\Sigma, X)=\left\{(u, \Sigma, \mathfrak{j}): u \in L^{\ell, p}\right\}
\end{array}
$$

- By elliptic regularity: $\bar{\partial}^{-1}(0)=\{(u, \Sigma, \mathfrak{j}): \bar{\partial} u=0\}$
- $D_{u} \bar{\partial}: W^{\ell, p}\left(\Sigma, u^{*} T X\right) \longrightarrow W^{\ell-1, p}\left(\Sigma, \Omega_{\Sigma, j}^{0,1} \otimes u^{*} T X\right)$ is a linear CR operator

■ $\left(u^{*} T X, u^{*} J\right)$ is a holomorphic vector bundle and

$$
D_{u} \bar{\partial}=\bar{\partial}_{\text {std }}+\text { first order operator }
$$

Smoothness of $\mathcal{M}_{g, k}(X, A)$ (continued)

- In particular $D_{u} \bar{\partial}$ has finite dimensional kernel and cokernel (it is Fredholm) and by Riemann-Roch
$\operatorname{dim}_{\mathbb{R}} \operatorname{ker}\left(D_{u} \bar{\partial}\right)-\operatorname{dim}_{\mathbb{R}} \operatorname{coker}\left(D_{u} \bar{\partial}\right)=2\left(\left\langle c_{1}(T X), A\right\rangle+n(1-g)\right)$
- If $D_{u} \bar{\partial}$ is surjective $\Leftrightarrow \bar{\partial}$-section is transverse at u Then, the Implicit Function Theorem implies that the space of J-holomorphic maps on (Σ, \mathfrak{j}) around u is a manifold with tangent space $\operatorname{ker}\left(D_{u} \bar{\partial}\right)$ at u

■ Expected real dimension of $\mathcal{M}_{g, k}(X, A)$ is

$$
2\left(\left\langle c_{1}(T X), A\right\rangle+(n-3)(1-g)+k\right)
$$

- The idea around the transversality issue is to consider global (Ruan-Tian) or local (Li-Tian, Fukaya-Ono, etc) deformations $\bar{\partial} u=\nu$ of CR equation

How do we compactify $\mathcal{M}_{g, k}(X, A)$?

- Symplectic area (energy) of J-holomorphic maps in $\mathcal{M}_{g, k}(X, A)$ is fixed and coincides with the L^{2}-norm

$$
\langle\omega, A\rangle=\int_{\Sigma} u^{*} \omega=\int_{\Sigma}\|d u\|^{2}
$$

- J-holomorphic maps are minimal surfaces

■ L^{p}-bound with $p>2$ would have implied compactness but energy bound is not enough

■ For a sequence of J-holomorphic maps over a fixed domain (Σ, \mathfrak{j}), energy may bubble off at finitely many points

Compactification (continued)

- (Gromov 85) The limiting curves can be realized as the image of J-holomorphic maps from nodal domains

A genus 4 nodal Riemann surface with 2 marked points

$\overline{\mathcal{M}}_{g, k}(X, A) \equiv\{$ stable J-holomorphic maps of total homology class A from genus g k-marked nodal domains $\} / \sim$

■ Theorem. If (X, ω) is a closed symplectic manifold and J is compatible with ω, then $\overline{\mathcal{M}}_{g, k}(X, A)$ has a sequential convergence topology which is compact and metrizable

Part 2

Moduli space of J-holomorphic maps for pairs (X, D) of a symplectic manifold and a "divisor"

End Goal: Construct a compactification of the correct expected dimension

What is a divisor?

- Divisor in holomorphic manifolds: a holomorphic hypersurface, i.e. of \mathbb{C}-codimension 1 (possibly singular)
- Curves and Divisors are dual:
(1) C holomorphic curve in X, (2) D divisor in X, (3) $C \not \subset D$ $\Rightarrow D \cap C=$ a finite set of points with positive multiplicities

■ Smooth symplectic divisors:
\mathbb{R}-codimension 2 symplectic submanifolds

- (X, ω) symplectic manifold, D smooth symplectic divisor, then the space of J compatible with both ω and D is still non-empty and contractible
- How do we define singular divisors (varieties) in symplectic topology?

Simple Normal Crossings (SNC) divisors

■ SNC divisor in a holomorphic manifold: a transverse union $D=\bigcup_{i=1}^{m} D_{i}$ of smooth divisors

$X=\mathbb{C}^{3}, D_{i}=\left(x_{i}=0\right) \cong \mathbb{C}^{2}$, etc.
■ Definition (2014, -, McLean, Zinger). An SNC symplectic divisor is a transverse union of smooth ones which are "positively intersecting" along each stratum

$$
D_{I}=\bigcap_{i \in I} D_{i} \quad \forall I \subset\{1, \ldots, m\}
$$

SNC divisors and J-holomorphic Curves

- Theorem (2014, -, McLean, Zinger). For an SNC symplectic divisor $D \subset(X, \omega)$, there is a "good" space of compatible J
- Given $A \in H_{2}(X, \mathbb{Z}), k \in \mathbb{N}, D=\bigcup_{i=1}^{m} D_{i}$ as above with $A \cdot D_{i} \geq 0$ for all $i=1, \ldots, m$, fix k vectors

$$
\begin{aligned}
& s_{1}, \ldots, s_{k} \in \mathbb{N}^{m}, \quad s_{i}=\left(s_{i j}\right)_{j=1}^{m} \quad \text { s.t. } \\
& A \cdot D_{j}=\sum_{i=1}^{k} s_{i j} \quad \forall j=1, \ldots, m
\end{aligned}
$$

- With $\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right)$, define

$$
\begin{aligned}
& \mathcal{M}_{g, k}(X, A) \supset \mathcal{M}_{g, \mathbf{s}}(X, D, A) \equiv \\
& \quad\left\{\left(u, \Sigma, \mathfrak{j}, z_{1}, \ldots, z_{k}\right): \operatorname{Im}(u) \not \subset D \quad \text { and } \quad \operatorname{ord}_{z_{i}}\left(u, D_{j}\right)=s_{i j}\right\}
\end{aligned}
$$

- $s_{i j}=0 \Rightarrow u\left(z_{i}\right) \not \subset D_{j}$

Example

$\mathcal{M}_{0, \mathbf{s}=((3,2)(0,1)(0,0))}\left(\mathbb{C P}^{2}, D,[3]\right) \subset \mathcal{M}_{0,3}\left(\mathbb{C P}^{2},[3]\right)$

Big Question:

How to construct a compactification $\overline{\mathcal{M}}_{g, \mathrm{~s}}(X, D, A)$ of the correct expected dimension?

Why are the moduli spaces $\mathcal{M}_{g, \mathrm{~s}}(X, D, A)$ interesting?
■ Geometry of singularities. Hironaka's Theorem (1964): Singular varieties can be blown up to a smooth variety with a snc exceptional divior

■ Exact complements: If $\mathrm{PD}(\omega)$ is a multiple of D, the complement would be an "exact" symplectic manifold

- Atiyah-Floer conjecture is about a relation between the instanton Floer homology of suitable 3-dimensional manifolds with the symplectic Floer homology of moduli spaces of flat connections over surfaces. Proposed proof of Fukaya-Daemi (2017) uses Floer homology relative to snc divisors.
- Mirror symmetry

■ Smooth divisors could be complicated

Previous works (smooth D, early 2000)

■ Jun Li (algebraic), lonel-Parker and Li-Ruan (symplectic)

- idea: In order to construct a (so called relative) compactification, they also degenerate the target
- issue 1: Changing the target makes the analysis hard (still incomplete after 15 years)
- issue 2: It does not generalize to snc case

Previous works (SNC D and more, mid 2000-current)

■ Gross-Siebert, Abramovich-Chen, ... (algebraic case)

- idea: They consider pairs of holomorphic maps and maps between certain sheaves of monoids on domains and a fixed sheaf of monoids on the target
- issue 1: complicated for computations
- issue 2: specific to the algebraic category
- Brett Parker (analytical, certain almost Kähler cases)
- idea: Similarly, pairs of holomorphic maps and maps of certain analytical sheaves
- issue 1: very very complicated
- issue 2: it essentially works in the Kähler category

The main difficulty for constructing a compactification

- A sequence of J-holomorphic maps can partially sink into the divisor in the limit
- The intersection data s gets lost in the limit

■ Observation:

$\square \operatorname{ord}_{z_{1}}(\zeta)=s_{1}, \operatorname{ord}_{z_{2}}(\zeta)=s_{2}, \operatorname{ord}_{p}(\zeta)=-\operatorname{ord}_{p}\left(u_{2}, D\right)$

A new definition: log tuple

- Only \mathbb{C}^{*}-equivalence class $[\zeta]$ of ζ is well-defined
- Definition. Given $\left(X, D=\bigcup_{i=1}^{m} D_{i}, J\right)$, a log tuple $f \equiv\left(u, \Sigma, \mathfrak{j},\left[\zeta_{i}\right]_{i \in I}\right)$ supported at $p_{1}, \ldots, p_{\ell} \in \Sigma$ consists of
- a smooth Riemann Surface (Σ, \mathfrak{j})
- a J-holomorphic map $u: \Sigma \longrightarrow D_{I}=\cap_{i \in I} D_{i}$ (with $D_{\emptyset} \equiv X$)

■ \mathbb{C}^{*}-class of meromorphic sections $\zeta_{i} \in \Gamma_{\text {mero }}\left(u^{*} \mathcal{N}_{D_{i}} X\right)$ such that $\operatorname{ord}_{x}(f)=0 \in \mathbb{Z}^{m}$ for $x \neq p_{1}, \ldots, p_{\ell}$

A new definition: $\log J$-holomorphic maps

■ Definition (-, 2017). Given $\left(X, D=\bigcup_{i=1}^{m} D_{i}, J\right)$, a k-marked genus g degree $A \log$ map f of contact type $s_{1}, \ldots, s_{k} \in \mathbb{N}^{m}$ consists of

- a k-marked genus g nodal Riemann Surface Σ
- a log tuple $f_{v}=\left(u_{v}, \Sigma_{v}, \mathfrak{j}_{v},\left[\zeta_{v, i}\right]_{i \in I_{v}}\right)$ for each component Σ_{v} of Σ supported at the nodes and marked points on Σ_{v}
such that the following conditions hold:

1. the underlying map $u=\left(u_{v}\right)_{v \in \mathrm{~V}}$ represents the homology class A
2. contact order at the i-th marked point z_{i} is s_{i}
3. contact orders at the nodal points are negative of each other
4. there exist vectors $\left\{s_{v} \in \mathbb{Z}^{m}\right\}_{v \in \mathrm{~V}}$ such that

$$
s_{v_{2}}-s_{v_{1}}=\lambda_{e} s_{e} \text { for some } \lambda_{e}>0
$$

for any oriented edge e from v_{1} to v_{2}

Labeled Dual Graph G(V,E,L)
5. AND: there exist a group \mathcal{G}_{G} associated to G, and a group element $\mathfrak{g}_{f} \in \mathcal{G}_{G}$ associated to f; we want this group element to be $1 \in \mathcal{G}_{G}$

- Theorem (-, 2017). For any $\left(X, \omega, D=\bigcup_{i=1}^{m} D_{i}\right)$, suitable choice of J, and $s_{1}, \ldots, s_{k} \in \mathbb{N}^{m}$,
- the moduli space $\overline{\mathcal{M}}_{g, \mathbf{s}}(X, D, A)$ of all equivalence classes of k-marked genus g degree A log maps of contact type $\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right) \in \mathbb{N}^{m}$ is compact, metrizable, and of the expected dimension
- the natural forgetful map $\overline{\mathcal{M}}_{g, \mathbf{s}}(X, D, A) \longrightarrow \overline{\mathcal{M}}_{g, k}(X, A)$ is an embedding if $g=0$, and it is a locally-embedding if $g>0$

What is left to be done?

■ Extending to a bigger class of J

- Deformation theory

■ Constructing Virtual Fundamental Cycle (addressing the transversality problem)

- Comparing to the log moduli spaces constructed in the algebraic case

■ Calculating the resulting Gromov-Witten type invariants
■ ...

Thank you for your attention

