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1 Introduction

2 Preliminaries

2.1 Manifolds

Roughly speaking, a manifold is a (topological) space that locally resembles Euclidean space,
and globally, it is obtained by attaching countably many such local pieces (known as charts).
Globally most manifolds are not homeomorphic to Euclidean space or an open subset of that.
For example, the sphere is not homeomorphic to the plane. In the following sections, we will
learn about some tools for distinguishing different manifolds.

Manifolds have applications to different fields and thus they are often equipped with additional
structures such as metric, holomorphic structure, symplectic structure, and more. In the fol-
lowing sections, we mainly focus on manifolds admitting just a differentiable or holomorphic
structure. While there are topological manifolds that do not admit any smooth structure, cat-
egory of smooth manifolds contains all well-known examples. A differentiable structure allows
calculus to be done on manifolds.

We start this section by recalling a few important definitions and theorems from general topology;
see [7].

Definition 2.1. Let M be a topological space; we say M is

(1) Hausdorff, if every two distinct points in M can be separated by disjoint open sets;

(2) regular, if (one-point-sets are closed1 and) every point p and a closed subset C not contain-
ing p can be separated by disjoint open sets;

(3) normal, if (one-point-sets are closed and) every two disjoint closed subsets in M can be
separated by disjoint open sets;

(4) paracompact : if every open covering {Uα}α∈I of M admits a locally-finite2 open covering
refinement;

(5) metrizable: if the topology of M comes from a metric;

(6) second-countable, ifM has a countable basis. A basis is a collection of open sets B = {Uα}α∈I
covering M such that every open set in M is a union of open sets in B.

The first theorem below shows that, essentially, being second-countable is stronger than metriz-
ability. It is easy to see that a metrizable space is normal, and thus Hausdorff and regular. The
second theorem below shows that it is also paracompact.

Theorem 2.2 (Urysohn Metrization Theorem ([7], Thm 34.1)). Every regular and second-
countable topological space is metrizable.

Theorem 2.3 (Smirnov Metrization Theorem ([7], Thm 42.1)). A topological space M is metriz-
able if and only if it is Hausdorff, paracompact, and locally-metrizable.

1Or one may assume M is Hausdorff
2A collection {Uα} of subsets of M is called locally finite if for every x∈M there exists a neigborhood U 3 x

such that U intersects only finitely many Uα.
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The following diagram roughly summarizes the hierarchy between these notions.

second countable
+ regular // metrizable

��

// paracompact

normal // regular // Hausdorff

We are now ready to state the definition of a C0-manifold (topological manifold).

Definition 2.4. A topological or C0-manifold M is a Hausdorff and second-countable topologi-
cal space such that for each p∈M there exists an open neighborhood U 3p and a homeomorphism
ϕ : U −→ V to an open subset V of Rm.

A local homeomorphism ϕ : U −→ V as in Definition 2.4 is called a chart for M around p. If

ϕ = (x1, . . . , xm) : U −→ Rm,

the functions {xi}mi=1 are the local coordinates around p corresponding to ϕ.

It is natural to ask whether the integer m in Definition 2.4 can vary from chart to chart? For-
tunately, the following theorem of Brouwer implies that the integer m is a topological invariant
of M ; we will call m the dimension of M , or equally, we say M is an m-manifold.

Theorem 2.5 (Brouwer’s Invariance Domain Theorem [1]). If V is an open subset of Rn and
f : V −→Rn is an injective continuous map, then f(V ) is open in Rn and f is a homeomorphism
between V and f(V ).

HW 2.6. Use this theorem to prove that the integer m does not depend on the particular choice
of a chart on M .

The three conditions of Definition 2.4 are independent of the each other. In other words, there
are examples that satisfy exactly any two of these conditions. The following example, known as
the “double origin line” is a topological space that is second-countable and admits local charts,
but it is not Hausdorff. Let

M ..= R× {1, 2}/{(x, 1) ∼ (x, 2) ∀x ∈ R−{0}
}

with the quotient topology. In other words, M is the topological space obtained by identifying
two copies of R along R−{0}. It has two “zero points”, denoted by 01 and 02, which are the
images of (0, 1) and (0, 2) in the quotient space, respectively. Non-Hausdorff spaces like the
above example are not desirable. In particular, they are not metrizable. They also do not admit
continuous functions that have different values at un-separable points such as 01 and 02. Thus,
they are not suitable for doing Calculus!

Next, we explain the motivations for the second-countability condition. First, with little effort,
it follows from the Urysohn Metrization Theorem that M is metrizable. Thus, it has all the nice
properties listed in Definition 2.1. More importantly, many constructions on manifolds involve
the following two steps. First, we construct a collection local functions/vector fields/etc. on
individual local charts where we have Calculus on an open subset of Rm at our disposal. Then,
we need to add up the resulting local data to construct a global structure on M . For the second
step to be feasible, we need to have at most a locally-finite or a convergent countable summation.
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The existence of a countable cover, or equally, the para-compactness of M facilitates the second
step. In particular, every manifold admits [7, Thm 41.7] a partition of unity in the following
sense.

Definition 2.7. Suppose M is a topological space. A partition of unity for M is a collection
of continuous functions

{θα : Uα −→ [0, 1]}α∈I
such that

• support(θα) = {x∈M : θα(x) 6= 0} ⊂ Uα;

• the collection of closed sets {support(θα)}α∈I is locally-finite3;

•
∑

α∈I θα ≡ 1.

The last summation is well-defined at any x∈M by the second condition. The last condition
implies that {Uα}α∈I is an open covering of M .

By the existence of local charts, every manifold is locally path-connected. Therefore, the notions
of connectedness and path-connectedness are the same for manifolds; see [7, Thm 25.5].

HW 2.8. Describe a Hausdorff topological space that admits local charts but it is not second-
countable.

Definition 2.9. A collection

A = {ϕα : Uα −→ Vα ⊂ Rm}α∈I

of charts on M such that {Uα}α∈I is a covering of M is called an atlas.

It is often difficult to find the the minimum number of charts needed to cover a manifold. Before
we progress further, we discuss a few examples to illustrate the idea of covering a topological
space with charts.

Example 2.10. The easiest example of a manifold is any open subset M ⊂Rm. In this case,
we can take inclusion map ι : M −→ Rm as a single chart covering the entire M .

Example 2.11. Let

Sm ..= {(x1, . . . , xm+1) ∈ Rm+1 : x2
1 + . . .+ x2

m+1 = 1} ⊂ Rm+1; (2.1)

with the standard subspace topology (which is metrizable). Putting m=1, we a get a circle in
R2 and putting m=2 we a get a sphere in R3. For m>2, (2.1) is the m-dimensional unit sphere
in Rm+1 centered at the origin. Let

U± = Sm − {(0, . . . , 0,±1)}

and consider the stereographic projections

ϕ± : U± −→ V± = Rm, ϕ±(x1, . . . , xm+1) =
(x1, . . . , xm)

1∓ xm+1
,

of Sm (minus a point) to Rm from the north and south poles, (0, . . . , 0, 1) and (0, . . . , 0,−1),
respectively.

3For every x ∈M , there exists a neighborhood U 3x such that U ∩ support(θα) 6=∅ for only finitely many α.
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HW 2.12. Show that ϕ± are surjective homeomorphisms. Therefore, the collection

{ϕ± : U± −→ Rm}

is a 2-chart atlas of M .

HW 2.13. Show that Sm is not homeomorphic to Rm. Therefore, we can not cover Sm with a
single chart!

HW 2.14. Let
M ..= {(x, y, z) ∈ R3 : x3 + y3 + z3 = 1} ⊂ R3; (2.2)

with the subspace topology. Describe a set of charts covering M proving that M is a 2-manifold.
Is M connected? Use a software to draw this surface.

HW 2.15. Let
M ..= {(x, y) ∈ R2 : xy = 0} ⊂ R2; (2.3)

with the subspace topology. Prove that M is not a manifold.

The common feature of Example 2.11, HW 2.2, and HW 2.3 is that they are all the zero set of a
single function in Euclidean space. Later, we find a criteria for when the zero set of a function
is a (smooth) manifold.

HW 2.16. Show that the product of two manifolds is a manifold. For example, Tn ..= (S1)n is
called the n-torus. For n = 2, we get the donut-shaped 2-torus.

HW 2.17. Show that every manifold M can be written as a countable union M =
⋃
i=1 U

n
n

such that each Kn=Un is compact and Kn ⊂ Un+1 for all n≥1. Such a union is known as an
exhaustion of M .

Next, we go over the definition of a differentiable manifold. We need an extra structure on a
topological manifold M that allows us to differentiate functions and thus extend the notion of
derivative from Calculus to manifolds. Suppose M is a topological m-manifold and f : M −→ R
is a continuous function. Fix a chart ϕ :U−→V ⊂Rm on M . The composition

f ◦ ϕ−1 : V −→ R

gives us a function on an open subset of Rm for which the notion of derivative/partial derivative
can be defined. In particular, we say f is smooth or C∞ (with respect to ϕ) if f ◦ ϕ−1 is a
smooth function; or if m=2k and we identify R2m with Ck, we say f is holomorphic if f ◦ϕ−1 is
a holomorphic function. This notion of smoothness, however, depends on the choice of a chart
in the following way. Suppose ϕ̃ : Ũ −→ Ṽ is another chart such that U ∩ Ũ 6= ∅. Restricted to
ϕ(U ∩ Ũ)⊂Rm, we have

f ◦ ϕ−1 = (f ◦ ϕ̃−1) ◦ (ϕ̃ ◦ ϕ−1)

where the so called transition map

ϕ̃ ◦ ϕ−1 : ϕ(U ∩ Ũ) −→ ϕ̃(U ∩ Ũ)

is a homeomorphism between open subsets of V ⊂Rm and Ṽ ⊂Rm. If the transition map ϕ̃◦ϕ−1

is smooth, the smoothness of f ◦ ϕ̃−1 implies the smoothness of f ◦ ϕ−1 and vice versa. In
other words, if the transition maps are smooth, the smoothness of f ◦ϕ−1 is independent of the
particular choice of a chart. In this situation, we say f is smooth.
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Definition 2.18. Suppose A is an atlas for a topological manifold M . We say A defines a Ck,
smooth, analytic, or holomorphic structure on M if the transition maps of the charts in A are
Ck, smooth, analytic, or holomorphic, respectively.

HW 2.19. Show that the atlas in Example 2.11 defines a smooth structure on Sm. If m= 2,
show that it defines a holomorphic structure on S2.

Suppose A and B are two smooth atlases on M . If the transition maps between every chart of
A and every chart of B are smooth, the union A∪B is a larger atlas defining the same smooth
structure on M . In this situation we write A ∼ B. Otherwise, A and B define different smooth
structures on the same topological manifold M . Similarly, we can ask the same question for Ck,
analytic, and holomorphic structures on M . In any case, the relation ∼ defines an equivalence
relation.

Definition 2.20. A smooth structure on a topological manifold M is the equivalence class [A]
of an atlas A that defines a smooth structure on M .

Equivalently, the equivalence class [A] can be thought of as the maximal atlasAmax containingA;
it includes all charts on M whose transition maps with charts of A are smooth. The three
important questions are:

(a) Does every topological manifold admit a C1 structure?

(b) Given a Cr structure Amax on M and r < k ≤ ∞, is there a sub-atlas Bmax ⊂ Amax that
defines a Ck structure on M?

(c) Can a given topological manifold admit more than two (or infinitely many) smooth struc-
tures (up to conjugation by homeomorphisms of M)?

Regrading question (a), the first example of a topological manifold that does not admit a C1

structure was discovered by ..... . ..... ’s example is an 8-dimensional manifold. Subsequently,
various 4-dimensional examples were found ..... . In dimensions 1, 2, and 3, the answer to Ques-
tion (a) is Yes. In dimension one, the only connected manifolds are R and S1; see [?, Ch 2]. In
dimension two, .... Hatcher Icon. In dimension three, first, a 1976 result of Hamilton shows that
every C0 manifold admits a “piece-wise linear structure”. Then, on shows that every piece-wise
linear 3-manifold admits a unique smooth structure; see [8, Section 3.10]. In dimensions five
and higher, there is a classification of smooth, piece-wise linear, and topological structures by
Kirby and Sieberman [?] in terms of various groups in algebraic topology. There are still many
open questions in dimension four. A full classification of smooth 4-manifolds is unknown.

Regrading question (b), by .... the answer to question (2) is positive; every maximal Cr atlas
on M include a maximal smooth sub-atlas. Furthermore, by .... every C∞ structure contains
an (real) analytic structure. For this reason, in what follows, we will restrict our attention to
smooth and holomorphic manifolds.

For question (c), let us first elaborate on the meaning of the sentence in the parenthesis. ...
Most notably, R4 has a non-standard smooth structure.

So far, we have defined a manifold to be a given topological space M with some additional prop-
erties. However, sometimes, the space M is not explicitly given. Instead, we build it by gluing
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countably many open sets in Rm using transition maps which are homeomorphisms or diffeo-
morphisms. In this scenario, by construction, the resulting (quotient) space admits local charts
and is second-countable. We then have to prove that it is Hausdorff to show that it is a manifold.

More precisely, let {Vα}α∈I be a countable collection of open subsets in Rm (or Cm). For each
pair of indices α, β ∈ I, suppose

Vα,β ⊂ Vα and Vβ,α ⊂ Vβ

are open subsets admitting transition maps

Vα,β

ϕα,β
,,
Vβ,α

ϕβ,α=ϕ−1
α,β

ll ,

which depending on the context, are homeomorphisms, smooth diffeomorphisms (diffeomor-
phisms), or holomorphic homeomorphisms (biholomorphisms). Furthermore, suppose that

• Vα,α=Vα for all α∈I, and ϕα,α = idVα ;

• for all α, β, γ ∈ I, we have

Vα,βγ = Vα,γβ ..= Vα,β ∩ Vα,γ = Vα,β ∩ ϕ−1
α,β(Vβ,γ)

• for all α, β, γ ∈ I, restricted to Vα,βγ , the transition maps satisfy the cocycle condition

ϕα,γ = ϕβ,γ ◦ ϕα,β.

Under these conditions, the equation

x ∼ y ⇔ x ∈ Vα, y ∈ Vβ, y = ϕα,β(x),

defines an equivalence relation on the disjoint-union-topological space M̃ =
∐
α∈I Vα.

HW 2.21. Check that all the conditions of being an equivalence relation are satisfied.

Let
M ..= M̃/ ∼ (2.4)

denote the quotient topological space; M is a (C0, smooth, or holomorphic, depending on the
condition on the transition maps) manifold if and only if it is Hausdorff. It is second countable

because each Vα is second-countable and I is countable. Let π : M̃ −→ M denote the projec-
tion map. A natural atlas for M consists of the open sets Uα = π(Vα) with the chart maps
ϕα = idVα ◦ π−1.

The example of the double origin line after HW 2.6 is a bad example of this construction where

I = {1, 2}, V1 = V2 = R, V1,2
∼= V2,1 = R∗, ϕ1,2 = idR∗ ,

but the resulting quotient space is not Hausdorff. On the other hand, S1 is obtained by gluing
the same collection of open sets

I = {1, 2}, V1 = V2 = R, V1,2
∼= V2,1 = R∗,

via a different transition map ϕ1,2(x) = 1/x.
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Remark 2.22. Constructing a manifold as a quotient space of an easier (e.g. linear) space is
a common technique in the literature. Often, this is done by considering group quotients. We
will discuss such quotient spaces in Section 2.4.

Remark 2.23. The gluing construction above also allows for a categorial description of a
manifold which can be generalized to a setting suitable for constructing moduli spaces; see
[2, 3, 6, 5]. A category is described by a set of objects and morphism spaces between the
objects. Here, we consider the category whose set of objects are {Vα}α∈I , and the morphism
space between Vα and Vβ is Hom(Vα, Vβ) = Vα,β.

Example 2.24. We finish this section with the description of real and complex projective spaces.
Define RPm to be the set of all lines ` in Rm+1. Similarly define CPm to be the set of all complex
lines ` in Rm+1. Sometimes, especially the choice of R or C is not important, we will simply
denote them by Pm. We show that the real (resp. complex) projective space RPm (resp. CPm)
has the structure of a real (resp. complex) manifold of dimension m. It is easy to describe Pm as
a quotient manifold in the sense of Remark 2.22, but we postpone that to Section 2.4. Note that
we have not described the topology on each of these spaces. We will describe an atlas which,
via (2.4), gives us both the topology and the manifold structure on each of these spaces. Let

Vα = RI−{α} ∼= Rm ∀α ∈ I = {1, . . . ,m+1}, Vα,β = {(xγ)γ∈I−{α} ∈ RI−{α} : xβ 6= 0}

ϕα,β
(
(xγ)γ∈I−{α}

)
= (yγ)γ∈I−{β} s.t. yγ =

{
xγ/xβ if γ 6= α

1/xβ if γ = α .

The claim is the manifold RPm obtained as in (2.4) from the collection of charts and transition
maps above is (set-wise) equal to RPm. In fact, each line ` ∈ RPm is of the form R · (xγ)γ∈I⊂RI
such that (xγ)γ∈I ∈RI − 0 is a non-zero vector/point. Two points (xγ)γ∈I and (x′γ)γ∈I define
the same line if and only if one of them is a non-zero multiple of the other. Let Uα ⊂ RPm be
the (open) subset of lines where xα 6= 0 (this is well-defined by the last sentence). The bijective
map

ϕα : Uα −→ Vα, (xγ)γ∈I −→ (xγ/xα)γ∈I−{α}

identifies Uα with Vα such that ϕβϕ
−1
α = ϕα,β. Replacing R with C, the description of CPm is

exactly the same.

HW 2.25. Show that CP1 ∼= S2; i.e. under the natural identification C ∼= R2, show that the
charts and the transition maps in (2.24) and (2.11) are the same.

The half-space
Hm = {(x1, x2, . . . , xm) : x1 ≥ 0}

is not a manifold in the sense of Definition 2.4 along its boundary points ∂Hm={0}×Rm−1⊂Rm.
We can modify Definitions 2.4 and 2.20 by including charts that have in image H to define a
topological or smooth manifold M with boundary ∂M in the following way.

Definition 2.26. A topological m-manifold M is a Hausdorff and second-countable topological
space such that for each p∈M there exists an open neighborhood U 3p and a homeomorphism
ϕ : U −→ V to an open subset V ⊂Hm.

For all p∈M , the property ϕ(p)∈∂Hm is independent of the choice of ϕ. We call the set of such
points the boundary of M and denote it by ∂M ; ∂M is a topological (m− 1)-manifold. Smooth
manifolds with boundary can be defined similarly: we need an atlas where the transition maps
are smooth; ∂M will be a smooth (m− 1)-manifold.

8



2.2 Vector bundles

If M is a manifold and W is a real or complex finite dimensional vector space, associated to a
function f : M−→W we get its graph

Gr(f) = {(x, f(x)) : x ∈M} ⊂ X ×W

which generalizes the visual concept of a graph in Calculus. The natural projection map

πM : M ×W −→M (2.5)

restricts to an identification (homeomorphism or more depending on the context) of Gr(f) with
the base manifold M . Also, Gr(f) intersects each fiber of (2.5) in exactly one point. The product
M ×W is a trivial example of a vector bundle. The map

s : M −→M ×W, s(x) = (x, f(x)),

is a section of this vector bundle in the sense that πM ◦ s = idM . The function f and the section
s carry the same amount of information. More generally, an arbitrary vector bundle E is a
family of vector spaces over a manifold M that is locally “isomorphic” to a product as in (2.5),
but globally, it may not be a product. The notion of section is defined for every vector bundle
and generalizes the notion of function.

Definition 2.27. Suppose M is a topological manifold and W is a finite dimensional real or
complex vector space. A topological W -vector bundle over M is a topological manifold E
together with a continuous (surjective) projection map π : E −→M admitting a collection of
local trivializations in the following sense: There is an open covering {Uα}α∈I of M such that

(a) for each α ∈ I, there exists a homeomorphism hα : π−1(Uα) −→ Uα ×W so that π ◦ h−1
α

coincides with the natural projection map πUα : Uα ×W −→ Uα;

(b) for each α, β ∈ I, there is a continuous function

hα,β : Uα ∩ Uβ −→ GL(W )

such that the composition hβ ◦ h−1
α : (Uα ∩ Uβ)×W −→ (Uα ∩ Uβ)×W has the form

hβ ◦ h−1
α (x,w) = (x, hα,β(x)w).

A section of E is a map s : M −→ E such that π ◦ s = idM . When W ∼= Rk, we say E is a real
vector bundle of rank k. When W ∼= Ck, we say E is a complex vector bundle of rank k.

By Condition (a), using the trivialization hα, each fiber Ex = π−1(x) of E|Uα inherits a linear
structure from W . By Condition (b), this linear structure is independent of the choice of α∈I
such that x ∈ Uα. Therefore, we can rephrase Definition 2.27 in the following way:

A topological W -vector bundle over M is a topological manifold E together with a continuous
(surjective) projection map π : E −→M and a vector bundle structure on each fiber Ex, ad-
mitting a collection of local trivializations in the following sense. For each x∈M , there is an
open neighborhood U 3x and a local trivialization h : π−1(U) −→ U ×W such that (i) π ◦ h−1

coincides with the natural projection map πU : U ×W −→ U ; (ii) for each y ∈ U , the restriction

hy ..= h|{y}×W : {y}×W −→Ey

9



is a linear isomorphism.

In order to define a smooth (resp. holomorphic) vector bundle, we need to consider a smooth
(resp. holomorphic) structure on M and require the change of trivialization maps hα,β above
from one chart to another to be smooth (resp. holomorphic) instead of just continuous in the
following way.

Definition 2.28. Let π : E−→M be a real rank k topological W -vector bundle. Suppose that
the atlas A={ϕα : Uα −→ Vα}α∈I on M defines a smooth structure. We say A lifts to a smooth
structure on E if there exists a collection of trivialization maps

{hα : π−1(Uα) −→ Uα ×W}α∈I (2.6)

as in Definition 2.27 such that

hα,β ◦ ϕ−1
α : Vα,β −→ GL(W ) ∼= GL(Rk) ⊂ Rk×k

is a smooth function on Vα,β for all α, β∈I. Similarly, suppose A defines a holomorphic structure
on M and W ∼= Ck. We say A lifts to a holomoprhic structure on E if there exists a collection
of trivialization maps

{hα : π−1(Uα) −→ Uα ×W}α∈I
such that each

hα,β ◦ ϕ−1
α : Vα,β −→ GL(W ) ∼= GL(Ck) ⊂ Ck×k

is holomorphic.

It is easy to see that if Definition 2.28 holds for an atlas A, it holds for any atlas A′ that is finer4

than A. Therefore, the smooth structure defined by (2.6) only depends on the equivalence class
[A] of A (i.e. the smooth structure defined by A).

In (2.4), we provided a rather different way of thinking about manifolds as a space obtained by
gluing local Euclidean pieces via transition maps. When M is described as in (2.4), it is better
to think of local trivializations of E as a product over Vα instead of Uα. If A is an atlas as in
Definition 2.28, that can be done easily by considering the compositions

Φα : π−1(Uα) −→ Vα ×W, Φα = (ϕα × idW ) ◦ hα,

of
hα : π−1(Uα) −→ Uα ×W and ϕα × idW : Uα ×W −→ Vα ×W ∀α ∈ I.

The new transition maps

Φβ ◦ Φ−1
α : Vα,β ×W −→ Vβ,α ×W ∀α, β ∈ I

have the form
Φβ ◦ Φ−1

α (x,w) = (ϕα,β(x),Φα,β(x)w),

where
Φα,β : Vα,β −→ GL(W ), Φα,β(x) = hα,β ◦ ϕ−1

α .

4We say A′ is finer than A if every chart in A′ is the restriction to a sub open set of a chart in A.
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If A is a smooth (resp. holomoprhic) atlas on M which satisfies Definition 2.28, by assumption,
the change of trivialization maps Φα,β are smooth (resp. holomorphic).

Conversely, suppose
{{Vα}α∈I , {ϕα,β : Vα,β −→ Vβ,α}α,β∈I}

is a collection as in the argument leading to (2.4), and

{Φα,β : Vα,β −→ GL(W )}α,β (2.7)

is a collection satisfying the cocycle condition

Φα,γ(x)w = Φβ,γ(ϕα,β(x)) Φα,β(x)w (2.8)

on Vα,βγ . Then the equation

(x,w) ∼ (y, u)⇔ (x,w) ∈ Vα ×W, (y, u) ∈ Vβ ×W, y = ϕα,β(x), u = Φα,β(x)w

extends the equivalence relation in (2.4) to an equivalence relation on the disjoint union

Ẽ =
∐
α∈I

(Vα ×W ).

The quotient space
E ..= Ẽ/ ∼ (2.9)

is automatically Hausdorff and defines a vector bundle over M . The projection map π : E −→M
is the map induced by

π̃ ..=
∐
α∈I

πVα : Ẽ −→ M̃.

Recall that a section of a vector bundle π : E −→M is a map s : M −→ E such that π◦s = idM .
When E is obtained by gluing local trivial pieces Vα ×W as in (2.9), a section s is equivalent
to a collection of local functions

sα : Vα −→W

such that
sβ(φα,β(x)) = Φα,β(x)sα(x).

One of the most important examples of a vector bundle is the tangent bundle of a smooth
manifold, whose sections generalize the notion of vector fields in Euclidean space. Suppose M
is a smooth manifold as in (2.4) constructed from gluing local charts {Vα}α∈I via the transition
maps {ϕα,β : Vα,β −→ Vβ,α}α,β∈I . Then the tangent bundle E = TM constructed as in (2.9)
corresponds to the change of trivialization maps

Φα,β = dϕα,β ∈ GL(Rm),

where dϕα,β is the matrix of partial derivatives. If (x1, . . . , xm) are local coordinates on Vα,
(y1, . . . , ym) are local coordinates on Vβ, a vector field (= section of tangent bundle) ξ on M is
given be a collection of local vector fields

ζα =
m∑
i=1

ai∂xi

11



on the open sets Vα ⊂ Rm that are identified on the overlaps via the relation

ζβ =
m∑
i=1

bi∂yi = dΦα,β(ζα) =
∑
i=1

( m∑
j=1

aj
∂yi
∂xj

)
∂yi . (2.10)

The cocycle condition (2.8) holds by Chain Rule.

Holomorphic tangent bundle of a complex manifold is defined similarly.

HW 2.29. Consider the real projective space RPm and the atlas in Example 2.24 (Repeat the
following with CPm instead of RPm). For α=m+ 1, let ξm+1 denote the local vector field

ξm+1(x1, . . . , xm) =
m∑
i=1

xi∂xi

on Vm+1. Show that ξm+1 extends to a unique smooth vector field ξ on RPm (ξ is smooth if
each of its local sections are smooth functions).

Example 2.30. Consider the real or complex projective space Pm and the atlas in Example 2.24.
The so called tautological line bundle γ −→ PPm (resp γ −→ CPm ) is the real (resp. complex)
line bundle whose fiber over the point `∈RPm (resp. `∈CPm) is the real (resp. complex) line
` ⊂ Rm+1 (resp. ` ⊂ Rm+1) itself. We will show that γ is non-trivial (not isomorphic to the
trivial bundle); γ plays an important role in the classification of complex line bundles.

HW 2.31. Write down the transition maps Φα,β in (2.7) of γ with respect to the atlas in
Example 2.24.

Operations such as direct sum, quotient, tensor product, taking dual, etc. naturally extend to
vector bundles. Here are a few example.

(1) If E and F are vector spaces on M , then E ⊕ F is a vector space whose fiber over x∈M is
the direct sum of fibers Ex⊕Fx.

(2) If E is a real (resp. complex) vector space, the dual vector space E∗ is a real (resp. complex)
vector space of the same rank whose fiber over x∈M is HomR(E,R) (resp. HomC(E,C)). If
M is a smooth manifold, the dual of the tangent bundle TM is the cotangent bundle T ∗M .
Sections of T ∗M are called differential 1-forms.

(3) If M is a real smooth manifold, the top exterior power ΛmaxTM is a real line bundle on
M called the orientation line bundle. We say M is orientable if ΛmaxTM is trivial; i.e.
ΛmaxTM ∼= M × R. An orientation on M is a choice of this isomorphism. Similarly, if
E −→ M is any C0-vector bundle over a topological manifold M , we say E is orientable if
ΛtopE is trivial.

HW 2.32. Describe the transition maps Φα,β of ΛmaxTM in terms of the partial derivatives
∂yi
∂xj

in (2.10).

12



2.3 Maps between manifolds and vector bundles

Definition 2.33. Suppose M and M ′ are smooth (resp. holomorphic) manifolds, and let
f :M−→M ′ be a continuous map. We say f is smooth (resp. holomorphic) if for every pair of
charts ϕ : U −→V on M and ϕ′ : U ′−→V ′ on M ′ (in the corresponding maximal atlases), the
composition function

ϕ′ ◦ f ◦ ϕ−1 : ϕ(f−1(U ′)) −→ V ′

is smooth (resp. holomorphic).

Definition 2.33 is well-defined, because changing the charts on the source and target manifolds
results in compositions by transition maps on the right or left, respectively, which are smooth
(resp. holomorphic).

Definition 2.33 generalizes the notion of smooth function f : M −→ R that we discussed after
HW 2.17. Just like for smooth functions in Calculus, we can differentiate smooth maps between
manifolds. First we need to define the notion of a vector bundle homomorphism.

Definition 2.34. Suppose f :M −→M ′ is a continuous map between two manifolds, E is a
vector bundle over M , and E′ is a vector bundle over M ′. We say F : E −→ E′ a homomorphism
lifting/over f if F is continuous, it maps the fiber over x ∈M to the fiber f(x) ∈M ′, and its
restriction to each fiber is linear.

In terms of local charts, suppose

E =
(∐
α∈I

Vα ×W
)
/ Vα,β ×W 3 (x,w) ∼ (ϕα,β(x),Φα,β(x)w) ∈ Vβ,α ×W

and

E′ =
( ∐
α′∈I′

V ′α ×W ′
)
/V ′α′,β′ ×W ′ 3 (x′, w′) ∼ (ϕα′,β′(x

′),Φ′α′,β′(x
′)w′) ∈ V ′β′,α′ ×W ′

as in (2.9). For each α ∈ I and α′ ∈ I ′, let Vα,α′ denote the pre-image of Vα′ in Vα under f and

fα,α′ : Vα,α′ −→ Vα′

denote the restriction of f to Vα,α′ . Then, the restriction Fα,α′ of F to Vα,α′ ×W has the form

Fα,α′(x,w) = (fα,α′(x),Θα,α′(x)w)

for some matrix-valued function

Θα,α′ : Vα,α′ −→ Hom(W,W ′).

Conversely, a collection of such functions Θα,α′ glue along the overlaps to define a homomorphism

F : E−→E′

if and only if they satisfy the following compatibility conditions on the relevant overlaps

Θβ,α′(ϕα,β(x)) Φα,β(x) = Θα,α′(x);

Φ′α′,β′(fα,α′(x)) Θα,α′(x) = Θα,β′(x).
(2.11)
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In other words, the homomorphisms Θα,α′ must commute with the change of trivialization maps
on M and M ′. Since Φα,β ∈ GL(W ) and Φ′α′,β′ ∈ GL(W ′), for each x ∈M , the rank and nullity
of the linear map

Fx = F |Ex : Ex −→ E′f(x)

is equal to the rank and nullity of Θα,α′(x).

A homomorphism F is continuous/smooth/holomorphic if and only if the matrix-valued func-
tions Θα,α′ are continuous/smooth/holomorphic in the corresponding atlas.

Lemma 2.35. Suppose f : M −→M ′ is a smooth map between manifolds. Associated to f there
exists a natural derivative map df which is a smooth vector bundle homomorphism df : TM−→
TM ′ lifting f .

Proof. If f is locally given by

fα,α′ : Vα,α′ −→ Vα′ , (x1, . . . , xm) −→ (y1, . . . , yn),

it follows from Chain Rule that the collection of n×m partial derivative matrices

Θα,α′(x) = dfα,α′(x) =

[
∂yi
∂xj

(x)

]
1≤j≤m
1≤i≤n

∈ Hom(Rm,Rn)

satisfies (2.11), and thus defines a vector bundle homomorphism df : TM −→ TN .

Just like in linear algebra, by putting certain restrictions on the rank and nullity of df we obtain
interesting spacial cases that are useful in the study of manifolds.

Definition 2.36. Let f : M −→M ′ be smooth. We say

(1) f is an immersion if Ker(df) = 0 at every point on M ;

(2) f is a smooth embedding if it is a one-to-one immersion;

(3) f is a submersion if Image(df) = TM ′ (in particular, f is surjective).

HW 2.37. Show that the map

f : S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} −→ R2, (x, y, z) −→ (x, y)

is smooth. Find the set of points at which df is not full rank.

HW 2.38. Show that the map

f : S1 −→ R3, θ −→ (x, y, z) = (sin(θ) + 2 sin(2θ), cos(θ)− 2 cos(2θ),−3 sin(3θ))

is an embedding of S1 into R3. Here θ is the multi-valued (θ ∼= θ ± 2kπ) angle function in the
polar coordinates (r, θ) of R2 which restricts to a multivalued5 coordinate function on S1. Use
a software to draw the image of f . The image is known as trefoil knot in knot theory.

Let’s elaborate on each item of Definition 2.36. To do that, we first need to recall the Rank
Theorem.

5On every open set of the form S1 − point ⊂ S1, we can fix a branch of the multi-valued angle function to get
a chart on S1.
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Theorem 2.39 (Rank Theorem). Suppose f : M −→M ′ is a smooth6 map. Assume that the
rank of dpf is a constant number r for all p∈M . Then, for every p∈M , there exist a local chart
ϕ : U−→V ⊂Rm around p on M and a local chart ϕ′ : U ′−→V ′⊂Rm′ around f(p) on M ′ such
that ϕ(p) = 0∈Rm, ϕ′(f(p)) = 0∈Rm′, and ϕ′ ◦ f ◦ ϕ : U −→ V is a linear map. In particular,
we can choose ϕ and ϕ′ such that

ϕ′ ◦ f ◦ ϕ(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0),

where the number of zeros on the right-hand side is m′−r if m′> r, and there are no zeros if
r=m′.

The statement is clearly local; i.e., if the restriction of f to a neighborhood Ũ of p has constant
rank r, we can find a smaller neighborhood U ⊂ Ũ that satisfies the result. Therefore, this
theorem is an immediate corollary of the Rank Theorem in analysis. We are now ready to dig
into different cases of Definition 2.36.

First, we define the notion of submanifold. There are two equivalent ways to define a submani-
fold. We say N⊂M is a submanifold of a manifold M if N is a manifold and the inclusion map
ι :N −→M is an embedding7. With this definition, if dim(N) =n and dim(M) =m, for every
p∈N , by Rank Theorem, there exist a chart ϕ : U−→V around p in N and a chart ϕ′ : U ′−→V ′

around p in M such that

ϕ′ ◦ ϕ−1(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

In other words, for every p∈N there is a neighborhood U⊂M around p with local coordinates
(x1, . . . , xm) such that

N ∩ U = (xm+1 = 0) ∩ · · · ∩ (xn = 0). (2.12)

The latter gives us another way of defining submanifolds. Either way, it is easy to show the
image of a smooth/holomorphic embedding f : M−→M ′ in the sense of Definition 2.36.(2) is a
smooth/holomorphic sub-manifold of the target manifold M ′; see HW 2.36 for an embedding
of S1 into R3.

By Rank Theorem, every immersion f:M−→M ′ in the sense of Definition 2.36.(1) is locally an
embedding; i.e. for every p∈M , there is a neighborhood U 3p in M such that f |U : U −→ M ′

is an embedding. Globally, however, the image of f may have self-intersections. For any point
p∈N =f(M) its pre-image f−1(p) ∈ M can be more than a singleton, but it will be a discrete
set. Therefore, locally around such p, N is a union of intersecting manifolds (or branches).
Extra conditions on f will control how different branches intersect at p.

HW 2.40. Describe
N ..= {(x, y) ∈ R2 : xy = 0} ⊂ R2,

as the image of an immersion; c.f. HW 2.15.

If f :M −→M ′ is a submersion in the sense of Definition 2.36.(3), by Rank Theorem, for every
q ∈M ′ and p∈ f−1(q), there are charts ϕ : U −→ V ⊂ Rm around p and ϕ′ : U ′ −→ V ′ ⊂ Rm′

around q such that
ϕ′ ◦ f ◦ ϕ−1(x1, . . . , xm) = (x1, . . . , xm′).

6C1 is enough.
7Depending on the context, we require ι to be a continuous, smooth, or holomorphic embedding.
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Therefore, the local coordinates (xm′+1, . . . , xm) define a chart on U ∩ f−1(q). In other words,

π : ϕ : U ∩ f−1(q) −→ Rm−m
′
,

where
π : Rm −→ Rm−m

′
: (x1, . . . , xm) −→ (xm′+1, . . . , xm)

is the projection map to the last m −m′ coordinates, defines a chart on π−1(q). It is easy to
show that such charts around different point of f−1(q) are compatible with each other and thus
f−1(q) is a submanifold of M ; f−1(q) is called a level set of f . Again, the argument is local,
in the sense that the conclusion we just made about f−1(q) only requires df to be full rank at
every point on preimage of q.

Definition 2.41. Suppose f :M−→M ′ is a smooth map, we say q∈M ′ is a regular value of
f if dpf is surjective at every p∈f−1(q).

Since rank dpf is a lower semi-continuous function in p, if q is a regular value, then there is
an open neighborhood W of f−1(q) such that dpf is surjective at every p∈W. Therefore, the
argument before Definition 2.41 proves the following Lemma.

Lemma 2.42. Suppose f :M −→M ′ is a smooth map and q∈M ′ is a regular value. Then the
level set f−1(q)⊂M is a submanifold of codimension dimRM

′.

If f−1(q) is not compact, then W does not necessarily include an open set of the form f−1(V )
where V is a neighborhood of q. However, if f−1(q) is compact, then W contains an open set of
the form f−1(V ). Moreover, in this case, one can show that, for sufficiently small V , there is a
diffeomorphism (or so called product structure)

ϕ : V × f−1(q) −→ f−1(V )

such that f ◦ (q′, p) = q′ for all q′∈V , p∈f−1(q). In particular, f−1(q) is diffeomorphic to every
other level set f−1(q′) over V . The proof of this statement needs a metric on M ; we will come
back to it later.

We have thus far learned two methods for getting a submanifold; either by embedding a manifold
into another, or by looking at a regular level set of a function. In the first approach, we often try
to embed a (complicated) manifold into a larger and simpler manifold (such as the Euclidean
space), or we study the set of different embeddings of one manifold into another. In the second
approach, we often build new manifolds by looking a level sets of smooth functions on known
manifolds (again, such as the Euclidean space), or we use the level sets to foliate a manifold
and divide it into pieces. For example, it is natural to wonder if every manifold embeds into
Euclidean space. Here is a result (Whitney embedding theorem).

Theorem 2.43. Every smooth m-manifold M admits a smooth embedding into R2m.

A stronger version of Theorem 2.43 due to John Nash shows that every Riemannian manifold
(a smooth manifold equipped with a Riemannian metric) admits an isometric embedding into
some Euclidean space.

HW 2.44. Explain why no compact holomorphic manifold admits a holomorphic embedding
into some Cn (Those that admit such an embedding are necessarily open and are called Affine
varieties.)
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HW 2.45. Explain why

N ..= {(x, y, z) ∈ R3 : x2 + y2 + z2 = 0} ⊂ R3,

is not a manifold. Can you describe it as the image of an immersion?

The concepts in Definition 2.36 extend to an arbitrary smooth vector bundle homomorphism
(not just the derivative) in the following way. Suppose

E

π
��

F // E′

π′

��
M

f //M ′

is a vector bundle homomorphism as in Definition 2.34. Just like linear maps between vector
spaces, we define

Ker(F ) =
{
v ∈ E : F (v) = 0 ∈ E′

}
, Coker(F )f(x) =

E′f(x)

F (Ex)
∀ x ∈M.

In general, rank Ker(F )x (and thus rank Coker(F )f(x)) can be different at different x ∈ M .
Therefore, Ker(F ) and Coker(F ) are not always vector bundles.

HW 2.46. With notation as above, suppose rank Ker(F )x≡ r for every x∈M . Then Ker(F )
and Coker(F ) are vector bundles over M and M ′, respectively. (See [4, p. 266].)

Example 2.47. In Example 2.30, the natural inclusion `∈Rm+1 (resp. `⊂Cm+1), for each line
`, gives an embedding of γ into the trivial line bundle RPm×Rm+1 (resp. CPm ×Cm+1). Here,
by an embedding we mean a homomorphism over the identity map of Pm which is injective on
each fiber.

HW 2.48. With notation as in Example 2.30, show that there is an exact sequence

0 −→ OPm
ι−→ (γ∗)⊕m+1 −→ TPm −→ 0,

where OPm is the trivial (real or complex) line bundle over Pm. Here “exact sequence” means
that ι is an embedding and the TPm = Coker(ι). In the real case, use this exact sequence to
prove that the orientation line bundle of RPm is isomorphic to γ if m is even, and to OPm if m
is odd.

The concepts of regular value and regular level sets can be generalized in the following way.
Suppose f1 : M1 −→ M ′ and f2 : M2 −→ M ′ are smooth maps from manifolds M1 and M2

into M ′, respectively. We say f1 and f2 are transversal maps, and write f1 ∩| f2 if for every
q ∈ f1(M1) ∩ f2(M2), and all p1 ∈ f−1

1 (q), p2 ∈ f−1
2 (q), we have

dp1f1(Tp1M1) + dp2f1(Tp2M2) = TqM.

Definition 2.41 is a special case of with (f1,M1) = (f,M) and (f2,M2) = (ι, q), where ι : q −→
M ′ is the embedding map of singleton q into M ′. As another special case, we say the smooth
submanifolds M1,M2 ⊂M ′ are intersecting transversely if the embedding maps ι1 : M1 −→M ′

and ι2 : M2 −→M ′ are transverse; i.e.

TqM1 + TqM2 = TqM ∀ q ∈M1 ∩M2. (2.13)

The the following lemma holds by Rank Theorem.
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Lemma 2.49. Suppose M1,M2 ⊂M ′ are transversely intersecting submanifolds. Then M1∩M2

is a submanifold of codimension

codimM ′(M1 ∩M2) = codimM ′M1 + codimM ′M2

Suppose π : E −→M is a smooth vector bundle and s :M −→ E is a smooth section; s is an
embedding of M into E. We say s is a transverse section if s and the zero section s0(x) ≡ 0 are
transverse embeddings. For every x ∈ s−1(0) (note that 0 is not a single value here; it is the
zero section), there is a canonical decomposition

TxE ∼= TxM ⊕ Ex.

Remark 2.50. Away from the zero section, a canonical decomposition as above does not exist.
We will discuss this issue in Section 2.7.

For each x ∈ s−1(0) let d⊥x s : TxM −→ Ex denote the Ex-component of dxs : TxM −→ Tx,0E
in the decomposition above. By (2.13), s is a transverse section if and only if d⊥x s is surjective.
Then, s−1(0)⊂M is a submanifold of codimension rank E.
For example, suppose ζ is a transverse vector field on M ; i.e. a transverse section of the tangent
bundle TM . Then ζ−1(0) is a submanifold of dimension 0; i.e. it is a collection of points. If M
is compact, ζ−1(0) is a finite collection. For each x ∈ ζ−1(0),

d⊥x ζ : TxM −→ TxM

is an isomorphism. We define ε(x) ∈ {±1} to be the sign of det(d⊥x ).

Theorem 2.51. Suppose M is closed (compact with boundary) and ζ is a transverse vector
field. The integer

X (ζ) =
∑

x∈ζ−1(0)

ε(x) (2.14)

is independent of the choice of ζ. Thus, it is an invariant of M ; we denote it by X (M).

The invariant X (M) above is called the Euler characteristic of M .

HW 2.52. Use the transverse section in HW 2.32 to compute X (RPn) and X (CPn).

Lemma 2.49 and 2.42 are special cases of the following statement.

Lemma 2.53. Suppose f1 : M1 −→ M ′ and f2 : M2 −→ M ′ are smooth maps from manifolds
M1 and M2 into M ′, respectively. If f1 ∩| f2, then the fiber product space

M1 f1×f2 M2
..= {(x1, x2) ∈M1 ×M2 : f1(x1) = f2(x2)} ⊂M1 ×M2

is a submanifold of dimension

dim M1 f1×f2 M2 = dim M1 + dim M2 − dim M ′.
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2.4 Quotient manifolds

In the previous section, we learned how to obtain construct new manifolds out of known mani-
folds and maps between them; e.g. as a level set or fiber product. Another common method for
constructing new manifolds out of known ones is by considering quotients. First, we start with
quotients by discrete groups and then extend it to quotients by Lie groups.

Suppose M is a smooth8 manifold and G is a discrete group (probably finite). By a smooth
(right-) action of G on M we mean a function

ϕ : M ×G −→M, (x, g) −→ x · g ..= ϕ(x, g) ∈M

such that ϕ(−, g) : M −→ M is smooth for all g ∈ G and ϕ(−, g1g2) = (ϕ(−, g1), g2) for all
g1, g2 ∈ G. In particular, by the second property, each ϕ(−, g) is a diffeomorphism. Let

M/ϕ ≡M/G ..= M/
(
x ∼ x · g : ∀ x ∈M, g ∈ G)

denote the quotient space with the quotient topology.

Theorem 2.54. With notation as above, suppose G is a discrete group that acts freely and
properly on M in the following sense:

• (free) for every point x ∈ M the stabilizer subgroup Gx = {g ∈ G : x · g = x} is the trivial
subgroup;

• (proper) for every compact subset K⊂M , the subset GK = {g ∈ G : (K · g)∩K 6= ∅} is finite.

Then the smooth manifold structure on M induces a unique smooth manifold structure on M/G.

Example 2.55. The action of Z2 on R2 by translations,

R2 × Z2 −→ R2, (x, y)× (m,n) −→ (x+m, y + n)

is smooth, free, and proper. The quotient manifold R2/Z2 is the 2-dimensional torus T2. In the
holomorphic category, there are many holomorphically non-equivalent ways to define an action
of Z2 on C ∼= R2. For each τ ∈ H = {z ∈ C : Im(z) > 0}, let

ϕτ : C× Z2 −→ C, z × (m,n) −→ z +m+ nτ.

Then, T2
τ = C/ϕτ is a 2-torus with a holomorphic structure (called an elliptic curve). Since R2

is the universal covering space of T2, every elliptic curve is of the form T2
τ for some τ ∈H. The

following HW characterizes different holomorphic structures on T2.

HW 2.56. With notation as in Example 2.55, show that T2
τ is biholomorphic to T2

τ ′ if and only
if

τ ′ = A · τ =
aτ + b

cτ + d
(2.15)

for some

A =

[
a b
c d

]
∈ SL(2,Z) = {A ∈M2×2(Z) : det(A) = 1}.

8The same story holds for topological, holomorphic, or other types of manifolds.
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Next, we define Lie groups and extend Theorem 2.54 to non-discrete actions. A Lie group G is
a manifold with a group structure such that the product map

G×G −→ G

is smooth. Examples of Lie groups include S1, GL(N,R), GL(N,C), and many of its subgroups.

Theorem 2.57 ([4], Theorem 9.19). With notation as above, suppose G is a Lie group that acts
freely and properly on M in the following sense:

• (free) for every point x ∈ M the stabilizer subgroup Gx = {g ∈ G : x · g = x} is the trivial
subgroup;

• (proper) for every compact subset K ⊂M , the subset GK = {g ∈ G : (K · g) ∩ K 6= ∅} is
compact.

Then the smooth manifold structure on M induces a unique smooth manifold structure on M/G
such that the quotient map π : M −→M/G is a smooth submersion.

If G is a compact Lie group (such as a finite group), every smooth action of G on a manifold M
is proper; see [4, Cor 7.2]. Therefore, one only needs to check that the action is free.

HW 2.58. Describe Pm (in both real and complex versions) as a quotient manifold.

HW 2.59. Let W be a real/complex vector space of rank n and 1 ≤ k ≤ n. The real/complex
Grassmannian Grk(W ) space is the set of k-dimensional subspaces of W . For example,

Pn−1 = Gr1(W ).

Describe Grk(W ) as a quotient manifold. Generalizing Example 2.47, every Grk(W ) admits a
tautological rank r vector bundle γk,W −→ Grk(W ) whose fiber over the k-dimensional subspace
K ⊂W is K. Find the analogue of the exact sequence in HW 2.48 for Grk(W ) and γk,W .

HW 2.60. In HW 2.56, (2.15) defines a left-action of the discrete group SL(2,Z) on H. The ac-
tion descends to an action of PSL(2,Z) = SL(2,Z)/±I2×2. Explain why the quotient space is not
a manifold. This quotient space is the “moduli space” of elliptic curves; the space parametrizing
isomorphism classes of elliptic curves.

2.5 Differential forms and de Rham cohomology

By definition, for every smooth manifold M , its cotangent bundle T ∗M is the vector space of
linear maps on tangent vectors. A 1-form η is a section of T ∗M . If x = (x1, . . . , xm) are local
coordinates on a chart Vα, ηα = η|Vα can be written in the form

ηα =
m∑
i=1

ai(x)dxi,

where {dxi}mi=1 is the basis dual to {∂xi}mi=1 under the natural bi-linear pairing map

TX ⊗ T ∗X −→ X × R, (ζ, η) −→ η(ζ).

If y = (y1, . . . , ym) are local coordinates on another chart Vβ and

ηα =

m∑
i=1

bi(y)dyi,
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by Chain Rule and the definition of the dual bundle, the coefficients ai and bi are related by the
change of trivialization map

ηα = ϕ∗α,βηβ
..= ηβ ◦ dϕα,β =

m∑
i=1

bi(ϕα,β(x))dyi(x) =
m∑
j=1

( m∑
i=1

bi(ϕα,β(x))
∂yi
∂xj

)
dxj (2.16)

on the overlap; i.e.

aj =
m∑
i=1

bi(ϕα,β(x))
∂yi
∂xj

∀ j = 1, . . . ,m.

We say ηα is equal to the pullback of ηβ by ϕα,β.

Differential k-forms of are sections of the k-th exterior power ΛkT ∗M of T ∗M . We denote the
space of (real-valued) smooth differential k-forms by Ωk(M,R). Locally, every k-form η can be
written as

ηα =
∑

i1<···<ik

ai1,...,ik(x) dxi1 ∧ . . . ∧ dxik ,

with transition maps

ηα = ϕ∗α,βηβ =
∑

i1<···<ik

bi1,...,ik(ϕα,β(x)) dyi1(x) ∧ . . . ∧ dyik(x) =

∑
j1<···<jk

( ∑
i1<···<ik

∑
σ∈Sk

ε(σ)bi1,...,ik(ϕα,β(x))
∂yiσ(1)
∂xj1

· · ·
∂yiσ(k)
∂xjk

)
dxj1 ∧ . . . ∧ dxjk ,

where ε(σ) ∈ {±1} is the sign of permutation.

Lemma 2.61. Prove that the local derivative maps

d|Vα : Ωk(Vα,R) −→ Ωk+1(Vα,R),

d|Vα
( ∑
i1<···<ik

ai1,...,ik(x) dxi1 ∧ . . . ∧ dxik

)
=

∑
i0<···<ik

k∑
`=0

(−1)`
∂ai0,...î`...ik(x)

∂xi`
dxi0 ∧ . . . ∧ dxik

are compatible along the overlaps and define a so-called exterior derivative map

d: Ωk(M,R) −→ Ωk+1(M,R) ∀ k ≥ 0.

Also, show that d ◦ d = 0.

By the last property above, the quotient spaces in the following definition are well-defined.

Definition 2.62. For k ≥ 0, the k-th de Rham cohomology group of a smooth manifold M is
the qoutient space

Hk
dR(M,R) ..=

ker
(
d: Ωk(M,R) −→ Ωk+1(M,R)

)
Image

(
d: Ωk−1(M,R) −→ Ωk(M,R)

) .
HW 2.63. Explain why Hk

dR(M,R) = 0 for k > dim(M). Show that if M is connected then
H0

dR(M,R) ∼= R. Calculate H1
dR of S1. Calculate H1

dR and H2
dR of S2.

We will see later that for a compact manifold M the groups Hk
dR(M,R) are finite dimensional

(vector spaces).
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2.6 Integration and Stokes’ theorem

In this section, first, we show how differential m-forms can be integrated on oriented m-
dimensional manifolds. Then, we state the stokes’ theorem and some of its consequences.

Suppose M is a smooth m-manifold (possibly with boundary) and η is an m-form on M . For
the moment, suppose η is compactly supported and supp(η) ⊂ V for some chart V ⊂ Rm. By
this assumption,

η(x) = f(x) dx1 ∧ . . . ∧ dxm

where f : V −→ R is a smooth function with compact support. We can define the integral of η
on V and thus on M to be ∫

M
η =

∫
V
η =

∫
Rm

f(x) dx1 . . . dxm (2.17)

where the right-hand side is the standard Euclidean integration from Calculus. The question
is whether (2.17) is independent of local chart/coordinates (x1, . . . , xn). The righthand side
of (2.17) does not depend on the order of m integrations, but the effect of the permutation
change of coordinate map

ϕσ : Rm −→ Rm, (x1, . . . , xm) −→ (y1, . . . , ym) = (xσ(1), . . . , xσ(m)), σ ∈ Sm,

on η is multiplication by (−1)sign(σ). Therefore, (2.17) depends on the order of the coordinates
x1, . . . , xm. An orientation on M in the sense of Item (3) in Page 12 fixes this sign problem in
the following way.

By definition, an orientation on M is a choice of trivialization ΛmT ∗M ∼= M × R. Under such
a trivialization, the nowhere-vanishing constant section s(x) ≡ (x, 1) for M × R corresponds
to a nowhere-vanishing differential m-form ω on M . Such a nowhere-vanishing ω is called a
volume-form on M . We say local coordinates x = (x1, . . . , xm) are positively oriented if in the
local presentation

ω = g(x)dx1 ∧ dxm

of ω with respect to x, we have g(x) > 0. On oriented manifolds, we can choose a positive atlas
consisting only of positively oriented charts. If ϕα,β : Vα,β −→ Vβ,α is a transition map in such
a positive atlas, then det(dϕα,β(x)) > 0 for all x ∈ Vα,β. Therefore, the sign issue will not arise
on a positive atlas. If det(dϕα,β(x)) > 0, the equality∫

Vα,β

ηα =

∫
Vβ,α

ηβ

follows from Change of Variable Theorem for integral of a function on Rm.

Suppose η is a differential m-form with compact support on an oriented manifold M . Fix a
locally-finite positive atlas A = {Vα}α admitting a partition of unity P = {θα : Vα −→ [0, 1]}.
It is straightforward to check that ∫

M
η ..=

∑
α

∫
Vα

θαη

is independent of the choice of A and P.
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Suppose M is a smooth m-manifold with boundary ∂M (possibly empty). If M is orientable,
then ∂M is also orientable. Given an orientation on M , there are two conventions for orienting
∂M . The inclusion ∂M ⊂M gives an exact sequence

0 −→ T∂M −→ TM |∂M −→ NM∂M −→ 0

where NM∂M is the normal line bundle of ∂M in M . It is easy to show that NM∂M is
isomorphic to the trivial bundle ∂M ×R. We choose an isomorphism such that constant section
1 corresponds to an outward-pointing normal vector field nout along ∂M . The exact sequence
above and the choice of an outward-pointing normal vector field nout gives an isomorphism

T ∗M |∂M ∼= NM∂M ⊕ T ∗∂M. (2.18)

We choose the orientation on T ∗∂M such that (2.18) is an oriented isomorphism. We call it the
induced orientation on ∂M .

Theorem 2.64 (Stokes’ theorem). Suppose M is an oriented smooth m-manifold with boundary
∂M and η is a compactly supported (m− 1)-form on M . Then∫

M
dη =

∫
∂M

η,

where the righthand side is with respect to the induced orientation on ∂M

Suppose M is a connected oriented closed (compact without boundary) m-manifold. For every
(m− 1)-form η, by Stokes’ theorem, we have∫

M
dη = 0.

Therefore,
∫
M descends to a linear map∫

M
: Hm

dR(M,R) =
Ωm(M,R)

Image
(
d: Ωm−1(M,R) −→ Ωm(M,R)

) −→M. (2.19)

For a volume form ω on M (which we know exists), we have
∫
M ω > 0 by definition. Therefore,

the linear map above is surjective.

Proposition 2.65. Suppose M is a connected oriented closed m-manifold. Then (2.19) is an
isomorphism; i.e. Hm

dR(M,R) ∼= R is generated by the cohomology class of a volume form.

We will prove this later in the discussion of Poincare duality.

Suppose M is a smooth manifold and ζ is a vector field on M . Contraction with ζ defines a
degree lowering (by one) map on all positive degree differential forms

(ιζη)(v2, . . . , vk) = η(ζ(x), v2, . . . , vk) ∀ x ∈M, v2, . . . , vk ∈ TxM.

We have
· · · Ωk(M,R)

ιζ−→ Ωk−1(M,R)
ιζ−→ · · ·Ω0(M,R)

with ιζ ◦ιζ = 0. The Lie derivative of a differential form with respect to ζ is the degree preserving
map

Lζη = dιζη + ιζdη
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with the following geometric meaning. Let

ϕ : M × R −→M, (x, t) −→ ϕt(x)

denote the ODE flow of ζ by the family of diffeomorphisms {ϕt}t∈R. Then

ϕ∗sLζη =
dϕ∗t η

dt
|t=s ..= lim

t−→s

ϕ∗t η − ϕ∗sη
t− s

. (2.20)

In particular, putting s = 0, we get

Lζη = lim
t−→0

ϕ∗t η − η
t

.

Now, suppose M is oriented and compact, ω is a volume form on M , and ζ is a vector field on
M . Since dω = 0, we have

Lζω = dιζω = fω

for some smooth function f : M −→ R. We call f the divergence of ζ with respect to ω and
write f = Divω(f). This generalizes the notion of divergence from Calculus. By Stokes’ theorem
we have ∫

∂M
ιζω =

∫
M

Divω(f)ω. (2.21)

The lefthand side is the average flow of ζ across ∂M with resect to ω|∂M . This identity generalizes
Divergence Theorem in Calculus.

2.7 Connection and curvature

Suppose π : E −→ M is a vector bundle. The projection map π induces a surjective homomor-
phism between vector bundles over E

dπ : TE −→ π∗TM.

The kernel of this map is the subspace of “vertical tangent vectors” in TE and is naturally
isomorphic to π∗E. In other words, we get an exact sequence of vector bundles

0 −→ π∗E −→ TE
dπ−→ π∗TM −→ 0. (2.22)

A right-inverse for dπ would give us a decomposition

TE ∼= π∗E ⊕ π∗TM ; (2.23)

of (2.22); thus, it would allow us to decompose any tangent vector v ∈ TE into a sum of a
horizontal component vh ∈ T hE ∼= π∗TM and a vertical component v⊥ ∈ π∗E. For a trivial
vector bundle E=M ×W , the product structure yields a canonical decomposition as in (2.23).
For an arbitrary vector bundle E, a connection ∇, as we describe below, will give us a suitable
decomposition (2.23) and vice versa; see Lemma 2.73.

From another perspective, let s :M −→E be a section. Derivative of s, as a function between
manifolds, is a linear map ds : TM −→ TE. If E = M × W is a trivial bundle, we have
s(x) = (x, f(x)) for some function f : M −→W and

dxs = id⊕ dxf : TxM −→ TxM ⊕W ∀ x ∈M.
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So dxs has two components, where the vertical component corresponds to the classical notion of
the derivative of a function in calculus. For an arbitrary vector bundle, a connection ∇ and thus
the corresponding decomposition (2.23) would enable us pick up the vertical part of ds which
we denote by ∇s.

Definition 2.66. Suppose π :E −→M is a smooth real vector bundle. A connection ∇ is an
R-linear map

∇ : Γ(M,E) −→ Γ(M,T ∗M ⊗R E)

that satisfies the Leibniz rule

∇(fζ) = f∇ζ + df ⊗ ζ ∀ f ∈ C∞(M,R), ζ ∈ Γ(M,E). (2.24)

Remark 2.67. Note that ∇ is a first-order operator. At any point p ∈ M , (∇ζ)|p depends on
the values ζ on an infinitesimal neighborhood of p. This is evident from the second term on the
righthand side of (2.31). Therefore, ∇ is not a tensor; i.e. it is not a section of Γ(M,T ∗M ⊗R
End(E)).

In any local trivialization E|Vα ∼= Vα ×W , ∇ can be written as

∇α ..= d + Θα s.t. Θα ∈ Γ
(
M,T ∗M ⊗R End(W )

)
. (2.25)

For W = Rn (resp. Cn), we have End(W )=Mn×n(R) (resp. Mn×n(C)) and θα is an n×n matrix
of real-valued (resp. complex-valued) 1-forms:

Θα =
[
θα,ij

]
1≤i≤n
1≤j≤n

.

For a different local trivialization E|Vβ = Vβ ×W with the change of trivialization map

Vα,β ×W −→ Vβ,α ×W, (x,w) −→ (ϕα,β(x),Φα,β(x)w),

the 1-formed valued endomorphisms θα and θβ are related by

Θβ = −dΦα,βΦ−1
α,β + Φα,βΘαΦ−1

α,β, (2.26)

where the products on the righthand side are matrix products.

HW 2.68. Show that if ∇ and ∇′ are two connections on E, then

∇−∇′ = Θ ∈ Γ(M,T ∗M ⊗R End(E));

i.e. the difference of every two connections is a globally defined End(E)-valued 1-form.

Lemma 2.69. Every vector bundle admits a connection. The space of connections on E is an
affine space with tangent space Γ(M,T ∗M ⊗R End(E)).

Proof. The second statement follows from HW 2.68. Let {Vα}α∈I be a smooth atlas on M with
a partition and unity {ηα : Vα −→ R}α∈I and local trivializations E|Vα = Vα ×W . Fix local
connections ∇α on Vα ×W ; e.g. you may put Θα = 0 in (2.25) and just take the standard
derivative map d. The summation

∇ζ ..=
∑
α∈I
∇α(ηαζ)

is well-defined and defines a connection on E.
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HW 2.70. In the proof above, explain why none of the terms ζ −→ ∇α(ηαζ) is a connection
by itself but the summation on right defines a connection.

Remark 2.71. Replacing R with C in Definition 2.66 and the rest of the statements above gives
us C-linear connections on complex vector bundles.

Remark 2.72. A connection on E induces a connection on tensor/exterior powers of E.

Lemma 2.73. Suppose M is a smooth manifold and π :E−→M is a vector bundle. A connection
∇ on E induces a splitting (2.23) of the exact sequence (2.22) such that

(dζ(v))⊥ = ∇vζ ∈ Ex ∀ ζ ∈ Γ(M,E), v ∈ TxM. (2.27)

Proof. For any x ∈M , fix a local chart V around x and a local trivialization E|V ∼= V ×W . In
this trivialization ∇ has the form

∇ ..= d + Θ s.t. Θ ∈ Γ
(
M,T ∗M ⊗R End(W )

)
.

For any w∈W , define

TΘ;h
(x,w)V ×W =

{
(v,Θ(v)w) ∈ TxV ⊕W : ∀ v ∈ TxM

}
. (2.28)

We need to show that (2.28) is invariant under the change of local trivialization. Suppose
E|V ∼= V ×W is another local trivialization with the corresponding endomorphism-valued 1-
form Θ′ and the change of trivialization map

Φ̃: V ×W −→ V ×W, (x,w) −→ (x,−Φ(x)w).

By (2.26), Θ and Θ′ are related by

Θ′ = −dΦ Φ−1 + Φ Θ Φ−1.

We show that
dΦ̃ : T (V ×W ) −→ T (V ×W )

maps TΘ;h
(x,w)(V ×W ) to TΘ′;h

(x,w′)(V ×W ), where w′ = Φ(x)w. For (v,−Θ(v)w) ∈ TΘ;h
(x,w)V ×W , we

have
d(x,w)Φ̃

(
v,−Θ(v)w

)
=
(
v,
(
dxΦ(v)

)
w − Φ(x)Θ(v)w

)
=
(
v,
(
dxΦ(v)− Φ(x)Θ(v)

)
w
)

=
(
v,−

(
− dxΦ(v)Φ(x)−1 + Φ(x)Θ(v)Φ(x)−1

)
Φ(x)w

)
=
(
v,−Θ′(v)w′

)
∈ TΘ′;h

(x,w′)(V ×W ).

We can also describe the horizontal subspace T hE ⊂ TE globally in the following way. For
every x ∈ M and w ∈ Ex, let ζ be a section of E on neighborhood of x such that ζ(x) = w.
Define

T h(x,w)E =
{

dxζ(v)−∇vζ|x ∈ Tx,wE ∀v ∈ TxM
}
.

It follows from Leibniz rule T h(x,w)E is independent of the choice of the extension ζ. Since

∇vζ|x ∈ Ex is in the kernel of dπ : TE −→ TM and π ◦ s = idM , we have

dπ
(
dxζ(v)−∇vζ|x

)
= v.

Therefore, dπ : T h(x,w)E −→ TxM is an isomorphism.
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Given a smooth vector bundle π : E −→M and a connection ∇ on E, for every x0 ∈M , ζ0 ∈ Ex,
and a smooth path γ : [0, ε] −→ M starting at x0 (γ(0) = x0), by parallel transport of ζ0 along
γ we mean a smooth family vectors ζ(t) ∈ Eγ(t) such that (i) ζ(0) = ζ0 and (ii) ∇γ̇ζ ≡ 0.

Lemma 2.74. With notation as above, the parallel translate of ζ0 exists over the entire γ and
is unique.

Proof. It is easy to see in terms of the local description of a connection that the equation∇γ̇ζ ≡ 0
is an ODE with initial condition ζ(0) = ζ0. Therefore, the solution exists and is unique.

For each smooth path γ(t) : [0, 1] −→ M connecting x0 = γ(0) to x1 = γ(1), the parallel
translation map

Pγ : Ex0 −→ Ex1

is a vector space isomorphism. For different paths γ and γ′ from x0 to x1, Pγ and Pγ′ are often
different. Thus, for a loop γ that starts and ends at x0,

Pγ : Ex0 −→ Ex0

is often a non-trivial endomorphism of Ex0 ; Pγ ∈ End(Ex0) is called the holonomy of ∇ around
γ. We say ∇ is flat connection if its holonomy on contractible loops is trivial. The holonomy
map of a flat connection gives a map π1(M,x0) −→ End(Ex0). Suppose M is connected and

pr: M̃ −→M is the universal cover of M . If E admits a flat connection then

Ẽ ..= pr∗E −→ M̃

is isomorphic to the trivial bundle M̃×W . Via parallel transport, a flat connection determines an
isomorphism Ẽ ∼= M̃×W such that the pull back connection is the standard derivative map d on
M̃×W . In conclusion, flat vector bundles correspond to representations ρ : π1(M) −→ End(W ).
For each ρ, we have

E ∼=
(
M̃ ×W

)
/G (2.29)

where G acts by the group of deck transformation on M̃ and G acts on W by ρ.

Holonomy is closely to related to the curvature F∇ of ∇, which we are going to define. In fact,
∇ is a flat connection if and only if F∇ ≡ 0.

Proposition 2.75. . For any connection ∇, the expression

F∇(ζ1, ζ2)ξ = ∇ζ1∇ζ2ξ −∇ζ2∇ζ1ξ −∇[ζ1,ζ2]ξ, ∀ ζ1, ζ2 ∈ Γ(M,TM), ξ ∈ Γ(M,E), (2.30)

is C∞(M,R)-linear in all three inputs. Hence it defines an element

F∇ ∈ Ω2(M,End(E)) ..= Γ(M,Λ2T ∗M ⊗R End(E))

called the curvature of ∇.

In (2.30), [ζ1, ζ2] is the Lie bracket of vectors fields ζ1 and ζ2. It is a vector field satisfying

[ζ1, ζ2](f) ..= df([ζ1, ζ2]) = ζ1(ζ2(f))− ζ2(ζ1(f)).

In local coordinates, if

ζ1 =
m∑
i=1

ai∂xi and ζ1 =
m∑
i=1

bi∂xi
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then

[ζ1, ζ2] =
m∑
i=1

m∑
j=1

(
aj
∂bi
∂xj
− bj

∂ai
∂xj

)
∂xi .

Both the Lie bracket and F∇ are skew-symmetric in ζ1, ζ2.

HW 2.76. Replace ξ with fξ and apply Leibniz rule (mutiple times) to prove Proposition 2.75.

A connection ∇ can also be seen as a way of extending the exterior derivative d to E-valued
differential forms. Let

Ωk(M,E) ..= Γ(M,ΛkT ∗M ⊗R E)

denote space E-valued differential k-forms on M . A connection ∇ can be seen as a derivative
map

d∇ : Ω0(M,E) −→ Ω1(M,E)

and d∇ extends to a derivate map

d∇ : Ωk(M,E) −→ Ωk+1(M,E)

for all k ≥ 0. As in the case of the exterior derivative d, d∇ satisfies the Leibniz identity

d∇(ω ∧ η) = dω ∧ η + (−1)kω ∧ d∇η, ∀ω∈Ωk(M,R), η∈Ω`(M,E).

Unlike the exterior derivative d, d∇ ◦ d∇ 6= 0; thinking of F∇ as a map

F∇ : Ωk(M,E) −→ Ωk+2(M,E);

we have d∇ ◦d∇(η) = F∇∧ η; so F∇ measures how much d∇ ◦d∇ deviates from being a cochain
map.

In terms of the local connection matrices Θ in (2.25), the End(E)-valued 2-form F∇ has the
form

F = dΘ + Θ ∧Θ.

If rankR E = 1, then Θ is an honest 2-form and Θ ∧ Θ = 0; thus, F defines a global closed
2-form on M whose cohomology class [F ] ∈ H2(M,R) is independent of the choice of ∇. This
cohomology class will happen to be zero (why?).

If r = rankRE > 1, then Θ is a matrix of 1-forms and Θ ∧ Θ can be a non-trivial matrix of
2-forms. Nevertheless, we have

(Bianchi Indentity) dF = d(dΘ + Θ ∧Θ)

= dΘ ∧Θ−Θ ∧ dΘ = [F,Θ] ..= F ∧Θ−Θ ∧ F.

For an honest 1-form Θ, we have dΘ∧Θ−Θ∧dΘ = 0, but this is not true for a matrix of 1-forms.

For any fixed pair of integers 1 ≤ i, j ≤ r, the individual ij-th terms of Fα, where Fα is the
curvature matrix with respect a local trivializations E|Vα ∼= Vα × Rr, do not paste together
to define a 2-form on M ; the change of trivialization maps Φα,β mix these terms together by
conjugation, i.e.

Fβ = Φα,βFαΦ−1
α,β.
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However, symmetric functions of Fα are preserved by the change of trivialization maps. The
basic symmetric functions are

σ2,α = trace(Fα), . . . , σ2r,α = det(Fα)

in degrees 2 up to 2r. For each 1 ≤ k ≤ r, the local 2k-forms {σ2k,α} paste together to define
well-defined global 2k-forms σ2k on M . These differential forms depend (only) on ∇.

Even though, by Bianchi Identity, dF 6= 0, the combinations σ2,α, . . . , σ2r,α are closed forms.
For example,

dσ2 = d trace(F ) = trace(dF ) = trace(F ∧Θ−Θ ∧ F ) = 0.

Also, if we change∇ to a another connection∇′, the resulting closed differential forms σ′2, . . . , σ
′
2r

differ from σ2, . . . , σ2r by exact forms. Therefore, the cohomology class

[σ2] ∈ H2
dR(M,C), . . . , [σ2r] ∈ H2r

dR(M,C)

are invariants of the smooth vector bundle E. If E is trivial, by choosing the trivial connection
∇ = d, we observe that [σ2k] = 0 for all 1 ≤ k ≤ r. The converse however is not always true. If E
is a flat line bundle as in (2.29), then all these cohomology classes are 0 but E can be non-trivial.

Everything we have been talking about has a straightforward generalization to complex vector
bundles in the following sense.

Definition 2.77. Suppose π :E−→M is a smooth complex vector bundle. A Chern (complex
linear) connection ∇ is a C-linear map

∇ : Γ(M,E) −→ Γ(M, (T ∗M ⊗R C)⊗C E)

that satisfies the Leibniz rule

∇(fζ) = f∇ζ + df ⊗ ζ ∀ f ∈ C∞(M,C), ζ ∈ Γ(M,E). (2.31)

Note that by replacing T ∗M with T ∗M ⊗R C we are allowing differential forms with complex
coefficients; we will denote the space of C-valued differential k-forms by Ωk(M,C). In general,
if E −→M is a real vector bundle, then EC ..= E ⊗R C gives us a complex vector bundle of the
same rank. The complex conjugation induces a conjugation on EC.

Similarly, the curvature of a Chern connection is the EndC(E)-valued 2-form

F∇ ∈ Ω2(M,EndC(E)) ..= Γ
(
M,Λ2

C(T ∗M ⊗ C)⊗C EndC(E)
)
.

If rankC(E) = r, the Chern classes of E, as de Rham cohomology classes, are defined by

1 + tc1(E) + t2c2(E) + . . .+ trcr(E) = det(I +
it

2π
F ).

They happen to be real-valued. In particular,

c1(E) = [
i

2π
trace(F )] ∈ H2

dR(M,R) and cr(E) = [
( i

2π

)r
det(Fα)] ∈ H2r

dR(M,R). (2.32)

So far, we have been purposefully avoiding any mention of a metric in our discussion of manifolds
and vector bundles. Differential Topology is mainly about the smooth structure of manifolds
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and vector bundles. Introduction of a metric would enable us to put more conditions on a
connection and thus the curvature form. In the case of a real vector bundle E −→M , we equip
E with a Riemannian structure in the following sense. A Riemannian metric g on E is a smooth
fiberwise positive-definite symmetric bilinear map

g ≡ 〈−,−〉 : E × E −→ R.

Here, symmetric means
〈u, v〉 = 〈u, v〉 ∀ x∈M, u, v∈Ex

and positive-definite means

〈u, u〉 > 0 ∀ x∈M, 0 6= u∈Ex.

In any local trivialization E|Vα ∼= Vα × Rr, we have

〈u, v〉α = uTAα(x)v ∀ x∈M, u, v∈Rr,

where Aα(x) is positive-definite symmetric matrix and the function

Vα −→Mr×r(R), x −→ Aα(x)

is smooth. If Aβ is the matrix corresponding to a different trivialization E|Vβ ∼= Vβ ×W , Aβ
and Aα are related by the formula

Aα(x) = Φα,β(x)TAβ(ϕα,β(x))Φα,β(x). (2.33)

A Riemannian metric g on E also gives us an identification of E and its dual E∗:

E 3 v ⇔ 〈v,−〉 ∈ E∗. (2.34)

Therefore, every real vector bundle E is isomorphic to its dual. Since

[σk(E)] = (−1)k[σk(E
∗)] ∀ k ≥ 0,

it follows that [σk] = 0 for all odd k.

Given a Riemannian metric g ≡ 〈−,−〉 on E, we say a connection ∇ is compatible with g if

d 〈ζ, ξ〉 = 〈∇ζ, ξ〉+ 〈ζ,∇ξ〉 . (2.35)

HW 2.78. If ∇ and g are compatible, in any local trivialization E|Vα ∼= Vα × Rr, find the
relation between Aα and Θα.

If E −→M is a complex vector bundle, we can equip E with a Hermitian metric. A Hermitian
metric h

h ≡ 〈−,−〉 : E × E −→ C.

is a smooth family of Hermitian inner products on the fibers of E in the following sense:

• h is complex linear on the second input and anti-complex linear in the first input;

• 〈u, v〉 = 〈v, u〉 ∀ x∈M, u, v∈Ex;
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• 〈u, u〉 > 0 ∀ x∈M, 0 6= u∈Ex.

In any local trivialization E|Vα ∼= Vα × Cr, we have

〈u, v〉α = uTAα(x)v ∀ x∈M, u, v∈Cr,

where A∗α
..= Aα

T
= Aα, u∗Aαu > 0 for all u ∈ Cr − {0}, and the function

Vα −→Mr×r(C), x −→ Aα(x)

is smooth. If Aβ is the matrix corresponding to a different trivialization E|Vβ ∼= Vβ × Cr, Aβ
and Aα are related by the formula

Aα(x) = Φα,β(x)∗Aβ(ϕα,β(x))Φα,β(x).

A Riemannian metric h on E also gives us an identification of E and its dual E∗:

E 3 v ⇔ 〈v,−〉 ∈ E∗.

Therefore, the dual of every complex vector bundle E is C-linearly isomorphic to the conjugate
of E.

Given a Hermitian metric h ≡ 〈−,−〉 on E, we say a Chern connection ∇ is compatible with h
if

d
〈
ζ, ξ
〉

=
〈
∇ζ, ξ

〉
+
〈
ζ,∇ξ

〉
.

HW 2.79. If ∇ and h are compatible, in any local trivialization E|Vα ∼= Vα × Cr, find the
relation between Aα and Θα.

HW 2.80. Use partition of unity to prove that every real/complex vector bundle admits a
Riemannian/Hermitian metric.

Remark 2.81. Every Hermitian metric h on E has the form h = g+ iω such g is a Riemannian
metric on the underlying real vector bundle of E and ω is a non-degenerate skew-symmetric
bilinear form. Here, non-degenerate means that

ω(u,−) = 0⇔ u = 0, ∀ x ∈M, u ∈ Ex.

By the second bullet above, ω and g are related by

ω(u, v) = g(iu, v) ∀ x ∈M, u, v∈Ex.

Therefore, any of h, g, or ω, determines the rest.

We will dig more into metrics on manifolds in Section 2.8.

2.8 Riemannian manifolds

A Riemannian manifold is a smooth manifold M with a (Riemannian) metric g = 〈−,−〉 on its
tangent bundle. Locally, on a chart V with local coordinates (x1, . . . , xm), a metric g has the
form

g = gij(x) dxi ⊗ dxj
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such that
(
gij(x)

)
is a smooth family of positive-definite symmetric matrices. The space of

connections ∇ on TM that are compatible with g in the sense of (2.35) is non-empty and it has
more than one element. There is a unique connection ∇ in this set, known as the Levi-Civita
connection, which is Torsion-free in the following sense:

T∇(ζ, ξ) ..= ∇ζξ −∇ξζ − [ζ, ξ] = 0 ∀ ζ, ξ ∈ Γ(M,TM).

In local coordinates (x1, . . . , xm) on M , we can expand any connection in the following way

∇∂xi∂xj =
m∑
k=1

Γkij∂xk .

For the Levi-Civita connection ∇, Γkij are called the Christoffel symbols of g and are given by

Γkij =
1

2

m∑
`=1

gk`
(∂g`i
∂xj

+
∂g`j
∂xi
− ∂gij
∂x`

)
,

(
gij
)

=
(
gij
)−1

. (2.36)

The curvature tensor of ∇, usually denoted by R instead of F∇ can also be expanded as

R(∂xi , ∂xj ) ∂xk = R`k,ij ∂x` , (2.37)

where each R`k,ij can be explicitly written in terms of the first derivatives of the Christoffel
symbols. The full curvature tensor is often too complicated to work with. We often combine
some of the terms to get a simpler tensor or just a function that is easier to work with. For
example, the scalar curvature of g is the full trace of R given by

κ : M −→ R, κ(x) =
∑
i,j

〈R(ei, ej)ej , ei〉 =
∑
i,j,k

gkjRik,ij

where e1, . . . , em is an orthonormal basis of TxM . Scalar curvature of a surface Σ embedded in
R3 with respect to the metric induced by the standard metric on R3 is known as the Gaussian
curvature.

Example 2.82. In this example, we calculate the scalar curvature of S2
r (2-dimensional sphere

of radius r) and explain the formula for general Snr . The orientation-preserving parametrization
of a 2-sphere of fixed radius r in spherical coordinates is given by

x(ϕ, θ) = r(sinϕ cos θ, sinϕ sin θ, cosϕ)

where (ϕ, θ) ∈ (0, π)× (0, 2π). Therefore, we have

xϕ =
∂x

∂ϕ
= r
(

cosϕ cos θ, cosϕ sin θ,− sinϕ
)

xθ =
∂x

∂θ
= r
(
− sinϕ sin θ, sinϕ cos θ, 0

)
gϕϕ = 〈xϕ,xϕ〉 = r2,

gθϕ = gϕθ = 〈xθ,xϕ〉 = 0,

gθθ = 〈xθ,xθ〉 = r2 sin2 ϕ;
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i.e.

g =

(
gϕϕ gθϕ
gϕθ gθθ

)
=

(
r2 0
0 r2 sin2 ϕ

)
with inverse g−1 =

(
1
r2

0
0 1

r2 sin2 ϕ

)
.

By (2.36), we have

Γθθθ =
1

2

m∑
`=θ or ϕ

gθ`
(∂g`θ
∂θ

+
∂g`θ
∂θ
− ∂gθθ

∂`

)
=

1

2
gθθ
(

2
∂gθθ
∂θ
− ∂gθθ

∂θ

)
= 0,

and

Γθθϕ =
1

2

m∑
`=θ or ϕ

gθ`
(∂g`θ
∂ϕ

+
∂g`ϕ
∂θ
−
∂gθϕ
∂`

)
=

1

2
gθθ

∂gθθ
∂ϕ

= cotan(ϕ).

Similar calculations yield

Γθϕθ = Γθθϕ = cotan(ϕ), Γθϕϕ = 0;

Γϕθθ = − sinϕ cosϕ, Γϕϕθ = Γϕθϕ = 0, Γϕϕϕ = 0.

We conclude that,
∇∂θ∂θ = Γϕθθ∂ϕ + Γθθθ∂θ = − sinϕ cosϕ∂ϕ;

∇∂ϕ∂θ = ∇∂θ∂ϕ = Γϕθϕ∂ϕ + Γθθϕ∂θ = cotan(ϕ)∂θ;

∇∂ϕ∂ϕ = Γϕϕϕ∂ϕ + Γθϕϕ∂θ = 0.

In the formula (2.37), we need an orthonormal frame. The frame (∂ϕ, ∂θ) is orthogonal but not
normal. By dividing with their lengths, we get an orthonormal frame

(e1, e2) =
(1

r
∂ϕ,

1

r sinϕ
∂θ

)
.

Note that the only nontrivial terms in the formula (2.37) are

〈R(e1, e2)e2, e1〉 = 〈R(e2, e1)e1, e2〉 .

However, this normalization is not necessary. Since curvature is a tensor, we have

〈R(e1, e2)e2, e1〉 =
〈R(∂ϕ, ∂θ)∂θ, ∂ϕ〉

area(∂ϕ, ∂θ)2
=
〈R(∂ϕ, ∂θ)∂θ, ∂ϕ〉

r4 sinϕ2

We have

R(∂ϕ, ∂θ)∂θ = ∇∂ϕ∇∂θ∂θ −∇∂θ∇∂ϕ∂θ −∇[∂ϕ,∂θ]∂θ

= ∇∂ϕ
(
− sinϕ cosϕ∂ϕ

)
−∇∂θ

(
cotan(ϕ)∂θ

)
− 0

=
(
− cosϕ2 + sinϕ2

)
∂ϕ + cotan(ϕ) sinϕ cosϕ∂ϕ = sinϕ2∂ϕ

Therefore,

κ = 2
〈R(∂ϕ, ∂θ)∂θ, ∂ϕ〉

r4 sinϕ2
=

2

r2
.

For n-sphere Snr of radius r, the scalar curvature is given by

κ = 2
∑
i<j

〈R(ei, ej)ej , ei〉 .
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Each pair (ei, ej) is tangent to some S2
r ⊂ Snr . The corresponding term 2 〈R(ei, ej)ej , ei〉 is equal

to 2r−2. Therefore,

κSnr =

(
n

2

)
× 2

r2
=
n(n− 1)

r2
.

A Riemannian metric allows us to define a distance function on M (thus a metric in the topo-
logical sense). If γ : [0, 1] −→ M is a smooth path (satisfying γ̇ 6= 0), we define its length to be
the non-negative quantity

|γ| =
∫ 1

t=0
|γ̇|dt, |γ̇| =

√
〈γ̇, γ̇〉.

It follows from Chain Rule that |γ| is independent of the choice of the parametrization. A
Riemannian metric also allows us to define the angle between two tangent vectors by

angle between u, v = cos−1
(〈u, v〉
|u||v|

)
∈ [0, π] ∀ x ∈M, u, v ∈ TxM.

If M is connected, given two points x, y ∈ M , it is natural to seek for a path γ connecting the
two points that has the minimum length. Such a path is called a geodesic between x and y. We
can also consider geodesics that start at a point x and leave x at a particular direction v ∈ TxM .
Geodesics generalize the concept of straight line in Euclidean geometry. The questions are:

(Question 1) what is the equation of a geodesic?

(Question 2) why do they exist and are they unique?

The Lagrangian approach in math/physics to answer questions such as Question 1 above is to
consider the space of all paths between two points and find the critical points of the length
functional

L(γ) = |γ| =
∫ 1

t=0
|γ̇|dt

whose minima are the desired paths. So the question reduces to: what is the derivative of L?
At the cost of a reparametrization, we may assume |γ̇| ≡ c for some positive constant c. Other-
wise, it would be easier to work with the functional

E(γ) =

∫ 1

t=0
|γ̇|2dt.

HW 2.83. Show that a minima of L is also a minima of E.

An infinitesimal deformation of γ corresponds to a vector field ν ≡ {ν(t) ∈ Tγ(t)M}t∈[0,1] along
γ that vanishes at the end points. A straightforward calculation shows that

dγL(ν) =
1

c

∫ 1

t=0

〈∇γ̇ν, γ̇〉
|γ̇|

dt =
1

c

∫ 1

t=0
〈ν,∇γ̇ γ̇〉 dt .

The second identity follows from Leibniz rule and the fact that ν(0) = ν(1) = 0. We conclude
that γ is a critical point of L if and only if

(Geodesic Equation) ∇γ̇ γ̇ = 0.
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In any local coordinate γ(t) = (x1(t), . . . , xm(t)), (Geodesic Equation) is a second degree ODE

ẍk +
m∑
i=1

m∑
j=1

Γkij ẋi ẋj = 0.

Therefore, for every x ∈M and v ∈ TxM , there is a unique geodesic γx,v starting at x = γx,v(0)
with the initial velocity v = γ̇x,v(0). If M is closed, then γx,v is defined for over the entire R.
For different x, y ∈M , there is a geodesic γ connecting the two points but it may not be unique.
For long paths, critical points of L are not all minima and they are not necessarily isolated.
In short distances, (Geodesic Equation) has a unique solution between every two points which
corresponds to the minimum distance, but there are long geodesics that wind around and return
to a nearby point (or the same point). In conclusion, for each x ∈ M , there is a sufficiently
small ball

Bε(x) = {v ∈ TxM : |v| < ε} ⊂ TxM

restricted to which the so-called exponentiation map

expx : Bε(x) −→M, v −→ γx,v(1) ∈M, (2.38)

is a diffeomorphism. One can think of exp−1
x as a chart map around x ∈ M that maps all the

geodesics through x to straight line segments passing through the origin in TxM .

Exponential identification can be extend to a neighborhood of every closed submanifold in the
following way. Suppose W ⊂M is a submanifold. The metric g allows us to identify the normal
bundle NMW with the orthogonal complement of TW in TM |W :

TW⊥ ..= {v∈TM |W : 〈v, u〉 = 0 ∀ u ∈ Tπ(v)W}.

Extending the case W = {x} above, there is a function

ε : W −→ R>0

and such that exponentiation map

expW : Bε(W ) −→M, TxW
⊥ 3 v −→ γx,v(1) ∈M,

Bε(W ) ..= {v ∈ TW⊥ : |v| < ε(π(v))} ⊂ TW⊥

is a diffeomorphism. In other words, a neighborhood of every submanifold W in M can be iden-
tified with a neighborhood of the zero section in the normal bundle NMW . If W is compact,
we can take ε to be a constant. If furthermore NMW is isomorphic to the trivial line bundle
W ×Rr, the composition of expW and a trivialization shows that a neighborhood of W in M is
diffeomorphic to a product. This is, for example, the case whenever M is an oriented manifold
and W =∂M if compact: a neighborhood of ∂M⊂M is orientably diffeomorphic to (−1, 0]×∂M .

A metric g on an oriented m-manifold M also allows us to define a volume form ωg ∈ Ωm(M,R)
whose integration on every open set U ⊂M is positive. If (x1, . . . , xm) are local coordinates on
V ⊂M compatible with the orientation, define

ωg,V =
√

det(gij) dx1 ∧ . . . ∧ dxm.
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Note that det(gij) > 0 because (gij) is positive definite. For another such chart V ′ ⊂ M with
local coordinates (y1, . . . , ym) and transition map

x = (x1, . . . , xm) −→ ϕ(x) = (y1, . . . , ym),

it follows from the compatibility of the orientations that

det(dϕ) > 0.

Therefore, by (2.33), we have √
det(gij) =

√
det(g′ij) det(dϕ).

Finally, it follows from the equation above and Chain Rule that

ϕ∗ωg,V ′ =
√

det(gij) det(dϕ)−1 det(dϕ) dx1 ∧ . . . ∧ dxm = ωg,V .

Therefore, the local m-forms {ωg,V } are compatible along the overlaps and define a global
nowhere-vanishing m-form ωg on M . This volume-form can be used to define integration of
functions on M . We also define the volume of M with respect to g to be

∫
M ωg (this can be

infinite).

By (2.34), a Riemannian metric g on M gives an isomorphism of the tangent and cotangent
bundles, and thus a metric (still denoted by g) on T ∗M . In local notation of this section, we
have

〈dxi, dxj〉 = gij .

The isomorphism TM ∼=g T
∗M also allows us to define the gradient vector field of a smooth

function f : M −→ R by
df = 〈∇f,−〉

which generalizes the notion of the gradient in Calculus. In local coordinates, we have

∇f =
m∑

i,j=1

∂f

∂xi
gij ∂xj .

At each x ∈M , if ∇f(x) 6= 0, since df(v) = 〈∇f, v〉, ∇f(x) is the direction at which f increases
the most. Critical points of f correspond to zeros of the vector field ∇f . For every regular
value c of f , ∇f is orthogonal to the level set Mc = f−1(c); thus, ∇f is a non-zero section of
TM⊥c

∼= NMMc. In conclusion, NMMc is isomorphic to the trivial line bundle. If g is a metric
on M ,

n =
∇f
|∇f |

define a normal vector to Mc. Through the isomorphism

TM |Mc
∼= R · n⊕ TMc (2.39)

the metric g induces a metric on Mc. If M is also oriented, then Mc is oriented as well and

ωgMc = ιnωg. (2.40)
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Example 2.84. In this example, we calculate the area of the unit sphere S2 with respect to
the metric induced by the standard metric on R3 in two ways.

For the unit sphere S2 ⊂ R3, the outward normal vector field n in (2.39) is half of the gradient
vector of the defining equation of S2; i.e.

n = ζ|S2 , ζ =
1

2
∇(x2 + y2 + z2) = x∂x + y∂y + z∂z.

Therefore, the area form of S2 with respect to the induced metric is the restriction of the 2-form

ιζ dx ∧ dy ∧ dz = x dy ∧ dz − y dx ∧ dz + z dx ∧ dy

to S2. We can calculate the integral

area(S2) =

∫
S2

ωS2 , ωS2 =
(
x dy ∧ dz − y dx ∧ dz + z dx ∧ dy

)
|S2 . (2.41)

either directly or by using Stokes’ theorem.

(1) By Stokes’ theorem,

area(S2) =

∫
S2

(
x dy ∧ dz − y dx ∧ dz + z dx ∧ dy

)
=

∫
B

d (x dy ∧ dz − y dx ∧ dz + z dx ∧ dy) = 3

∫
B

dx ∧ dy ∧ dz = 3 vol(B),

where B is the unit ball in R3 bounded by ∂M = S2; see (2.21). The last integral can be
easily calculated in spherical coordinates giving us the value vol(B) = 4

3π. We conclude that
area(S2)=4π.

(2) To calculate (2.41) directly, we use the parametrization of S2 coming from the spherical
coordinates. The map

Ψ: (0, π)× (0, 2π) −→ S2, (ϕ, θ) −→ (cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ))

gives an oriented identification of (0, π)× (0, 2π) and a dense open set in S2; i.e. Ψ−1 is an
oriented chart covering the entire S2 except an arc. By Chain Rule∫

(0,π)×(0,2π)
Ψ∗ωS2 =

∫
S2

ωS2 = area(S2).

We have
Ψ∗ωS2 = cos(θ) sin(ϕ) d

(
sin(θ) sin(ϕ)

)
∧ d cos(ϕ)−

sin(θ) sin(ϕ) d
(

cos(θ) sin(ϕ)
)
∧ d cos(ϕ)+

cos(ϕ) d
(

cos(θ) sin(ϕ)
)
∧ d
(

sin(θ) sin(ϕ)
)

=− cos(θ)2 sin(ϕ)3 dθ ∧ dϕ

− sin(θ)2 sin(ϕ)3 dθ ∧ dϕ

− cos(ϕ)2 sin(ϕ) sin(θ)2 dθ ∧ dϕ

− cos(ϕ)2 sin(ϕ) cos(θ)2 dθ ∧ dϕ

= sin(ϕ) dϕ ∧ dθ.
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Therefore,

area(S2) =

∫
(0,π)×(0,2π)

Ψ∗ωS2 =

∫
(0,π)×(0,2π)

sin(ϕ) dϕ dθ = 2π

∫
(0,π)

sin(ϕ) dϕ = 4π.

Recall that at the zeros of section s of any vector bundle E −→ M , we have a canonical
decomposition TxE −→ TxM⊕Ex which gives us a well-defined (independent of any connection)
vertical-derivative map

d⊥x s : TxM −→ Ex.

Applying this to the section s = ∇f of E = TM , we get a second-derivative map

Hx = d⊥x∇f : TxM −→ TxM, ∀ x ∈M with ∇f(x) = 0,

which is called the Hessian of f at at x. Equivalently, we can work with the section s = df of
E = T ∗M to get

H∗x = d⊥x df : TxM −→ T ∗xM.

This way, we don’t need any metric to define H∗. They are related by

〈Hx(v),−〉 = H∗x(v) ∀ v ∈ TxM.

Nevertheless, we get a function

Qx : TxM ⊗ TxM −→ R, Qx(v, u) = 〈Hx(v), u〉 =
(
H∗x(v)

)
(u) ∀ u, v ∈ TxM (2.42)

which is a (symmetric) quadratic form on TxM . This is what we know as the second derivative
matrix in Calculus. The eigenvalues of Qx (or Hx) tell us about the local behavior of f at a
critical point.

Definition 2.85. We say x is a non-degenerate critical point of f if all the eigenvalues of Qx
are non-zero. We say f is a Morse function if all the critical points of f are non-degenerate.

If f is Morse, for every critical point x of M so that Qx has p positive and q = m− p negative
eigenvalues, there are local coordinates (y1, . . . , ym) around x such that

f(y1, . . . , ym) = f(x) +

p∑
i=1

y2
i −

m∑
i=p+1

y2
j . (2.43)

Definition 2.86. For every critical point x of a more function f , the integer q = m−p is called
the index of x.

The local description 2.43 helps us understand how the level sets Mc change as we go from a
regular value c < f(x) to another regular value c > f(x). Different values of (p, q) correspond
to so-called different handle attachments. A critical point x with p = m is a local minimum and
a critical point x with p = 0 is a local maximum. If m = 2, the case (p, q) = (1, 1) is known
as a saddle point. For m > 2, we have different kinds of “saddle points”. Therefore, starting
from minimum points of f , M is built from a collection of balls by attaching handles of different
types as we move toward the maxima of f .
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Example 2.87. Consider a 2-torus T and a hight function f : T −→ R as in Figure 1. The
function has four critical points A,B,C,D, where A is a minimum (p=2, q=0), D is a maximum
(p = 0, q = 2), and B and C are saddle points (p = 1, q = 1). Starting at A, the construction
of T starts with a disk T≤t = f−1((−∞, t]) ⊂ R2, where min(f) < t < b. As we increase the
value of t, the size of T≤t increases but its topology remains the same. The level set Tb is not
a manifold (it is singular). The change of topology from T≤b−ε (a disk) to T≤b+ε (a cylinder),
for any sufficiently small ε > 0, corresponds to a handle attachment as seen in Figure 1. As t
increases from b to the next critical value c, the topology of T≤t remains the same. Once again,
the change of topology from T≤c−ε to T≤c+ε, for any sufficiently small ε > 0, corresponds to a
handle attachment (this time in the reverse direction). Finally, reaching the maximum point D
corresponds to closing the manifold T≤t, c < t < max(f), by attaching a disk (2-handle) to it
along its boundary circle.

Figure 1: A Morse function on 2-torus and its level-sets.

Example 2.88. We use Theorem 2.43 to show that every manifold admits a (plethora of) Morse
function. By Theorem 2.43, M can be embedded into a sufficiently large Rn. We assume M
does not include the origin. For almost every p ∈ Rn, we show that the distance-square function
from p

fp(x) = ‖x− p‖2

restricts to a Morse function on M . Using the standard metric on Rn, we have

dfp(v) = 2 〈x− p, v〉 .

Therefore, p ∈M is a critical point if and only if x− p is orthogonal to TpM . Let

TM⊥ = {(x, v) ∈M × Rn : 〈u, v〉 = 0 ∀ u ∈ TxM}.

Consider the map
% : TM⊥ −→ Rn, (x, v) −→ p = x+ v.

Therefore x is a critical point of fp if and only if p ∈ %(TxM
⊥). Using calculations in local

coordinates on M , we can show that x is a degenerate critical point of fp, if and only if (x, v)
is a critical point of % (second derivative of fp at x equals derivative of % at (x, v)). By Sard’s
theorem, the set of regular values of % is open and dense. Therefore, for generic p, fp is Morse.

HW 2.89. Suppose M ⊂ Rn is a closed submanifold. Show that for generic line L ∼= R,
orthogonal projection to L defines a Morse function on M .
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HW 2.90. Show that if f : M −→ R and g : N −→ R are Morse, then f + g : M ×N −→ R is
Morse, and

Crit(f + g) = Crit(f)× Crit(g).

Theorem 2.91. Let M be a closed manifold. Then the set of Morse functions on M is a dense
open subset of C∞(M,R).

3 Different (co)homology theories and their interactions

3.1 Singular/simplicial/cellular homology

An m-simplex ∆ is the convex hull of m+ 1 generic points in Rn for any n ≥ m. The simplex is
so-named because it represents the simplest possible polytope in any given space. For example,
a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, and a 3-simplex
is a tetrahedron. The boundary ∂∆ of any m-simplex ∆ is a union of m+ 1 (m− 1)-simplices.
We call them codimension 1 faces of ∆. Inductively, we define a codimension k face of ∆ to
be a boundary component of a codimension k − 1 face. We may think of an m-simplex ∆ as
a manifold with boundary and corner (where corners correspond to codimension 2 and higher
faces). Topologically, an m-simplex ∆ is homeomorphic to a ball in Rm, and it can be smoothly
identified with

∆std =
{

(x1, . . . , xm) : xi ≥ 0,
m∑
i=1

xi ≤ 1
}
.

Such an identification and the standard orientation on Rm fixes an orientation on ∆. Using
the orientation convention in (2.18), an orientation on ∆ then induces an orientation on each
boundary (m − 1)-simplex ∆′ ⊂ ∂∆. Every codimension 2 face ∆′′ is the intersection of two
boundary components ∆′1 and ∆′2. The boundary orientations induced by ∆′1 and ∆′2 on ∆′′ are
the opposite. This is the key observation in the definition of the singular homology below.

Definition 3.1. A singular n-simplex in a topological space M is a continuous map σ : ∆ −→M
from an oriented n-simplex ∆ = ∆std to M . The boundary of σ, denoted by ∂σ is the formal
sum of the singular (n − 1)-simplices represented by the restriction of σ to the faces of the
standard n-simplex (with the boundary orientation).

For n ≥ 0, let Cn(M,Z) denote the free abelian group generated (over Z) by all singular n-
simplices. For n < 0, define Cn(M,Z) to be the trivial group. In Cn(M,Z), multiplication of
a singular n-simplex σ : ∆ −→ M by (−1) can be exchanged with the change of orientation
on ∆. An element of Cn(M,Z) is called a singular n-chain. The boundary operator ∂ in
Definition 3.1 linearly extends to all singular n-chains in Cn(M,Z). The extension, called the
boundary operator, is also denoted by

∂ : Cn(M,Z) −→ Cn−1(M,Z).

By the last line before Definition 3.1, we have ∂2 = 0; therefore, the so-called singular homology
groups

Hsing
n (M,Z) ..=

Zn(M,Z) ..= ker
(
∂ : Cn(M,Z) −→ Cn−1(M,Z)

)
Bn(M,Z) ..= Image

(
∂ : Cn+1(M,Z) −→ Cn(M,Z)

) , ∀ n ≥ 0,

are well-defined. Replacing Z with R, Z/2Z, C, or any other ring/field, we get singular homology
with values in that ring/field. An element in Zn(M,Z) is called singular n-cycle and an element
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in Bn(M,Z) is called a singular n-boundary.

The abelian group Cn(M,Z) is monstrous. Therefore, even if M is a nice topological space such
as a smooth manifold, it is not clear why Hsing

n (M,Z) should be finite. If M is path-connected,
it is fairly easy to show that Hsing

0 (M,Z) ∼= Z.

Every m-manifold admits a triangulation; i.e. it can be written as a union of m-simplices glued
along their codimension 1 faces. Figure 2 illustrates a (complicated) triangulation of the 2-torus;
one can triangulate a 2-torus with only 2 triangles. In the literature, there are different types of

Figure 2: A triangulation of 2-torus (image courtesy of wikipedia)

triangulations on a topological space. Smooth manifolds admit the best kind of triangulation.

Theorem 3.2 (Cairns[?]-Whitehead [?]). Every smooth manifold admits an (essentially unique)
compatible piecewise linear structure.

Therefore, we skip the details and focus on applications. We refer to [?] for a quick overview of
the results.

A simplicial complex K is a collection of simplices that satisfies the following conditions:

(1) every face of a simplex from K is also in K;

(2) the non-empty intersection of any two simplices ∆1,∆2 ∈ K is a (union of) face of both ∆1

and ∆2.

A pure or homogeneous simplicial m-complex K is a simplicial complex where the largest dimen-
sion of any simplex in K equals m and every simplex of dimension n < m is a codimension m−n
face of some m-simplex ∆ ∈ K. By the discussion above (existence of a nice triangluation), every
smooth m-manifold M can be given the structure of pure simplicial m-complex KM . If M is
compact, we can choose KM to have only finitely many faces. If M is oriented, each m-simplex
∆ in KM inherits an orientation from the orientation on M .

The definition of simiplicial homology of a simplicial complex K is very close to definition of
singular homology. It is, however, much more useful for concrete calculations. Let K be a
simplicial complex. A simplicial k-chain with coefficients in Z is a finite formal sum∑

ci∆i

where each ci is an integer and Σi is an oriented k-simplex in K. In this definition, just like
singular homology, we declare that each oriented simplex is equal to the negative of the simplex
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with the opposite orientation. The group of k-chains on K is denoted Ck(K,Z). This is a free
abelian group which has a basis in one-to-one correspondence with the set of k-simplices in K.
To define a basis explicitly, one has to choose an orientation of each simplex. If M is an oriented
m-manifold, for m-simplices in KM , we usually choose the orientation induced by the orientation
on M . For each oriented k-simplex ∆ in K, the boundary ∂∆ ∈ Ck−1(K,Z) is the formal sum
of the codimension 1 faces with the induced boundary orientation. The boundary operator ∂
linearly extends to all simplicial k-chains in Ck(K,Z):

∂ : Ck(K,Z) −→ Ck−1(K,Z).

By the last line before Definition 3.1, we have ∂2 = 0; therefore, the so-called simplicial homology
groups

Hsimp
k (K,Z) ..=

Zk(K,Z) ..= ker
(
∂ : Ck(K,Z) −→ Ck−1(K,Z)

)
Bk(K,Z) ..= Image

(
∂ : Ck+1(K,Z) −→ Ck(K,Z)

) , ∀ k ≥ 0,

are well-defined. Replacing Z with R, Z/2Z, C, or any other ring/field, we get simplicial homol-
ogy with values in that ring/field.

Even though singular homology is defined for an arbitrary topological space and simplicial
homology is defined for simplicial complexes, for a manifold M with a triangulation KM , these
homology groups are the same:

Hsimp
k (KM ,Z) ∼= Hsing

k (M,Z) ∀ k ≥ 0.

In particular, Hsing
k (M,Z) = 0 for all k > dimM . The isomorphism above means that instead

of considering all the singular k-simplices σ : ∆ −→M , we can only restrict to those k-simplices
σ that are the inclusion map of some ∆ ∈ KM into M .

Example 3.3. We can give M = S1 the structure of a pure 1-complex with one 1-simplex
I = [0, 1] and one zero-complex p = {1} ∼= −{0}. Therefore, C1 = Z · I, C0 = Z · p, and

∂ : C1 −→ C0, I −→ {1} − {0} = p− p = 0.

We conclude that Hsimp
1 (S1,Z) ∼= Z is generated by the homology class of 1-cycle I, and

Hsimp
0 (S1,Z) ∼= Z is generated by the homology class of 0-cycle p.

HW 3.4. Calculate the homology groups of the Klein bottle.

We complete the discussion of this section by reviewing the definition of CW-complexes and
cellular homology. The concept of CW complex was introduced Whitehead to meet the needs
of homotopy theory. This class of topological spaces is broader and has some better categorical
properties than simplicial complexes, but still retains a combinatorial nature that allows for
computation (often with a much smaller complex). For each k≥ 0, a k-cell is a k-dimensional
open ball in Rk. A 0-dimensional CW complex is a topological space with discrete topology. A
k-dimensional CW complex is constructed, inductively, by gluing the boundaries of a number of
k-cells to a (k − 1)-dimensional CW complex. The topology of the resulting k-dimensional CW
complex is the quotient topology defined by these gluing maps. Since any open ball in Rk is
homeomorphic to Rk, Rk is a k-dimensional CW complex with only one k-cell. The k-skeleton
C(k) of a CW complex C is the union of all of its k-cells. Since the interior of every k-simplex
is a k-cell, every simplicial complex K is naturally a CW complex (which we will denote by
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CK). The converse is not true, the gluing maps of the inductive construction above can be quite
complicated. In conclusion, we have the following hierarchy:

smooth manifolds ( simplicial complexes ( CW complexes ( “nice” topological spaces.

Suppose C is a CW complex. Every k-cell e ∈ C(k) comes with a gluing map

f : ∂tope=Sk−1−→Ck−1, (3.1)

where Ck is the topological space made of all `-cells with ` ≤ k and ∂tope is the topological
boundary9 of e. Let Ck−1/Ck−2 denote the topological space obtained by collapsing Ck−2 into a
point (we don’t go into the details of this) and π : Ck−1 −→ Ck−1/Ck−2 denote the corresponding
projection map. If we collapse the boundary of an n-cell into a point we obtain Sn. Therefore,
one should think of Ck−1/Ck−2 as a bucket of (k − 1)-spheres attached to each other at a point.
Each (k−1)-sphere [e] in this bucket correspond to a (k−1)-cell e in C(k). If C(n) = {eα}α∈In , for
each α ∈ In, by further collapsing all the spheres [eβ], with β ∈ I −{α}, we obtain a projection
map πα : Cn/Cn−1 −→ [eα] ∼= Sn.

For n ≥ 0, let Cn(C,Z) denote the free abelian group generated (over Z) by all n-cells in C(n)

(together with a choice of orientation on each n-cell); i.e.

Cn(C,Z) ∼= ZIn .

For each oriented k-cell e, the boundary (k−1)-chain ∂e ∈ Ck−1(C,Z) is defined in the following
way. With notation as in (3.1), for each α ∈ Ik−1, twe have a continuous map between (k − 1)-
spheres

∂tope=Sk−1 f−→Ck−1
π−→Ck−1/Ck−2

πα−→ [eα] ∼= Sk−1.

Let dα ∈ Z denote the degree of this map (with respect to the pre-determined orientations on
the cells). We define

∂e =
∑

α∈Ik−1

dαeα.

The boundary operator δ linearly extends to all k-chains in Ck(C,Z):

∂ : Ck(C,Z) −→ Ck−1(C,Z).

For the same reason as before we have ∂2 = 0; therefore, the so-called cellular homology groups

Hcell
k (C,Z) ..=

Zk(C,Z) ..= ker
(
∂ : Ck(C,Z) −→ Ck−1(C,Z)

)
Bk(C,Z) ..= Image

(
∂ : Ck+1(C,Z) −→ Ck(C,Z)

) , ∀ k ≥ 0,

are well-defined. Replacing Z with R, Z/2Z, C, or any other ring/field, we get simplicial homol-
ogy with values in that ring/field.

Once again, every smooth manifold M has the structure of a CW complex CM (for example one
arising from a triangulation KM ) and

Hcell
k (CM ,Z) ∼= Hsimp

k (KM ,Z) ∼= Hsing
k (M,Z) ∀ k ≥ 0.

For this reason, we simply denote these homology groups by H∗(CM ,Z). In some cases such as
in the example bellow, cellular homology is more convenient for calculations.

9We are writing ∂tope instead of just ∂e to distinguish it from the chain map defined below.

43



Remark 3.5. There is a different way of realizing a smooth manifold M as a CW complex
using a Morse function. We will explain this in details in Section 3.4.

Example 3.6. For each m ≥ 0, the real projective space RPm has the structure of a CW
complex Cstd made of exactly one cell in each dimension 0 ≤ k ≤ m. The gluing map of the k-th
cell ek to Ck−1 = RPk−1 is the (2 : 1)-covering map Sk−1 −→ RPk−1. The cells can be oriented
in a way that the boundary maps of the chain complex

0 −→ Cm(Cstd,Z) ∼= Z ∂−→ · · · ∂−→ C0(Cstd,Z) ∼= Z −→ 0

are equal to
∂ = (1 + (−1)k) : Ck(Cstd,Z) ∼= Z −→ Ck−1(Cstd,Z) ∼= Z.

In other words, we have

· · · −→ Z ×2−→ Z ×0−→ Z ×2−→ Z ×0−→ Z −→ 0

We conclude that

Hi(RPm,Z) =


Z if i = 0,

Z if i = m and m is odd,

Z2 = Z/2Z if 0 ≤ i ≤ m, i = odd

0 otherwise.

For each m ≥ 0, the complex projective space CPm has the structure of a CW complex Cstd

made of exactly one cell in each even dimension 0 ≤ 2k ≤ 2m. The gluing map of the 2k-th
cell e2k to C2k−1 = C2k−2 = CPk−1 is the projection map S2k−1 −→ CPk−1. The latter is a fiber
bundle with S1-fibers. It follows that the boundary maps in

0 −→ C2m(Cstd,Z) ∼= Z ∂−→ C2m−1(Cstd,Z) ∼= 0
∂−→ C2m−2(Cstd,Z) ∼= Z · · ·

are all trivial and

Hi(CPm,Z) =

{
Z if i = 2k, 0 ≤ k ≤ m,
0 otherwise.

Example 3.7. Suppose M is a manifold and f : M ′−→M is a continuous map from a closed
oriented n-dimensional manifold M ′ into M . Then f defines a homology class [f ] ∈ Hn(M,Z)
in the following way. Fix a triangulation M ′ =

⋃
α∈I ∆α of M ′ which gives M ′ the structure

of a pure n-dimensional simplicial complex KM ′ with oriented n-simplices {∆α}α∈I . Note that
I is finite because M ′ is compact. Also, because ∂M = ∅, every (n − 1)-simplex in KM ′ either
connects two different ∆α or it appears as two boundary components of the same ∆α attached
to each other. The last sentence implies that

∂
∑
α∈I

σα = 0,

where σα = f |∆α : ∆α −→M . Therefore,
∑

α∈I σα defines a homology class [f ] ∈ Hn(M,Z). In
particular, every closed oriented n-dimensional submanifold M ′⊂M has a well-defined homology
class [M ′]⊂Hn(M,Z).
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Suppose f : M −→M ′ is a continuous map between two topological spaces. For each singular n-
simplex σ : ∆ −→M , the composition f ◦σ : ∆ −→M ′ is a singular n-simplex for M ′. Therefore,
for each n ≥ 0, composition with f defines a push-forward map

f∗ : Cn(M,Z) −→ Cn(M ′,Z). (3.2)

It is easy to see that f∗ commutes with the boundary operators of singular homology on M and
M ′, i.e. the following diagram

· · · //

f∗

��

Cn(M,Z)
∂ //

f∗
��

Cn−1(M,Z) //

f∗
��

· · ·

f∗

��
· · · // Cn(M ′,Z)

∂ // Cn−1(M ′,Z) // · · ·

(3.3)

is commutative. In situations like this we say the f∗ is a “chain map” between the chain
complexes (C•(M,Z), ∂) and (C•(M

′,Z), ∂). A simple diagram chasing shows that every chain
map induces a (similarly denote) map between the homology groups. In our case, f induces
group homomorphisms

f∗ : Hsing
n (M,Z) −→ Hsing

n (M ′,Z) ∀ n∈Z.

In passing to homology, a lot of information about f is lost. Therefore, a natural question to
ask is: when two different chain maps induce the same group homomorphisms?

For abstract chain maps

f ≡ (fn)n∈Z, g ≡ (gn)n∈Z : (C∗, ∂) −→ (C ′∗, ∂
′),

a chain homotopy is a collection of degree increasing maps {hn} as in the following diagram

· · · //

��

Cn+1,
∂ //

fn+1

��
fn+1gn+1

��

Cn
∂ //

hnww
fngn
��

Cn−1
//

fn−1gn−1

��hn−1
ww

· · ·

��
· · · // C ′n+1

∂′ // C ′n
∂′ // C ′n−1

// · · · ,

such that
∂′ ◦ hn + hn−1∂ = fn − gn ∀ n∈Z.

Again, a diagram chasing argument shows that chain homotopic chains maps f and g induce
the same maps between homology groups.

Warning. The last diagram is not commutative!

Back to the chain maps (3.3) induced by continuous functions, we say f, g : M −→ M ′ are
homotopic if there exists a continuous function

h : [0, 1]×M −→M

such that h|{0}×M = g and h|{1}×M = f . A topological homotopy h as above induces an
algebraic homotopy between

f∗, g∗ : (C•(M,Z), ∂) −→ (C•(M
′,Z), ∂),
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in the following way. For each oriented singular n-simplex σ : ∆ −→ M , and any natural
decomposition of [0, 1]×∆ into a union of oriented (with product orientation) (n+ 1)-simplices,
the map h ◦ (id × σ) : [0, 1] ×∆ −→ M ′ can be seen as singular (n + 1)-chain in Cn+1(M ′,Z).
This linearly extends to all singular chains,

h∗ : Cn(M,Z) −→ Cn+1(M ′,Z).

An oriented comparison of boundary components shows that h∗ is a chain homotopy between
f∗ and g∗. We conclude that if f, g : M −→M ′ are homotopic, their induced maps on homology
groups

f∗, g∗ : Hk(M,Z) −→ Hk(M
′,Z) ∀ k ≥ 0 (3.4)

are the same.

We say topological spaces M and M ′ are homotopic if there are continuous maps

f : M −→M ′ and f ′ : M ′ −→M

such that g ◦ f is homotopic to idM and f ◦ g is homotopic to idM ′ .

HW 3.8. Show that homotopic topological spaces have identical singular homology groups.

Example 3.9. Show that Rm is homotopic to a point. Conclude that

Hi(Rm,Z) =

{
Z if i = 0,

0 otherwise.

More generally, prove that if E −→M is a vector bundle, then

Hi(E,Z) ∼= Hi(M,Z) ∀ i∈N.

Suppose M = U1 ∪ U2 is a decomposition of a topological space M into two open sets. We
discuss a relation between the singular homology of M and the subsets U1 and U2, known as
Mayer-Vietoris sequence. This enables a break down of the homology of M into simpler pieces.
The Mayer-Vietoris sequence holds for a variety of (co)homology theories, including singular
homology and simplicial homology, and de Rham cohomology. In general, the sequence holds
for those theories satisfying the Eilenberg-Steenrod axioms. Let

ιa : Ua −→M and ja : U12
..= U1 ∩ U2 −→ Ua, a = 1, 2,

denote the inclusion maps. Every singular n-chain in U1 or U2 can be seen as a singular chain
in M ; thus, we get push-forward inclusion maps

ιa∗ : Cn(Ua,Z) −→ Cn(M,Z) ∀ n ≥ 0, a = 1, 2.

Likewise, we get inclusion maps

ja∗ : Cn(U12,Z) −→ Cn(Ua,Z) ∀ n ≥ 0, a = 1, 2.

The following sequence is exact

0 −→ Cn(U12,Z)
j∗..=j1∗⊕j2∗−−−−−−−−→ Cn(U1,Z)⊕ Cn(U2,Z)

ι∗..=ι1∗⊕−ι2∗−−−−−−−−→ Cn(M,Z) −→ 0; (3.5)
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i.e. j∗ is injective, ι∗ is surjective, and ker(ι∗) = image(j∗). By letting n vary, we get the
following commutative diagram:

· · · // Cn(U12,Z)
∂ //

j∗
��

Cn−1(U12,Z) //

j∗
��

· · ·

· · · // Cn(U1,Z)⊕ Cn(U2,Z)
∂⊕∂ //

ι∗
��

Cn−1(U1,Z)⊕ Cn−1(U2,Z) //

ι∗
��

· · ·

· · · // Cn(M,Z)
∂ // Cn−1(M,Z) // · · ·

which is a short exact sequence of chain complexes

0 −→
(
C•(U12,Z), ∂

)
j∗−→
(
C•(U1,Z)⊕ C•(U2,Z), ∂ ⊕ ∂

)
ι∗−→
(
C•(M,Z), ∂

)
−→ 0.

In general, a short exact sequence of chain complexes gives rise to a long exact sequence of the
associated homology groups

· · ·Hsing
n+1(M,Z)

δ∗−→ Hsing
n (U12,Z)

j∗−→ Hsing
n (U1,Z)⊕Hsing

n (U2,Z)
ι∗−→ Hsing

n (M,Z) −→ · · ·

where ι∗ and j∗ are the similarly denoted maps induced by (3.10) and δ∗ are the connecting
homomorphisms. This is known as the Mayer-Vietoris sequence for singular homology. In the
case of singular homology, δ∗ has the following explicit definition. Each cohomology class in
Hsing
n+1(M,Z) can be represented by a singular (n+ 1)-chain

ω=
∑
i∈I

(σi : ∆i −→M)

such that each σi has image in either U1 or U2. Arbitrarily divide I into a disjoint union of I1

and I2 such that

ω1 =
∑
i∈I1

(σi : ∆i −→ U1) and ω2 =
∑
i∈I2

(σi : ∆i −→ U2)

are singular (n + 1)-chains in U1 and U2, respectively. Since ∂ω = 0, we conclude that ∂ω1 =
−∂ω2 ∈ Cn−1(U1∩U2,Z). Since ∂◦∂ = 0, ∂w1 defines a homology class [ω1] in Hn−1(U1∩U2,Z).
We define δ∗([w]) = [ω1].

HW 3.10. Check that the homology class [ω1] is independent of the choices involved.

Example 3.11. Consider the standard covering S2 =U1∪U2 with two open disks. The annulus
U1 ∩ U2

∼= S1 × [0, 1] deformation retracts to S1 so it has the same homology groups as S1.
Each Ui deformation retracts to a point so it its homology is concentrated at degree 0. For this
decomposition, the Mayer-Vietoris sequence

0 −→H2(S1,Z) −→ H2(U1,Z)⊕H2(U2,Z) −→ H2(S2,Z) −→
H1(S1,Z) −→ H1(U1,Z)⊕H1(U2,Z) −→ H1(S2,Z) −→

H0(S1,Z)
j∗−→ H0(U1,Z)⊕H0(U2,Z) −→ H0(S2,Z) −→ 0 .
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reads
0 −→0 −→ 0⊕ 0 −→ H2(S2,Z) −→

Z −→ 0⊕ 0 −→ H1(S2,Z) −→ 0

Z −→ Z⊕ Z −→ H0(S2,Z) −→ 0 .

Therefore, H2(S2,Z) = Z. Since H0(S1,Z)
j∗−→ H0(U1,Z) is injective, we also conclude that

H1(S2,Z) = 0.

Remark 3.12. Similarly, if K = K1 ∪K2 is a decomposition of a simplicial complex K into two
sub-simplicial complexes, we get a Mayer-Vietoris long exact sequence

· · ·Hsimp
n+1 (K,Z)

δ∗−→ Hsimp
n (K1∩K2,Z)

j∗−→ Hsimp
n (K1,Z)⊕Hsimp

n (K2,Z)
ι∗−→ Hsimp

n (K,Z) −→ · · · .

Remark 3.13. By taking the dual space of the chain complexes above, we can define singular,
simplicial, and cellular cohomology (instead of homology). These all are the same when M is a
smooth manifold. For example, the cochain complex of the singular cohomology is the cochain
complex

· · · −→ Ck(M,Z)
∂∗−→ Ck+1(M,Z) −→

where
Ck(M,Z) ..= Hom(Ck(M,Z),Z) ∀ k ≥ 0,

and ∂∗ is the dual of ∂. Changing Z with R or any other coefficient ring, we can defined
singular/simplicial/cellular cohomology with coefficients in that ring.

3.2 de Rham cohomology; take two

We defined de Rham cohomology of a smooth m-manifold M in Section 2.5 as the cohomology
of the cochain complex

0 −→ Ω0(M,R)
d−→ · · · d−→ Ωm−1(M,R)

d−→ Ωm(M,R) −→ 0.

If M is not compact, we can additionally consider the cochain complex

0 −→ Ω0
c(M,R)

d−→ · · · d−→ Ωm−1
c (M,R)

d−→ Ωm
c (M,R) −→ 0,

where Ωk
c (M,R) is the space of compactly supported differential k-forms on M . We denote the

corresponding cohomology groups by

Hk
c,dR(M,R) ..=

ker
(
d: Ωk

c (M,R) −→ Ωk+1
c (M,R)

)
Image

(
d: Ωk−1

c (M,R) −→ Ωk
c (M,R)

) .
The question is: for a non-compact manifold M , how does Hk

c,dR(M,R) compare to Hk
dR(M,R)?

We answer this question under the assumption that M is oriented and does not have a boundary.
Then, for each 0 ≤ k ≤ m, consider the bilinear map

〈−,−〉 : Ωk
c (M,R)× Ωm−k(M,R) −→ R, (α, β) −→ 〈α, β〉 ..=

∫
M
α ∧ β. (3.6)

The integral on right is finite because α ∧ β is compactly supported. If α = dη, since ∂M = ∅
and α∧β = d(η∧β), it follows from Stokes’ Theorem that 〈α, β〉 = 0. Similarly, if β = dη, then
〈α, β〉 = 0. We conclude that (3.6) descends to a bilinear map

〈−,−〉 : Hk
c,dR(M,R)×Hm−k

dR (M,R) −→ R. (3.7)

48



Definition 3.14. An open cover {Uα}α∈I of an m-manifold M is called a good cover if every
nonempty finite intersection Uα0 ∩ · · · ∩ Uαp is diffeomorphic to Rm. A manifold which has a
finite good cover is said to be of finite type.

Note that, by definition, every manifold admitting a good cover is without boundary. We can
make a similar definition for manifolds with boundary.

Every smooth manifold has a good cover where Uα are sufficiently small geodetically convex
balls as in (2.38). Every closed manifold has finite type. Being of finite type, for instance,
implies that the (co)-homology groups of M are finite. We will encounter a similar condition in
Morse homology. The goal is to avoid bad examples like Figure 3.

Figure 3: An open surface of infinite genus

Theorem 3.15. Suppose M is an oriented smooth m-manifold of finite type. Then, the pairing
(3.7) is non-degenerate; i.e.

• 〈[α],−〉 = 0⇒ [α] = 0 ∈ Hk
c,dR(M,R);

• 〈−, [β]〉 = 0⇒ [β] = 0 ∈ Hm−k
dR (M,R).

Theorem 3.15 is equivalent to

Hk
c,dR(M,R) ∼= Hm−k

dR (M,R)∗; (3.8)

i.e. Hk
c,dR(M,R) is canonically isomorphic to the dual space

Hm−k
dR (M,R)∗ ..= Hom(Hm−k

dR (M,R),R)

of Hm−k
dR (M,R). Since every real vector space is (non-canonically) isomorphic to its dual, we

conclude that
Hk
c,dR(M,R) ∼= Hm−k

dR (M,R). (3.9)

The isomorphism (3.8) is known as Poincare duality. Proof of 3.15 uses a local statement,
Mayer-Vietoris long-exact sequence, and the five-lemma. First, we first explain the Mayer-
Vietoris sequences for de Rham and compactly-supported de Rham cohomologies. Then, we
prove the necessary local statements and prove Theorem 3.15.

Suppose M = U1 ∪ U2 is a decomposition of a smooth manifold M into two open sets. The
inclusion maps

ιa : Ua −→M and ja : U12
..= U1 ∩ U2 −→ Ua, a = 1, 2,

give rise to pull-back maps

ι∗a : Ωn(M,R) −→ Ωn(Ua,R) and j∗a : Ωn(Ua,R) −→ Ωn(U12,R).

49



The following sequence is exact

0 −→ Ωn(M,R)
ι∗..=ι∗1⊕ι∗2−−−−−−→ Ωn(U1,R)⊕ Ωn(U2,R)

j∗..=j∗1⊕−j∗2−−−−−−−→ Ωn(U12,R) −→ 0. (3.10)

By letting n vary, we get a short exact sequence of cochains

· · · // Ωn(M,R)
d //

ι∗

��

Ωn+1(M,R) //

ι∗

��

· · ·

· · · // Ωn(U1,R)⊕ Ωn(U2,R)
d⊕d //

j∗

��

Ωn+1(U1,R)⊕ Ωn+1(U2,R) //

j∗

��

· · ·

· · · // Ωn(U12,R)
d // Ωn+1(U12,R) // · · ·

which we briefly write as

0 −→
(

Ω•(M,R),d
)

ι∗−→
(

Ω•(U1,R)⊕ Ω•(U2,R),d⊕ d
)

j∗−→
(

Ω•(U12,R),d
)
−→ 0.

Like before, this short exact sequence of cochain complexes gives us a Mayer-Vietoris long exact
sequence of de Rham cohomology groups

· · ·Hn−1
dr (U12,R)

δ∗−→ Hn
dr(M,R)

ι∗−→ Hn
dr(U1,R)⊕Hn

dr(U2,R)
j∗−→ Hn

dr(U12,R) −→ · · · .

For the compactly supported version, instead of the pull back maps ι∗ and j∗, we have the
inclusion maps

ιa∗ : Ωn
c (Ua,R) −→ Ωn

c (M,R) and ja∗ : Ωn(U12,R) −→ Ωn(Ua,R), ∀ a = 1, 2, n ∈ N.

Consequently, we get a Mayer-Vietoris sequence where the order if terms is reversed (but the
sequence is still degree-increasing):

· · ·Hn−1
c,dr (M,R)

δ∗−→ Hn
c,dr(U12,R)

j∗−→ Hn
c,dr(U1,R)⊕Hn

c,dr(U2,R)
ι∗−→ Hn

c,dr(M,R) −→ · · · .

This is compatible with (3.8) since Poincare duality reverses the degrees and arrows:

Hn−1
dr (U12,R)

∼=
��

δ∗ // Hn
dr(M,R)

ι∗ //

∼=
��

Hn
dr(U1,R)⊕Hn

dr(U2,R)
j∗ //

∼=
��

Hn
dr(U12,R)∗

∼=
��

Hm−n+1
c,dr (U12,R)∗

δ∗ // Hm−n
c,dr (M,R)∗

ι∗ // Hm−n
c,dr (U1,R)∗ ⊕Hm−n

dr (U2,R)∗
j∗ // Hm−n

c,dr (U12,R)∗ .

Suppose E −→M is a smooth vector bundle and U ⊂E is an open neighborhood of M in E.
We say U is start-shaped if

∀ v∈U, r∈ [0, 1]⇒ rv ∈ U.

Proposition 3.16. Suppose π : E−→M is a smooth rank r real vector bundle and U ⊂E is a
star-shaped open neighborhood of M in E. Let πU denote the restriction of π to U . Then for all
p≥0, the pull-back map

π∗U : Ωp(M,R) −→ Ωp(U,R)
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induces an isomorphism
H i

dR(U,R) ∼= H i
dR(M,R). (3.11)

In particular, for any star-shaped domain in Rm we have

H i
dR(U,R) =

{
R if i = 0,

0 otherwise
(3.12)

Proposition 3.17. Suppose M is a manifold of finite-type, π : E−→M is an oriented smooth
rank r real vector bundle, and U ⊂E is a star-shaped open neighborhood of M in E. Then for
all p≥0 there is a natural isomorphism

H i+r
c,dR(U,R) ∼= H i

c,dR(M,R) ∀ i ∈ Z. (3.13)

In particular, for any star-shaped domain in Rm we have

H i
c,dR(U,R) =

{
R if i = m,

0 otherwise
(3.14)

The identities in (3.12) are known as Poincare Lemma: any closed p-form η defined on an star-
shaped domain U⊂Rm is exact, for any integer p with 1≤p≤m.

The isomorphism (3.13) is known as Thom isomorphism. There is a class of so-called Thom
forms on U such that

(1) e is a closed r-form supported in U ,

(2) for every compact set K ⊂ U the restriction e|π−1(K) has compact support,

(3) for every x ∈M , we have
∫
π−1(x) e = 1,

(4) for every p ∈ Z the map

e ∧ π∗ : Ωp
c(M,R) −→ Ωp+r

c (U,R), η −→ e ∧ π∗η (3.15)

induces the isomorphism (3.13).

If M is closed, e defines a unique compactly supported cohomology class [e] ∈ Hr
c,dR(U,R),

known as the Thom class, that under the isomorphism (3.13) corresponds to [1] ∈ H0
dR(M,R).

If M is oriented, we can indirectly prove (3.13) in the following way:

• first, we prove (3.14) (or equally (3.13) when the bundle is trivial);

• then, we use (3.14), (3.12), and Mayer-Vietoris (induction), to prove Theorem 3.15;

• finally, assuming that M is also oriented, we deduce (3.13).

In any case, (3.13) can be proved using Mayer-Vietoris and induction. We will explain these in
more details after the proof of (3.15). Here is a short homological description of (3.13) by A.
Hatcher using cellular cohomology. The m-manifold M has the structure of an m-dimensional
CW complex. One can assume, without loss of generality, that M is a CW complex with a single
0-cell (this can be achieved using an appropriate Morse function).The argument below holds for
any such reasonable CW complex M . The Thom space T (E) is the quotient D(E)/S(E) of
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the unit disk bundle of E by the unit sphere bundle. In other words, S(E) is being collapsed
into a point. One can give T (E) a CW structure with S(E)/S(E) as the only 0-cell and with
an (r + k)-cell for each k-cell of M . These cells in T (E) arise from pulling back k-cells on
M to D(E). In particular, T (E) has a single r-cell (corresponding to the 0-cell of M) and an
(r + 1)-cell for each 1-cell of M . There are no cells in T (E) between dimension 0 and r. The
cellular boundary of an (r+ 1)-cell is 0 if E is orientable over the corresponding 1-cell of B, and
it is twice the n-cell in the opposite case. Thus Hcell

r (T (E),Z) ∼= Z if E is orientable and 0 if
E is non-orientable. In the orientable case a generator of Hcell

r (T (E),Z) restricts to a generator
of Hn(Sr,Z) in the “fiber” Sr of T (E) over the 0-cell of M , hence the same is true for all the
“fibers” Sr and obtains a homology Thom class. Under a version of Poincare duality between
homology and cohomology that we will prove later, this gives the Thom class [e] in Hr

c,dR(E,R).

HW 3.18. Show that the compact cohomology of the Möbius strip is identically zero. Thus,
viewing the the Möbius strip as a real line bundle over S1 gives an un-orientable example where
(3.13) fails.

First, we give a direct proof of Poincare Lemma to illustrate the main idea. We then generalize
the proof and prove (3.11) using the fact that π is a homotopy equivalence.

Proof of Poincare Lemma. Suppose η is a closed p-form. Consider the family of diffeomor-
phisms

ϕ : U × R≥0 −→ U, (x, t) −→ ϕt(x) = e−tx.

This the non-negative flow of the ODE corresponding to the vector field ζ = −(
∑m

i=1 xi∂xi). Let

Ωp(U,R) 3 ηt = (ϕ∗t η)|U ∀ t ≥ 0.

Note that η0 = η. For p ≥ 1, check that ηt converges to 0 exponentially fast. By the Fundamental
Theorem of Calculus, we have

η = η0 = −
∫ ∞

0
η̇t|t=s ds.

By (2.20), we have
ϕ∗sLζη = η̇t|t=s.

Since η is closed, we have Lζη = dιζη. Therefore, since d and pull-back commutes, we have

η = −
∫ ∞

0
ϕ∗sdιζη ds = −

∫ ∞
0

dϕ∗sιζη ds = d
(
−
∫ ∞

0
ϕ∗sιζη ds

)
.

We conclude that η is exact.

Proof of (3.11). The following proof is a straightforward generalization of the argument above.
We aim to show that the co-chain map

π∗ :
(

Ω•(M,R), d
)
−→

(
Ω•(E,R), d

)
induced by π : E −→ M induces the identity map on cohomology. Let ι : M −→ E denote the
inclusion map as the zero section. We already have π ◦ ι = idM . To prove the statement above
on cohomology, it is enough to show that

π∗ ◦ ι∗ :
(

Ω•(E,R), d
)
−→

(
Ω•(E,R),d

)
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is chain homotopic to the identity map. Suppose η is a p-form on E. Consider the family of
diffeomorphisms

ϕ : U × R≥0 −→ U, (v, t) −→ ϕt(v) = e−tv.

In a local trivialization E|V ∼= V × Rr, we have

ϕt(x, y) = (x, e−ty) ∀ (x, y) ∈ V × Rr. (3.16)

This the non-negative flow of the ODE corresponding to the vector field

ζ(v) = v ∈ π∗(E) ∼= T⊥E ⊂ TE.

Let
Ωp(U,R) 3 ηt = (ϕ∗t η)|U ∀ t ≥ 0.

Note that η0 = η. It easy follows from (3.16) that ηt converges to π∗ ◦ ι∗(η) exponentially fast.
By the Fundamental Theorem of Calculus, we have

η − π∗ ◦ ι∗(η) = −
∫ ∞

0
η̇t|t=s ds.

By (2.20), we have
ϕ∗sLζη = η̇t|t=s.

We have Lζη = dιζη + ιζdη. Define

K(η) = −
∫ ∞

0
ϕ∗sιζη ds ∈ Ωp−1(U,R) ∀ η ∈ Ωp(U,R).

Therefore, since d and pull-back commutes, we have

η − π∗ ◦ ι∗(η) = −
∫ ∞

0
ϕ∗s
(
dιζη + ιζdη

)
ds = −

∫ ∞
0

dϕ∗sιζη ds = dK(η) +Kdη.

Therefore,
id− π∗ ◦ ι∗ = d ◦K +K ◦ d;

i.e. π∗ ◦ ι∗ and the identity map are chain homotopic.

Similarly to (3.2), every smooth map f : M −→M ′ induces a cochain map

· · · //

f∗

��

Ωn(M ′,R)
d //

f∗

��

Ωn+1(M ′,R) //

f∗

��

· · ·

f∗

��
· · · // Ωn(M,R)

d // Ωn+1(M,Z) // · · · ,

and, consequently, a collection of pull-back homomorphisms between the corresponding de Rham
cohomology groups

f∗ : Hn
dR(M ′,R) −→ Hn

dR(M,R) ∀ n∈N.

The following analogue of (3.4) is a corollary of (3.13).
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Corollary 3.19. Suppose f, g : M −→M ′ are smoothly homotopic; i.e. there exists

h : [0, 1]×M −→M ′

such that h(0, x) = g(x) and h(1, x) = f(x) for all x∈M . Then the cochain maps

f∗, g∗ :
(
Ω•(M,R),d

)
−→

(
Ω•(M ′,R), d

)
are chain homotopic. Therefore, their induced maps on cohomology are the same.

HW 3.20. Deduce the corollary above from (3.13).

With the same reasoning as in the homological case, we conclude that

• two smooth manifolds M and M ′ with the same homotopy type have the same de Rham
cohomology;

• if the submanifold A ⊂ M is a deformation retract of M , then A and M have the same de
Rham cohomology.

Proof of (3.14). For r ≥ 0, let

π : Rr+1 −→ Rr, (t, x1, . . . , xr) −→ (x1, . . . , xr).

For any star-shaped domain U⊂Rr+1 and every p∈Z, we prove

Hp+1
c,dR(U,R) ∼= Hp

c,dR(π(U),R).

For p < 0, both sides are trivial. Thus, we may assume p ≥ 0. Every η ∈ Ωp+1
c (U,R) has the

form
η = dt ∧ α+ β (3.17)

where

α =
∑

a..=a1<...<ap

fa(t, x) dxa1 ∧ . . . ∧ dxap and β =
∑

b..=b0<...<bp

gb(t, x) dxb0 ∧ . . . ∧ dxbp

only involve {dxi}ri=1. The equation dη = 0 is equivalent to

dxα = β̇ and dxβ = 0,

where dx means exterior derivative with respect to x-coordinates and

β̇ =
∑

b..=b0<...<bp

∂gb(t, x)

∂t
dxb0 ∧ . . . ∧ dxbp

In particular,

β(t, x) =

∫ t

−∞
dxα(s, x) ds . (3.18)

Define

π∗ : Ωp+1
c (U,R) −→ Ωp

c(π(U),R), π∗(η) = α ..=
∑

a..=a1<...<ap

fa(x) dxa1 ∧ . . . ∧ dxap
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where

fa(x) =

∫ ∞
−∞

fa(t, x)dt ∀ x ∈ π(U).

We aim to show π∗ induces an isomorphism at the cohomology level. It is straightforward to
check that π∗ commutes with d. Therefore, it descends to a homomorphism

π∗ : Hp+1
c,dR(U,R) −→ Hp

c,dR(π(U),R). (3.19)

Given a closed form α with compact support K in π(U), choose a sufficiently small ε = ε(α) > 0
such that (−ε, ε)×K ⊂ U . Choose h = hα : R −→ R with compact support in (−ε, ε) such that∫
R h(t)dt = 1. Let

η = h(t)dt ∧ π∗α.

Then, η is closed and belongs to Ωp+1
c (U,R), and α = π∗η. Therefore, (3.19) is surjective.

Next, we show that (3.19) is injective. Suppose α = dγ for some γ∈Ωp−1
c (π(U),R). Then,

d(h(t)dt ∧ π∗γ) = h(t)dt ∧ π∗α.

Therefore, η and η−h(t)dt∧π∗α have the same cohomology class in Hp+1
c,dR(U,R). Furthermore,

π∗(η − h(t)dt ∧ π∗α) = 0.

Therefore, by replacing η with η − h(t)dt ∧ π∗α, we may assume 0 6= [η] ∈ Hp+1
c,dR(U,R) and

α = π∗(η) = 0.

For η = dt ∧ α+ β∈Ωp+1
c (U,R) as in (3.17) with dη = 0 and α = 0, define

γ =
∑

a..=a1<...<ap

Fa(t, x) dxa1 ∧ . . . ∧ dxap (3.20)

where

Fa(t, x) =

∫ t

−∞
fa(s, x)ds.

Since α = 0, we conclude that γ is compactly supported; i.e γ ∈ Ωp
c(U,R). It follows from (3.18)

that

dγ = dt ∧ α+

∫ t

−∞
dxα = η.

Remark 3.21. If there is ε > 0 such that (−ε, ε) × π(U) ⊂ U , then h can be chosen to be
independent of α. Then, the proof above can be seen as showing that the operator (h(t)dt ∧
π∗) ◦ π∗ is chain homotopic to the identity map; i.e.

id− (h(t)dt ∧ π∗) ◦ π∗ = dK +Kd.

Here K : Ωp+1
c (U,R) −→ Ωp

c(U,R) is given by η −→ γ in (3.20). The proof above readily extends
to a proof of (3.13), whenever E is a trivial vector bundle. If E = M × R −→ M and M is
closed, [e(t)] = [h(t)dt] is the Thom-class mentioned after (3.15).
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Proof of Theorem 3.15. If M is diffeomorphic to Rm, the result follows from (3.12), and
(3.14), and the observation below. Suppose η is a compactly-supported (m−1)-form on Rm.
Choose R > 0 sufficiently large so that supp(η) ⊂ BR(0). Then, by Stokes’ Theorem, we have

0 =

∫
∂BR(0)

η =

∫
BR(0)

dη.

We conclude that the homomorphism

Ωm
c (Rm,R) −→ R, ω −→

∫
Rm

ω,

descends to a surjective homomorphism

Hm
c,dR(Rm,R) −→ R.

By (3.14), the latter is indeed an isomorphism. It follows that the isomorphism

Hm
c,dR(Rm,R) ∼= H0

dR(Rm,R)∗ ∼= R

in (3.8) comes from the pairing (3.7).

Next, support M = U1 ∩ U2, and the statement of Theorem 3.15 is true for U1, U2, and
U12 =U1 ∩U2, we conclude that the statement is also true for M . For every n ∈ Z, consider the
commutative diagram

Hn−1
dr (U1,R)⊕Hn−1

dr (U2,R)
j∗ //

��

Hn−1
dr (U12,R)

��

δ∗ // Hn
dr(M,R)

ι∗ //

��

Hn
dr(U1,R)⊕Hn

dr(U2,R)
j∗ //

��

Hn
dr(U12,R)∗

��
Hm−n+1
c,dr (U1,R)∗ ⊕Hm−n+1

dr (U2,R)∗
j∗ // Hm−n+1

c,dr (U12,R)∗
δ∗ // Hm−n

c,dr (M,R)∗
ι∗ // Hm−n

c,dr (U1,R)∗ ⊕Hm−n
dr (U2,R)∗

j∗ // Hm−n
c,dr (U12,R)∗

where the first row is the Mayer-Vietoris sequence of the standard de Rham cohomology, the
second row is the dual of the Mayer-Vietoris sequence of the compactly supported de Rham
cohomology, and the vertical maps are the homomorphisms corresponding to (3.7). By assump-
tion, the first and last two vertical maps are isomorphisms. By the so-called five-lemma below,
the middle one has to be an isomorphism as well.

Lemma 3.22. (five-Lemma) Let

A
a //

f1
��

B
b //

f2
��

C
c //

f3
��

D
d //

f4
��

E

f5
��

A′
a′ // B′

b′ // C ′
c′ // D′

d′ // E′

be a commutative diagram in any abelian category (such as the category of abelian groups or the
category of vector spaces over a given field). If the rows are exact, f2 and f4 are isomorphisms,
f1 is an epimorphism, and f5 is a monomorphism, then f3 is also an isomorphism.

Suppose M be a smooth oriented manifold of finite-type. Therefore, there is an open covering
M =

⋃N
α=1 Uα such that every nonempty finite intersection Uα0 ∩ · · · ∩ Uαp is diffeomorphic to

Rm. We prove Theorem 3.15, by induction on N . By the induction assumption, the statement
of Theorem 3.15 is true for U1, V =

⋃N
α=2 Uα, and

U1 ∩ V =

N⋃
α=2

(Uα ∩ U1).
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Therefore, by the argument before five-lemma, it also holds for M .

Proof of (3.13) (assuming M is orientable). Applying Theorem 3.15 to the manifold E, (3.11)
to E −→M , and Theorem 3.15 to M we get

Hp+r
c,dR(E,R)∗ ∼= H

(m+r)−(p+r)
dR (E,R) ∼= Hm−p

dR (M,R) ∼= Hp
c,dR(M,R)∗ .

Therefore,
Hp+r
c,dR(E,R) ∼= Hp

c,dR(M,R) .

The map π∗ in (3.19) that comes from integration on fibers of E extends to arbitrary oriented
vector bundle π : E −→M in the following way.

Fix an orientation-preserving local trivialization Φ: V ×Rr −→ E|V . Let (x1, . . . , xm) denote the
local coordinates on V and (t1, . . . , tr) denote the fiber coordinates. For every η ∈ Ωp+r(E,R),
Φ∗η has the form

dt1 ∧ · · · ∧ dtr ∧ α+ β (3.21)

where
α =

∑
a..=a1<...<ap

fa(t, x) dxa1 ∧ . . . ∧ dxap

and each term in β misses at least one of {dti}ri=1.

Define

π∗ ◦ Φ∗ : Ωp+r
c (E,R) −→ Ωp(V,R), π∗ ◦ Φ∗(η) = α ..=

∑
a..=a1<...<ap

fa(x) dxa1 ∧ . . . ∧ dxap

where

fa(x) =

∫
Rr
fa(t, x) dt1 · · · dtr ∀ x ∈ V.

It is straightforward to check that π∗ commutes with d.

Lemma 3.23. The map π∗ ◦ Φ∗ is independent of the choice of local trivialization Φ.

Proof. Suppose Φ1 and Φ2 are two different trivializations. Let

Φ12 = Φ−1
2 Φ1 : V × Rr −→ V × Rr, (x, t) −→ (x, s) = (x, ϕ(x)t)

denote the change of trivialization map for some ϕ : V −→ GL+(Rr). Here, GL+(Rr) is the group
of orientation preserving linear isomorphisms of Rr (i.e. matrices with positive determinant).
With notation as in (3.21), if

Φ∗1η = dt1 ∧ · · · ∧ dtr ∧ α1 + β1 and Φ∗2η = ds1 ∧ · · · ∧ dsr ∧ α2 + β2,

with

α1 =
∑

a..=a1<...<ap

f1,a(t, x) dxa1 ∧ . . . ∧ dxap and α2 =
∑

a..=a1<...<ap

f2,a(s, x) dxa1 ∧ . . . ∧ dxap ,
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it follows from Chain Rule that

f1,a(t, x) = det(ϕ(x))f2,a(ϕ(x)t, x) ∀ x ∈ V.

Since det(ϕ(x)) > 0, by the change of variables formula, we conclude that

f1,a(x) =

∫
Rr
f1,a(t, x) dt1 · · · dtr =

∫
Rr

det(ϕ(x))f2,a(ϕ(x)t, x) dt1 · · · dtr

=

∫
Rr
f2,a(s, x) ds1 · · · dsr = f2,a(x) ∀ x ∈ V.

Corollary 3.24. For every p∈Z, the maps π∗ ◦Φ∗ are compatible on the overlaps and define a
canonical push-forward map

π∗ : Ωp+r
c (E,R) −→ Ωp

c(M,R). (3.22)

that commutes with the exterior derivative map.

HW 3.25. For a trivial vector bundle E over a finite-type manifold M , follow the same reasoning
as in the beginning of the proof of Theorem 3.15 to show that (3.22) induces the isomorphism
(3.13).

HW 3.26. For an arbitrary oriented vector bundle E over a finite-type manifold M , use local
trivializations of E, Mayer-Vietoris, and induction to prove (3.13) (to avoid the orientability
condition of M used in the proof above). Also, deduce that (3.22) induces the isomorphism
(3.13).

If M is a connected closed manifold, we have H•dR(M,R) = H•c,dR(M,R) and H0
dR(M,R) ∼= R.

Therefore, under the isomorphism (3.13), [1] ∈ H0
dR(M,R) corresponds to a cohomology class

[e] = [e(E)] ∈ Hr
c,dR(E,R) known as the Thom-class. A compactly supported r-form e, known

as a Thom form, representing [e] has the properties listed after Proposition 3.17:

• properties (1)-(2) obviously hold,

• properties (3) and (4) follow from the fact that (3.22) induces the isomorphism (3.13) and

π∗(e ∧ π∗α) = α ∀α ∈ Ωp(M,R).

The Thom form e can be chosen to have support in a sufficiently small neighborhood of M . An
explicit construction of e using a metric and connection on E is feasible but complicated. It is
easy to check that if E1 −→M and E2 −→M are two oriented vector bundles then

e(E1 ⊕ E2) = p∗1e(E1) ∧ p∗2e(E2).

where
pa : E1 ⊕ E2 −→ Ea a = 1, 2,

are the natural projection maps.
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If M is closed, for the inclusion map ι : M −→ E (as the zero-section), the cohomology class

ι∗[e(E)] ∈ Hrank(E)
dR (M,R)

is called the Euler class of E. If E is trivial, then ι∗[e(E)] = 0. Therefore, ι∗[e(E)] measures the
non-triviality of E. Since every real vector bundle is isomorphic to its dual, we have

ι∗[e(E)] = ι∗[e(E∗)].

Proposition 3.27. Suppose M is an oriented closed manifold. Then,∫
M

[e(TM)] = χ(M),

where χ(M) is the Euler characteristic of M defined in (2.14).

Proof. Let s be a transverse section of TM (i.e. a vector field). The family of section

[0, 1]×M −→ TM, (t, x) −→ st(x) ..= ts(x)

defines a homotopy between the zero section ι : M −→ TM and s : M −→ TM . Therefore,∫
M
s∗[e(TM)] =

∫
M
ι∗[e(TM)] ∀ s ∈ Γ(M,TM).

Fix a Thom form e = e(TM). For every t > 0,

Kt = s−1
t (Supp(e)) ⊂M

is a compact subset of M . Furthermore,

lim
t−→∞

Kt =
⋂
t≥0

Kt = s−1(0) = {p1, . . . , pk}.

Therefore, for t sufficiently large, Kt =
⋃k
a=1Ka where each Ka is a sufficiently small compact

neighborhood around pa. Furthermore, the graph of st over Ka is C1-close to the Supp(e)∩TpaM .
Therefore, we can smoothly deform the embedding st to a an embedding s̃t : M −→ TM such
that

• s̃−1
t (Supp(e)) =

⋃k
a=1 K̃a is a disjoint union of sufficiently small compact neighborhoods of

the points s−1(0);

• for every a = 1, . . . , k, there is a neighborhood Va of K̃a for which s̃t(Va) is an open subset of
TpaM including Supp(e) ∩ TpaM .

It is easy to see from the definition of the signs ε(pa) in (2.14) that

s̃t|Va : Va −→ TpaM

is an orientation preserving embedding if and only if ε(pa) = +1. Since
∫
TxM

e = 1 for all x ∈M ,
we conclude that∫

M
ι∗[e(TM)] =

∫
M
s̃t
∗[e(TM)] =

k∑
a=1

ε(pa)

∫
s̃t(Va)

e =
k∑
a=1

ε(pa) = χ(M).
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HW 3.28. Suppose E −→ M is an oriented vector bundle over a closed manifold. Show that
if E admits a nowhere-zero section then the Euler class of E is zero.

In the same way that manifolds are generalization of euclidean (vector) spaces, fiber bundles are
generalization of vector bundles.

Definition 3.29. Suppose N , M , and F are smooth manifolds and π : F −→M is a submersion.
We say π : F −→ M is a fiber bundle with fiber N if there is an open covering M =

⋃
α∈I Uα

and a family of local trivializations{
hα : π−1(Uα) −→ Uα ×N

}
α∈I

such that π = πα ◦ hα for all α ∈ I, where πα : Uα ×N −→ Uα is the natural projection map.

If N is compact, by Tubular Neighborhood Theorem, a submersion π : F −→M is a fiber bundle
with fibers N if π−1(x) is diffeomorphic to N for all x ∈M . A trivial fiber bundle is a product
F = M × N . Similarly to vector bundles, a fiber bundle is described by a collection of local
trivializations {Uα ×N

}
α∈I that are attached by transition maps of the form

Φα,β : (Uα ∩ Uβ)×N −→ (Uα ∩ Uβ)×N, (x, y) −→ (x, ϕα,β(x)(y)),

such that
ϕα,β : Uα ∩ Uβ −→ Diff(N)

are smooth maps into the group of diffeomorphisms of N satisfying the cocycle condition

ϕβ,γ(x) ◦ ϕα,β(x) = ϕα,γ(x) ∀ x ∈ Uα ∩ Uβ ∩ Uγ .

The product maps

H∗dR(F )⊗H∗dR(M) −→ H∗dR(F ), α⊗ β −→ α ∧ π∗β,
H∗dR(M)⊗H∗dR(F ) −→ H∗dR(F ), β ⊗ α −→ π∗β ∧ α

realizeH∗dR(F ) as right and leftH∗dR(M)-modules, respectively. Here, we are thinking ofH∗dR(M)
as a ring (algebra) with ∧ as its product structure.

Theorem 3.30 (Leray-Hirsch). Suppose π : F −→M is a fiber bundle with fiber N and M has
finite type. Suppose there are cohomology classes c1, . . . , cr on F which restricted to each fiber
π−1(x) ∼= N of F make a basis for the vector space H∗dR(π−1(x),R). Then, H∗dR(F ) is a free
module over H∗dR(M) with basis c1, . . . , cr; i.e.

H∗dR(F,R) ∼= H∗dR(M,R)⊗H∗dR(N,R).

If N also has finite type, the same holds for cohomology with compact support.

HW 3.31. Prove Theorem 3.30 using Mayer-Vietoris and induction on the size of a finite good
cover.

Corollary 3.32 (Künneth formula). If M and N have finite type, then

H∗dR(M ×N) ∼= H∗dR(M)⊗H∗dR(N).
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Here is an interesting case of Theorem 3.30. Suppose E −→ M is complex vector bundle of
rank r. By projectivizing each fiber of E, we obtain a fiber bundle

F = P(E) −→M

whose fibers are isomorphic to CPr−1. The definition of tautological line bundle γ in Exam-
ple 2.30 generalizes to F and yields a similarly denoted complex line bundle

π : γF −→ F.

Let H = c1(γ∗F ) ∈ H2
dR(F,R) denote the first chern class of γ∗F . The restriction of H to each

fiber π−1(x) ∼= CPr−1 is the first chern class h of γ∗. In Example 3.6, we showed that

Hi(CPr,Z) =

{
Z if i = 2k, 0 ≤ k ≤ r,
0 otherwise.

Using Poincare duality between homology and cohomology, we will show that

H i
dR(CPr,R) =

{
R if i = 2k, 0 ≤ k ≤ r,
0 otherwise;

moreover, H i
dR(CPr,R) ∼= R is generated by h. Therefore, as ring, H∗dR(CPr,R) is generated by

h satisfying hr = 0. By Theorem 3.30 and the observation above, H∗dR(F,R) is generated, as a
ring, by H and H∗dR(M,R). Therefore, there are unique cohomology classes

c1, . . . , cr, ci ∈ H2i
dR(M,R)

such that
Hr+1 +Hrc1 +Hr−1c2 + · · ·+Hcr−1 + cr = 0 (3.23)

We will show that c1, . . . , cr are indeed the de Rham Chern classes of E.

HW 3.33. What is the r = 1 case of the discussion above.

Remark 3.34. A refined version of Theorem 3.30 is also true for singular cohomology in place
of H∗dR(F ). If there are singular cohomology classes c1, . . . , cr on F which restricted to each
fiber π−1(x) ∼= N of F make a Z-basis for the Z-module H∗dR(π−1(x),Z), then

H∗(F,Z) ∼= H∗(M,Z)⊗H∗(N,Z).

Using this refined version, the formula (3.23) can be used to define chern classes as integral
singular cohomology classes in H∗(M,Z).

We finish this section with a duality result between singular (=simplicial) homology (with coef-
ficients in R) and de Rham cohomology of a smooth manifold M . Let M be an oriented smooth
manifold. Fix a triangulation K of M . For each oriented k-simplex ∆ in K and every k-form η
the pairing

〈η,∆〉 −→
∫

∆
η

is defined. Since Ck(K,R) contains finite linear combinations of simplices in K, the pairing above
linearly extends to a pairing

〈−,−〉 : Ωk(M,R)× Ck(K,R) −→ R.
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By Stoke’s theorem, this pairing descends to a pairing

〈−,−〉 : Hk(M,R)×Hk(M,R) −→ R. (3.24)

The proof of the following theorem follows the same steps as in the proof of Theorem 3.15.

Theorem 3.35. Suppose M is an oriented smooth m-manifold of finite type. Then, the pairing
(3.24) is non-degenerate; i.e.

• 〈[α],−〉 = 0⇒ [α] = 0 ∈ Hk
dR(M,R);

• 〈−, [β]〉 = 0⇒ [β] = 0 ∈ Hk(M,R).

Therefore,
Hk

dR(M,R) ∼= Hk(M,R)∗. (3.25)

If M is closed, there is also a non-degenerate pairing

Hm−k(M,R)×Hk(M,R) −→ R (3.26)

which results in a Poincare duality isomorphism

Hm−k(M,R) ∼= Hk(M,R)∗.

The pairing (3.26) is given by counting intersection points of k and (m − k)-cycles. Combined
with (3.25), if M is oriented and closed, we get

Hk
dR(M,R) ∼= Hm−k(M,R). (3.27)

If S ⊂ M is a submanifold of codimension k, it defines a homology class [S] ∈ Hm−k(M,R).
Under the isomorphism (3.27), the Thom form of S ⊂M is the cohomology class corresponding
to [S] in Hk

dR(M,R).

Example 3.36. Suppose E −→M is a complex vector bundle of rank r over a closed manifold,
and s : M −→ E is a transverse section of E. Then s−1(0) is a closed submanifold of M that
represent a homology class in Hm−2r(M,Z). Under the isomorphism (3.27), the homology class
[s−1(0)] (as an element in Hm−2r(M,R)) corresponds to the de Rham top chern class c2r(E).

HW 3.37. Use Example 3.36 and generalize the proof of Proposition 3.27 to prove the following:

Theorem 3.38. If E−→M is a complex vector bundle over a closed manifold, then, ι∗[e(E)]
coincides with the top-chern de Rham cohomology class of E defined in (2.32).

3.3 Cech cohomology

In the previous section, we repeatedly used the combination of induction (over the size of a good
cover) and Mayer-Vietoris sequence to prove various statements such as Poincare duality. A
natural question is:

- What is the generalization of Mayer-Vietoris for a decomposition M =
⋃n
a=1 Ua of M into

n > 2 open sets?
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The result of this discussion, which is a different kind of structure compared to what Mayer-
Vietoris provides, would lead us into Cech cohomology.

Let
[n] ..= {1, . . . , n}, Pq(n) = {I ⊂ [n] : |I| = q} ∀ q ≥ 0.

For every I ⊂ [n], let

UI =
⋂
a∈I

Ua.

For every I ′ ⊂ I, let
ιI;I′ : UI −→ U ′I

denote the inclusion map. These inclusion maps give rise to restriction maps

RI;I′ ..= ι∗I;I′ : Ωn(UI′ ,R) −→ Ωn(UI ,R).

For all p ≥ 0 and q ≥ −1, let

Ep,q =
⊕

I∈Pq+1(n)

Ωp(UI ,R).

Using the restriction maps RI;I′ , we get the maps

R : Ep,q−1 −→ Ep,q, R
(
⊕I∈Pq(n) ηI

)
= ⊕J∈Pq+1(n)η

′
J

where
ηI ∈ Ωp(UI ,R) ∀ I ∈ Pq(n),

η′J =

q∑
a=0

(−1)aRJ−ja;J(ηJ−ja) ∀ J = {j0 < · · · < jq} ∈ Pq+1(n).

For example, R : Ep,−1 −→ Ep,0 is simply the restriction map

Ωp(M,R) −→
⊕
a∈[n]

Ωp(Ua,R). (3.28)

Remark 3.39. Instead of labeling the components ηI of η by subsets I ⊂ [n], we may label
them as ηi1,...,iq where I = {i1, . . . , iq} ⊂ [n] with the convention that

ηi1...iq = (−1)ε(σ)ηiσ(1)...iσ(q) ∀ σ ∈ Sq.

Then we can write

(R(η))i0i1...iq =

q∑
a=0

(−1)a ηi0,i1,...ia−1ia+1...iq |Ui0...iq (3.29)

without ordering the indices increasingly.

Using the exterior derivative d, instead, we get the maps

d: Ep,q −→ Ep+1,q, d
(
⊕I∈Pq(n) ηI

)
= ⊕I∈Pq(n)dηI ∀ I ∈ Pq(n).

We already know that d ◦ d = 0. It is easy to check that R ◦ R = 0. Putting these two maps
together, we obtain a double cochain complex (E•,•, d,R) which is the content of the dotted-
square in Figure 4. This double complex somehow replaces the de Rham cochain complex which
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Figure 4: The double cochain complex (E•,•,d,R).

is fills the row below the double complex at hight −1. From the double complex (E•,•, d,R), we
build a cochain complex (C•, D) in the following way. Let

Cn =
⊕
p+q=n

Ep,q ∀ n ≥ 0,

D : Cn −→ Cn+1 s.t. D|Ep,q = d + (−1)pR ∀ p+ q = n.

Since R ◦R = 0, d ◦ d = 0, and R ◦ d = d ◦ R, we get

D ◦D|Ep,q = d ◦ d +R ◦R+ (−1)pd ◦ R+ (−1)p+1R ◦ d = 0 ∀ p+ q = n

The following lemma generalizes the exactness statement of (3.10).

Lemma 3.40. For each p ≥ 0, the p-column

0 −→ Ωp(M)
R−→ Ep,0

R−→ · · · R−→ Ep,n−1 −→ 0

is exact.

Proof. Clearly, Ωp(M) is the kernel of the first R: if

η =
⊕
a∈[n]

ηa ∈ Ep,0 =
⊕
a∈[n]

Ωp(Ua,R),

then, with notation as in (3.29),
R(η)ab = ηa − ηb.

Therefore, R(η) = 0 implies that the differential p-forms ηa and ηb match on the overall Uab =
Ua ∩ Ub; hence {ηa} can be glued to define a differential p-form on M . For the next ones, we
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use a partition of unity {θa : Ua −→ [0, 1]}a∈[n] subordinate to the covering {Ua}a∈[n] to prove
the exactness. Suppose

η =
⊕

i0<...<iq

ηi0...iq ∈ Ep,q =
⊕

i0<...<iq

Ωp(Ui0...iq)

is R-closed. By definition,

(R(η))i0...iq+1 =

q+1∑
a=0

(−1)a αi0,i1,...ia−1ia+1...iq+1 |Ui0,...,iq = 0 ∀ {i0, . . . , iq+1} ⊂ [n]. (3.30)

Define
α =

⊕
i1<...<iq

αi1...iq ∈ Ep,q−1 =
⊕

i1<...<iq

Ωp(Ui1...iq)

by

αi1...iq =
∑
i0∈[n]

θi0ηi0i1...iq .

Note that, by the convention in Remark 3.39,

• if i0 = ia for some a = 1, . . . , q, then ηi0i1...iq is automatically defined to be zero;

• if i0 > ia for some a = 1, . . . , q, then we can change the order to increasing at cost of a
permutation sign;

• the righthand side is a p-form over Ui0,...,iq because ηi0i1...iq is a p-form over Ui1...iq and θi0 is
supported in Ui0 .

We have,

R(α)i0...iq =

q∑
a=0

(−1)a αi0i1,...ia−1ia+1...iq |Ui0...iq

=

q∑
a=0

∑
iq+1∈[n]

(−1)a θiq+1 ηiq+1i0i1...ia−1ia+1...iq |Ui0...iq

=
∑

iq+1∈[n]

θiq+1(−1)q
q∑

a=0

(−1)aηi0,i1,...ia−1ia+1...iqiq+1 |Ui0...iq .

By (3.30), the last line is equal to∑
iq+1∈[n]

θiq+1(−1)q(−1)qηi0i1...iq |Ui0...iq = ηi0i1...iq |Ui0...iq .

We conclude that R(α) = η.

The main result is the following.

Lemma 3.41. The cohomology groups of (C•, D) and (Ω•(M,R), d) are the same.
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Proof. The maps (3.28) that send row −1 to row 0 in Figure 4 can be seen as cochain maps

R : (Ω•(M,R), d) −→ (C•, D). (3.31)

More precisely, if η ∈ Ωp(M,R), then

DRη = (d + (−1)pR)Rη = dRη = Rdη.

We show that (3.31) induces an isomorphism of cohomology groups. Every α ∈ Cp can be
decompsoed as

α =

p⊕
r=0

αp−r;r, s.t. αp−r;r ∈ Ep−r,r ∀r = 0, . . . , p.

Then Dα = 0 if and only if

dαp;0 = 0, Rαp−1;1 = (−1)pdαp−2;2, . . . , Rα0;p = 0.

By Lemma 3.40, we can find β ∈ E0;p−1 such that R(β) = α0;p. Therefore, α and α−Dβ define
the same cohomology class and the (0, p)-term of α −Dβ is zero. Going down inductively, we
can show that every D-cohomology class can be represented by some α such that

αp−i;i = 0 ∀ i > 0;

i.e. α = αp;0, dαp;0 = 0, and R(αp;0) = 0. As in the beginning of the proof of Lemma 3.40,
R(αp;0) = 0 implies that α comes from a p-form on M which is closed because dαp;0 = 0.
Therefore, (3.31) is surjective at the cohomological level. The injectivity is proved similarly.

Diagram of Figure 4 is missing a column on left that maps to the first column (E•,q)q=0n of the
double complex. For each q ≥ 0, the kernel of

d: E0,q =
⊕

I∈Pq+1(n)

Ω0(UI) −→ E1,q =
⊕

I∈Pq+1(n)

Ω1(UI)

is the space of locally constant functions

E−1,q =
⊕

I∈Pq+1(n)

R(UI).

Here, for each I ∈ Pq+1(n), R(UI) is the space of locally constant functions on UI . If UI is
connected, then R(UI) ∼= R; otherwise, we will have one copy of R for each connected component.
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Adding this column to the left of Figure 4 we get the following diagram.

0 0 0 0 0 0

R(U[n])
ι //

R

OO

E0,n−1 d //

R

OO

E1,n−1 d //

R

OO

E2,n−1 d //

R

OO

· · · d // Em,n−1

R

OO

// 0

R

OO

...

R

OO

...

R

OO

...

R

OO

...
...

R

OO

// 0

...
ι // E0,2 d //

R

OO

E1,2 d //

R

OO

E2,2 d //

R

OO

· · · d // Em,2

R

OO

// 0

⊕
a,b∈[n] R(Uab)

ι //

R

OO

E0,1 d //

R

OO

E1,1 d //

R

OO

E2,1 d //

R

OO

· · · d // Em,1

R

OO

// 0

⊕
a∈[n] R(Ua)

ι //

R

OO

E0,0 d //

R

OO

E1,0 d //

R

OO

E2,0 d //

R

OO

· · · d // Em,0

R

OO

// 0

0
ι //

R
OO

Ω0(M,R)
d //

R

OO

Ω1(M,R)
d //

R

OO

Ω2(M,R)
d //

R

OO

· · · d // Ωm(M,R)

R

OO

// 0 .

In this diagram the maps ι are the inclusion maps. The first column is itself a cochain complex

0 −→
⊕
a∈[n]

R(Ua)
R−→

⊕
a,b∈[n]

R(Uab) −→ · · ·R(U[n]) −→ 0. (3.32)

The cohomology groups of this sequence a priori depend on the open covering A ≡ {Ua}a∈[n]

and are denoted by

Ȟk(A,R) =
Ker

(
Ck(A,R)

R−→ Ck+1(A,R)
)

Image
(
Ck−1(A,R)

R−→ Ck(A,R)
) (3.33)

where
Ck(A,R) =

⊕
I∈Pk+1(n)

R(UI) ∀ k ≥ 0.

The assignment
U −→ R(U) (3.34)

is an example of the concept of sheaf (defined below) and the cohomology groups Ȟk(A,R) are
the cech cohomology groups of this sheaf with respect to the covering A. A natural question is:

- How does Ȟk(A,R) depend on A?
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First, note that Ȟk(A,R) does depend on A. If we take the trivial covering {U1 = M}, then

Ȟk(A,R) =

{
R#π0(M) if k = 0;

0 otherwise.

On the other hand, we have the following result.

Proposition 3.42. Suppose A = {Ua}a∈[n] is a good covering of M in the sense of Defini-
tion 3.14. Then,

Ȟk(A,R) ∼= Hk
dR(M,R) ∀ k ∈ Z. (3.35)

Proof. In the proof Lemma 3.41, we mainly used the fact that the columns of Figure 4 are exact.
If A={Ua}a∈[n] is a good covering, then each UI is diffeomorphic to Rn; therefore, by Poincare
Lemma, the rows of

0 0 0 0 0 0

R(U[n])
ι //

R

OO

E0,n−1 d //

R

OO

E1,n−1 d //

R

OO

E2,n−1 d //

R

OO

· · · d // Em,n−1

R

OO

// 0

R

OO

...

R

OO

...

R

OO

...

R

OO

...
...

R

OO

// 0

...
ι // E0,2 d //

R

OO

E1,2 d //

R

OO

E2,2 d //

R

OO

· · · d // Em,2

R

OO

// 0

⊕
a,b∈[n] R(Uab)

ι //

R

OO

E0,1 d //

R

OO

E1,1 d //

R

OO

E2,1 d //

R

OO

· · · d // Em,1

R

OO

// 0

⊕
a∈[n] R(Ua)

ι //

R

OO

E0,0 d //

R

OO

E1,0 d //

R

OO

E2,0 d //

R

OO

· · · d // Em,0

R

OO

// 0

are exact. The same proof as in Lemma 3.41 shows that the cohomology groups of (C•, D) and
(C•(A,R),R) are also the same.

For A as in Proposition 3.35, since the cech cohomology groups are invariants of the pair (M,R),
we simply denote them by Ȟk(M,R). They are called cech cohomology groups of the sheaf R
on M .

HW 3.43. Cover S1 with n open sets (n intervals) U1, . . . , Un such that Ui∩Uj 6= ∅ if and only
if j ≡ i± 1 modulo n. Compute the cech cohomology of the locally constant sheaf R on S1 with
respect to such open covering.

Example 3.44. We use a good covering of S2 with 4 open disks to calculate the cohomology
of S2. Topologically, S2 is homeomorphic to the boundary of a 3-simplex as in Figure 5. For
each vertex Ai, define Ui to be the interior of the union of the three triangles containing Ai.
Therefore,
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Figure 5: A 3-simplex

• for different i and j, Uij is the interior of the union of the two triangles that contain the line
AiAj ;

• for different i, j, k, Uijk is the interior of the triangle AiAjAk;

• and U1234 = ∅.

We conclude that A = {U1, U2, U3, U4} is a good cover of S2. The cochain complex (3.32) is
equal to

0 −→ R4 =
4⊕
i=1

RUi −→ R6 =
⊕
i,j

RUij −→ R4 =
⊕
i,j,k

RUijk −→ 0,

where the first map is

(a1, a2, a3, a4) −→ (a12, a13, a14, a23, a24, a34) = (a2−a1, a3−a1, a4−a1, a3−a2, a4−a2, a4−a3)

and the second map is

(a12, a13, a14, a23, a24, a34) −→(
a234, a134, a124, a123

)
=
(
(a34−a24+a23), (a34−a14+a13), (a24−a14+a12), (a23−a13+a12)

)
.

The kernel of the first map which is H0 is isomorphic to R (generated by (1,1,1,1)). Check
with a computer program that the image of the second map is a 3-dimensional subspace of R4.
Therefore, H2 which is the cokernel of this map is isomorphic to R. For dimensional reasons,
the sequence must then be exact in the middle; therefore H1 = 0.

HW 3.45. SupposeA={Ua}a∈[n] is a good covering ofM . By following the proof of Lemma 3.41,
starting with any cech cocycle η ∈ C1(A,R), find a closed 1-form η′ ∈ Ω1(M,R) such that
[η] −→ [η′] realizes the isomorphism

Ȟ1(A,R)
∼=−→ H1

dR(M,R).

In what follows we define a pre-sheaf, sheaf, cech cohomology with respect to an open covering,
and cech cohomology groups of the sheaf as a limit of the covering-dependent cohomology groups.
We provide a few examples to highlight the important ideas and applications.
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Definition 3.46. Let M be a topological space. A pre-sheaf F on M is a way of assigning a
set/group/ring/etc. F(U) to each open set U ⊂M with the following properties.

• for every V ⊂ U , there is a “restriction” map/homomorphism RU,V : F −→ F(V );

• for every U , we have RU,U = id;

• for every W ⊂ V ⊂ U , we have RV,W ◦ RU,V = RU,W .

Often, for V ⊂U and η ∈ F(U), we will write η|V instead of RU,V (η).

Remark 3.47. From the categorical point of view, the collection of open sets of M are objects
of a category Open(M) with the morphisms spaces

Hom(U, V ) =

{
{ι : U −→ V } if U ⊂ V
∅ otherwise.

For every category C, there is an opposite category Co that has the same objects as in C but its
morphisms spaces are the opposite of the morphism spaces in C; i.e.

HomCo(A,B) ..= HomC(B,A) ∀ A,B ∈ Obj(C) = Obj(Co).

A sheaf can be seen as a functor F from the category Open(M)◦ to another category (e.g.
category of R-vector spaces, Z-modules, etc.).

Example 3.48. For every manifold M and every p∈N, the assignment

U −→ Ωp(U,R)

is a pre-sheaf where the restriction maps R are the obvious restriction of differential forms to
open subsets. The assignment (3.34) is also a pre-sheaf. Given any group G, we can generalize
(3.34) by assigning to each open set U the group G(U) of locally-constant functions with values
in G. Given every vector bundle, the assignment

U −→ Γ(U,E|U )

is also a pre-sheaf.

All the pre-sheaves F in Example 3.48 have a common feature: if U =
⋃
α∈I Vα, then

(1) (gluing property) if (ηα)α∈I ∈
⊕

αF(Vα) such that ηα|Vαβ = ηβ|Vαβ for all α, β ∈ I, then
there is η ∈ F(U) such that ηα = η|Uα for all α ∈ I. In other words, if for all α, β ∈ I, ηα
and ηβ math on the overlap Vαβ, then they can be glued to each other to define an element
of η ∈ F(U).

(2) (uniqueness) the element η ∈ F(U) in (1) above is unique.

Definition 3.49. Let M be a topological space. A sheaf F on M is a pre-sheaf that satisfies
the two conditions above.

Example 3.50. To construct a pre-sheaf that is not a sheaf, we can consider the pre-sheaf
that assigns to each U the group of constant functions on U with values in a fixed group G. If
U = V1 t V2, and g1, g2 ∈ G with g1 6= g2, then g1 and g2 define constant functions on V1 and
V2, respectively. However, the union of them is not a constant function on U ! Therefore, this
is not a sheaf. To fix the issue above, we consider locally-constant functions instead of constant
functions.
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We will see more sophisticated examples of a pre-sheaf that is not a sheaf below.

HW 3.51. Given a fiber bundle F −→M , the assignment U −→ H∗dR(π−1(U),R) is a pre-sheaf.
Is this also a sheaf?

Next, suppose F is a pre-sheaf on a topological space M that takes values in the category of
abelian groups. We will denote the group structure on each F(U) by addition, but in practice
the group structure may indeed be a product. For instance, in Example 3.48, with G = C∗,
we get the sheaf of locally constant functions with values in C∗ where the group structure is
the product. We define the cech cohomology of a pre-sheaf A with respect to an open cover
A = {Uα}α∈I following the same recipe as in (3.33).

Define
Cq(A,F) =

⊕
I∈Pq+1(I)

F(UI).

Like before, it will be convenient to write an element η ∈ Cq(A,F) as

η =
⊕

i0,...,iq∈I
ηi0i1...iq

with the convention that
ηi0i1...iq = (−1)ε(σ)ηiσ(0)iσ(1)...iσ(q)

for every permutation σ of (i0, . . . , iq). In particular, just like differential forms,

ηi0i1...iq = 0

whenever ia = ib for some a 6= b; otherwise,

ηi0i1...iq ∈ F(Ui0i1...iq).

The co-boundary map R : Cq−1(A,F) −→ Cq(A,F) is defined by

(
R(η)

)
i0i1...iq

=

q∑
a=0

(−1)a ηi0...ia−1ia+1...iq |Ui0...iq .

It is easy to check that R ◦ R = 0 (again, remember that 0 means the trivial homomorphism
of the category in the question. If the group structure is a product, this will be the trivial
homomorphism the maps everything to 1). Therefore

(
C•(A,F),R

)
is a cochain complex. The

cech cohomology groups of F with respect to A are the cohomology groups of this complex:

Ȟk(A,F) =
Ker

(
Ck(A,F)

R−→ Ck+1(A,F)
)

Image
(
Ck−1(A,F)

R−→ Ck(A,F)
) . (3.36)

The natural questions are:

(1) How does this group depend on A?
(2) How can we obtain cohomology groups that are invariants of F only?

We discuss a few examples before answering these questions.
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Example 3.52. Suppose M is a smooth m-manifold; the assignment

U −→ O∗sm,M (U) ..= C∞(U,C∗)

defines a sheaf of abelian groups where the group structure is the point-wise multiplication of
C∗-valued smooth functions. Suppose A = {Uα} is an atlas on M where each Uα is a ball in
Rm. By definition, a 1-cocycle

ϕ ∈ C1(A,O∗sm,M )

is a collection of C∗-valued smooth function

ϕαβ : Uαβ = Uα ∩ Uβ −→ C∗

such that
(Rϕ)αβγ = ϕβγϕ

−1
αγϕαβ|Uαβγ = 1.

Note that this is the multiplicative version of the definition of the cochain map of the cech
cohomology. So Rφ = 1 if and only if

ϕαγ(x) = ϕβγ(x)ϕαβ(x) ∀ x ∈ Uαβγ .

This is exactly the cocycle condition of the transition maps

(Uα × C)|Uαβ −→ (Uβ)× C|Uαβ , (x, c) −→ (x, ϕαβ(x)c)

of a complex line E −→M bundle. Conversely, if E −→M is a complex line bundle, for every
α ∈ I, since Uα is a ball in Rm, the restriction E|Uα is isomorphic to the trivial bundle Uα ×C.
Therefore, the transition maps {ϕαβ : Uαβ −→ End(C) = C∗} define a cech 1-coccyle ϕ. Two
cech 1-cocyles ϕ = {ϕαβ} and ϕ′ = {ϕ′αβ} define the same cohomology group if and only if they
differ by a coboundary; i.e. if

ϕ′αβϕ
−1
αβ = (Rθ)αβ = θβθ

−1
α (3.37)

for some
θ = (θα)α∈I ∈ C0(A,O∗sm,M ) =

∏
α∈I

C∞(Uα,C∗).

Let E and E′ denote the complex line bundles corresponding to ϕ and ϕ′, respectively. By
(3.37), the following diagram commutes

Uα × C|Uαβ
θα //

ϕαβ

��

Uα × C|Uαβ
ϕ′αβ
��

Uβ × C|Uαβ
θβ // Uβ × C|Uαβ .

Which means the local isomorphisms

E|Uα ∼= Uα × C −→ E′|Uα ∼= Uα × C, (x, c) −→ (x, θα(x)c)

are compatible on the overlaps and define a global isomorphism E
θ−→ E′. We conclude

that there is a one-to-one correspondence between the elements of the cech cohomology group
Ȟ1(A,O∗sm,M ) and the isomorphism classes of smooth complex line bundles on M . Furthermore,

Ȟ1(A,O∗sm,M ) does not depend on such an atlas A and therefore we denote it by Ȟ1(M,O∗sm,M ).
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The set of isomorphism classes of complex line bundles on any smooth manifold M is a group
whose identity element is the trivial bundle M × C and whose product structure is the tensor
product

E,E′ −→ E ⊗ E′.

This group structure coincides with the group structure on Ȟ1(M,O∗sm,M ).

HW 3.53. • Use a covering of S2 with two disks to show that Ȟ1(S2,O∗sm,S2) ∼= Z.

• Consequently, show that the group of isomorphism classes of smooth complex line bundles on
S2 ∼= P1 is generated by γ or γ∗, where γ is the tautological complex line bundle of P1.

• Show that ∫
P1

c1(γ∗) = 1.

Conclude that the isomorphism Ȟ1(P1,O∗P1) ∼= Z is also given by

E −→ deg(E) ..=

∫
P1

c1(E).

• Use HW 2.48 to show that TP1 = (γ∗)⊗2.

HW 3.54. Suppose M is a complex m-manifold; the assignment

U −→ O∗M (U) = {nowhere-zero holomoprhic functions on U}

defines a sheaf of abelian groups where the group structure is the point-wise multiplication of
C∗-valued holomorphic functions. Suppose A = {Uα} is an atlas on M where each Uα is a ball
in Cm. Repeat Example 3.52 to show that there is a one-to-one correspondence between the
elements of the cech cohomology group Ȟ1(A,O∗M ) and the isomorphism classes of holomorphic
line bundles on M . Repeat HW 3.53 by showing Ȟ1(P1,O∗P1) ∼= Z.

HW 3.55. Unlike for P1 = S2, where

Ȟ1(P1,O∗sm,P1) ∼= Ȟ1(P1,O∗P1) ∼= Z,

for M = T2 = C/Z2, show that

Ȟ1(T2,O∗sm,T2) ∼= Z and Ȟ1(T2,O∗T2) ∼= Z× T2.

This means there is a T2-family of different holomorphic line bundles on T2 that are all smoothly
isomorphic to the trivial complex line bundle T2 × C.

Given two open coverings A = {Ui}i∈I and B = {Vj}j∈J of a topological space M , we say B is
a refinement of A if for every j ∈ J , there is i ∈ I such that Vj ∈ Ui. Every two open coverings
of M admit a common refinement.

Example 3.56. Suppose M is a smooth m-manifold and fix p ≥ 0. The assignment

U −→ Ωp(U)
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defines a sheaf which we denote it by Ωp. For every open covering A, by Lemma 3.40, we have

Ȟk(A,Ωp) =

{
Ωp(M) if k = 0;

0 otherwise.

In general, any sheaf F that admits partition of unity has this property; i.e.

Ȟk(A,F) =

{
F(M) if k = 0;

0 otherwise.

Locally constant sheaves G, sheaves of holomorphic nature, and O∗sm,M do not admit partition
of unity. On the other hand, sheaves of smooth sections of a vector bundle admit partition of
unity and have trivial cech cohomology in positive degree.

Suppose B is a refinement of A, and fix a map

% : J −→ I s.t Vj ⊂ U%(j) ∀ j ∈ J . (3.38)

If F is a pre-sheaf on M , the induced maps

% : Cq(A,F) =
⊕

I∈Pq+1(I)

F(UI) −→ Cq(B,F) =
⊕

J∈Pq+1(J )

F(VJ),

(
%(η)

)
j0...jq

= η%(j0)...%(jq)|Vj0...jq ∀ q ≥ 0,

define a cochain map
% :
(
C•(A,F),R

)
−→

(
C•(B,F),R

)
; (3.39)

i.e. % commutes with R on both sides. Let

% : Ȟk(A,F) −→ Ȟk(B,F) ∀ k ≥ 0

denote the induced maps between the cech cohomology groups.

Lemma 3.57. For different maps % and %′ as in (3.38), the induced cochain maps % and %′ in
(3.39) are chain homotopic. Therefore,

% = %′ : Ȟk(A,F) −→ Ȟk(B,F) ∀ k ≥ 0;

i.e. there are well-defined group homomorphisms

Ȟk(A,F) −→ Ȟk(B,F) ∀ k ≥ 0

that only depend on A and B (this partially answers Question (1) above).

Proof. For
K : Cq+1(A,F) −→ Cq(B,F),(
K(η)

)
j0...jq

=

q∑
a=0

(−1)aη%(j0)...%(ja)%′(ja)...%′(jq)|Vj0...jq

show that
%− %′ = RK +KR :

(
C•(A,F),R

)
−→

(
C•(B,F),R

)
.
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The cech cohomology groups of M with values in F are defined to be the direct limits of
Ȟk(A,F) with respect to the refinement ordering A < B; i.e.

Ȟk(M,F) = lim
−→
A

Ȟk(A,F) ∀ k ≥ 0.

This answers Question (1) above. In practice, there is often a “good class” of open coverings A
on which the limit is achieved; i.e.

Ȟk(M,F) = Ȟk(A,F) ∀ k ≥ 0

whenever A belongs to this good class of open coverings. For example, in the case of the locally
constant sheaf R on a smooth manifold M , by Proposition 3.35, the limit is achieved on the
class of good coverings.

A map of pre-sheaves f : F −→ G on M is a collection of maps

{fU : F(U) −→ G(U)}U∈Obj(Open(M))

that commute with the restriction maps; i.e. RU,V ◦ fU = fV ◦ RU,V for all V ⊂ U . If F and G
take in (abelian) groups, the kernel of f is the per-sheaf

Ker(f)(U) = Ker
(
fU : F(U) −→ G(U)

)
∀ U ∈ Obj(Open(M)).

HW 3.58. Show that if F and G are sheaves, then Ker(f) is also a sheaf.

Similarly, the cokernel pre-sheaf is defined by

CoKer(f)(U) =
G(U)

fU (F(U))
∀ U ∈ Obj(Open(M)).

Unlike kernel, even if F and G are sheaves, the cokernel need not be to be a sheaf. Here is an
example.

Example 3.59. Let M = C− {0}, G = O∗M , F = OM , where OM is the sheaf of holomorphic
functions. Consider the sheaf map exp: OM −→ O∗M , where

expU : OM (U) −→ O∗M (U), α(z) −→ β(z) = e2πiα(z).

is the exponential map for all U ∈ Obj(Open(M)). Since log(z) is not defined over U = C−{0},
the function z ∈ C∗(C− {0}) gives a non-trivial element

[1] 6= [z] ∈
O∗M (C− {0})

expC−{0}(OM (C− {0}))
.

Suppose U = V1 ∪ V2 such that V1 and V2 are simply connected open subsets. Then, log(z|V1)
and log(z|V2) are defined; therefore, the restrictions of the C∗-valued function z to V1 and V2 are
trivial in

O∗M (V1)

expU (OM (V1))
and

O∗M (V2)

expU (OM (V2))
,

respectively. This implies that, at least, the “uniqueness” condition in Definition 3.49 is not
satisfied. The problem here is that Coker(expC−{0}) is bigger than what it should be. Note that
Ker(exp) is the sheaf Z of locally constant functions with values in Z.
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As the previous example illustrates, in order to build a sheaf F from a pre-sheaf F̃ , we need to
break large open sets U into smaller pieces in the following way.

Proposition 3.60. Suppose F̃ is a pre-sheaf on M that takes values in abelian groups. For
every pair of open sets V ⊂ U , there is a canonical restriction map

RU,V : Ȟ0(U, F̃ |U ) −→ Ȟ0(V, F̃ |V ) (3.40)

such that the assignment
U −→ F(U) = Ȟ0(U, F̃ |U ) (3.41)

defines a sheaf on M .

The process F̃ −→ F is known as sheafification. Before, we go over the proof, let’s elaborate
on the meaning of (3.41) a little bit. The two defining conditions of a sheaf F are equivalent to
the exactness of the sequence

0 −→ F(U)
R−→
⊕
α

F(Uα)
R−→
⊕
α,β

F(Uαβ),

F(U) 3 η −→
⊕
α

η|Uα ,
⊕
α

η|Uα −→
⊕
α,β

(
ηβ − ηα

)
|Uα,β ,

for every decomposition U =
⋃
α∈I Uα of an open set U into open subsets. On the other hand,

for A = {Uα}α∈I , by definition we have

Ȟ0(A,F|U ) = Ker
(⊕

α

F(Uα)
R−→
⊕
α,β

F(Uαβ)
)
.

Therefore, if F is a sheaf then F(U) = H0(A,F|U ); i.e. F(U) is uniquely determined by its
restrictions to Uα. This explains the motivation behind (3.41): for a sufficiently refined decom-
position A, an element of F(U) is a collection of sections of F̃ on Uα that match along the
overlaps. Note that Ȟ0(U, F̃ |U ) involves taking limit on A, and often, this limit is achieved for
certain class of open coverings.

Proof of Proposition 3.60. First, we describe the restriction maps (3.40). For every de-
composition U =

⋃
α∈I Uα of an open set U into open subsets, and every open subset V ⊂ U ,

we get an induced open decomposition V =
⋃
α∈I Vα such that Vα = V ∩ Uα for α ∈ I. Let

A = {Uα}α∈I and A ∩ V ..= {Vα}α∈I . Since the diagram⊕
α F̃(Uα)

R //

⊕
α∈I RUα,Vα

��

⊕
α,β F̃(Uαβ)⊕

α,β∈I RUαβ,Vαβ
��⊕

α F̃(Vα)
R //

⊕
α,β F̃(Vαβ)

commutes, we get a map from the kernel of the first row to the kernel of the second row:

Ȟ0(A, F̃ |U ) −→ Ȟ0(A ∩ V, F̃ |V ).

Taking the limit of these maps with respect to the refinements of A, we obtain the canonical
restriction map in (3.40). Using a similar commutative diagram for W ⊂ V ⊂ U , it is straight-
forward to check that (3.40) satisfies the third condition of Definition 3.46.
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Suppose U =
⋃
i∈I Ui as well as U =

⋃
j∈J Vj are arbitrary open decompositions of U . Let

Aj = {Ui ∩ Vj}i∈I ∀ j ∈ J , A =
⋃
j∈J
Aj ,

Ajj′ = {Ui ∩ Vj ∩ Vj′}i∈I ∀ j 6= j′ ∈ J .

Suppose
ηj ∈ Ȟ0(Aj , F̃ |Vj ).

By definition ηj =
⊕

i∈I ηj;i such that(
ηj;i − ηj;i′

)
|Vj;ii′=Vj∩Ui∩Ui′ = 0 i, i′ ∈ I. (3.42)

By the definition of (3.40) above we have

ηj |Vjj′ =
⊕
i∈I

ηj;i|Ui∩Vj∩Vj′ .

Therefore,
ηj |Vjj′ = ηj′ |Vjj′ ∀ j, j′ ∈ J

if and only if
ηj;i|Ui∩Vj∩Vj′ = ηj′;i|Ui∩Vj∩Vj′ ∀ i ∈ I, j, j′ ∈ J . (3.43)

Therefore, by (3.42) and (3.42), for i, i′ ∈ I and j, j′ ∈ J ,

ηj;i|(Ui∩Vj)∩(U ′i∩Vj′ ) = ηj′;i′ |(Ui∩Vj)∩(U ′i∩Vj′ );

i.e. η =
⊕

j∈J ,i∈I ηj;i defines an element of Ȟ0(A, F̃ |U ). This implies that the sequence

Ȟ0(A, F̃ |U ) −→
⊕
j∈J

Ȟ0(Aj , F̃ |Vj ) −→
⊕
j,j′∈J

Ȟ0(Ajj′ , F̃ |Vjj′ )

is exact. The first map is clearly an inclusion; therefore,

0 −→ Ȟ0(A, F̃ |U ) −→
⊕
j∈J

Ȟ0(Aj , F̃ |Vj ) −→
⊕
j,j′∈J

Ȟ0(Ajj′ , F̃ |Vjj′ )

is exact. Taking limit, we conclude that

0 −→ Ȟ0(U, F̃ |U ) −→
⊕
j∈J

Ȟ0(Vj , F̃ |Vj ) −→
⊕
j,j′∈J

Ȟ0(Vjj′ , F̃ |Vjj′ )

is exact; i.e. F is a sheaf.

Theorem 3.61. A pre-sheaf F̃ and its sheafification F have the same cech cohomology groups.
For every sheaf G and a map of pre-sheaves f̃ : F̃ −→ G, there is a map of sheaves

f : F −→ G

such that
f̃U = fU ◦ ιU : F̃(U) −→ G(U).

Here, ιU : F̃(U) −→ F(U) is the natural restriction map.
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We leave the proof of this theorem to the reader. The key point of the first statement is that
cech cohomology involves taking limit with respect to refinements. The second statement follows
from the commutative diagram

0 // Ȟ0(A, F̃ |U ) //
⊕

α F̃(Uα)
R //

��

⊕
α,β F̃(Uαβ)

��
0 // G(U)

R //
⊕

α G(Uα)
R //

⊕
α,β G(Uαβ) .

We say that a sequence of sheaf maps

0 −→ F f−→ G g−→ E −→ 0

is exact if F is Ker(g) and E is the sheafification of Coker(f). In this situation, we also say F
is a sub-sheaf of G and E is a quotient of G. Note that the exactness above does not mean that

0 −→ F(U)
fU−→ G(U)

gU−→ E(U) −→ 0

is exact for all open subsets U ⊂M ; i.e. gU may not be surjective. We write

0 −→ F(U)
fU−→ G(U)

gU−→ E(U)

to indicate that F(U) = Ker(fU ) but Coker(gU ) might be non-trivial. More generally, we say

· · · −→ Fk−1
fk−1−−−→ Fk

fk−→ Fk+1 −→ · · ·

is exact if Ker(fk) is equal to the sheafification of Coker(fk−1).

Example 3.62. Here are some important examples of exact sequences.
(1) If M is a holomorphic manifold, the sequence

0 −→ Z −→ OM −→ O∗M −→ 0,

where the first map is the inclusion map, is exact.
(2) Similarly, for every smooth manifold M , let Osm,M denote the sheaf of smooth C-valued
functions. Then the sequence

0 −→ Z −→ Osm,M −→ O∗sm,M −→ 0,

(3) For every smooth manifold M , by Poincare Lemma, the sequence of sheaves

0 −→ R ι−→ Ω0 d−→ Ω1 d−→ Ω2 −→ . . . ,

where Ωp is the sheaf of p-forms in Example 3.48, is exact.
(4) If M is a holomorphic manifold, let Ωp

hol denote the sheaf of holomorphic p-forms on M , and
Ωp,q denote the sheaf of smooth (p+q)-forms on type (p, q) on M . By ∂̄-Poincare Lemma, the
sequence

0 −→ Ωp
hol

ι−→ Ωp,0 ∂̄−→ Ωp,1 ∂̄−→ Ωp,2 −→ . . .

is exact.
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Theorem 3.63. Corresponding to every short exact sequence of sheaves

0 −→ F f−→ G g−→ E −→ 0

there is a long exact sequence of cech cohomology groups

0 −→ Ȟ0(M,F)
f∗−→ Ȟ0(M,G)

g∗−→ Ȟ0(M, E)

δ∗−→ Ȟ1(M,F)
f∗−→ Ȟ1(M,G)

g∗−→ Ȟ1(M, E)

−→ · · · .

The proof is by some standard diagram chasing argument.

Example 3.64. (1) Suppose M is a smooth manifold. The short exact sequence

0 −→ Z −→ Osm,M −→ O∗sm,M −→ 0,

results in the long exact sequence

0 −→ Ȟ0(M,Z) −→ Ȟ0(M,Osm,M ) −→ Ȟ0(M,O∗sm,M )

δ∗−→ Ȟ1(M,Z) −→ Ȟ1(M,Osm,M ) −→ Ȟ1(M,O∗sm,M )

δ∗−→ Ȟ2(M,Z) −→ Ȟ2(M,Osm,M ) −→ Ȟ1(M,O∗sm,M )

−→ · · · .

Since the sheaf Osm,M admits partition of unity, all of its higher degree cech cohomology groups
are trivial. Therefore,

0 −→ Ȟ0(M,Z) −→ Ȟ0(M,Osm,M ) −→ Ȟ0(M,O∗sm,M )

δ∗−→ Ȟ1(M,Z) −→ 0 −→ Ȟ1(M,O∗sm,M )

δ∗−→ Ȟ2(M,Z) −→ 0 −→ Ȟ2(M,O∗sm,M )

−→ · · · .

We conclude that
Ȟ1(M,O∗sm,M ) ∼= Ȟ2(M,Z).

By Example 3.52, Ȟ1(M,O∗sm,M ) is the group of isomorphism classes of the complex line bundles
on M . The map above send each complex line bundle to its first chern class in

Ȟ2(M,Z) ∼= H2
sing(M,Z).

Therefore, every smooth complex line bundle is uniquely determined by its (integral) chern class.
Note that, first chern class as a cohomology class in H2

dR(M,R) does not see the torsion part of
the integral first chern class in singular cohomology.

(2) Suppose M is holomorphic. The short exact sequence

0 −→ Z −→ OM −→ O∗M −→ 0,
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results in the long exact sequence

0 −→ Ȟ0(M,Z) −→ Ȟ0(M,OM ) −→ Ȟ0(M,O∗M )

δ∗−→ Ȟ1(M,Z) −→ Ȟ1(M,OM ) −→ Ȟ1(M,O∗M )

δ∗−→ Ȟ2(M,Z) −→ Ȟ2(M,OM ) −→ Ȟ1(M,O∗M )

−→ · · · .

The first row of this diagram is exact and can be ignored. This time, however,

Ȟ1(M,OM ) ∼= H0,1

∂̄
(M,C)

where the Dolbeault cohomology group H0,1

∂̄
(M,C) is the first cohomology of the cochain com-

plex

0 −→ Ω0,0(M)
∂̄−→ Ω0,1(M)

∂̄−→ Ω0,2(M) −→ . . . .

For example, if M is a genus g Riemann surface, then Ȟ1(M,OM ) ∼= Cg. Therefore, we get

0 −→ Ȟ1(M,Z) −→ Ȟ1(M,OM ) −→ Ȟ1(M,O∗M )

δ∗−→ Ȟ2(M,Z) −→ . . .

The quotient
Ȟ1(M,OM )

Ȟ1(M,Z)

is a torus known as Pic0(M) or Jacobian of M . It is the group of holomorphic line bundles on M
that are smoothly trivial; see HW 3.55. The group Ȟ1(M,O∗M ) corresponds to the isomorphism
classes of holomorphic line bundles on M and is denoted by Pic(M) (Picard group of M). As
above, the map

Pic(M) −→ Ȟ2(M,Z) ∼= H2
sing(M,Z)

sends each complex line bundle to its first chern class. Also, we have Ȟ2(M,OM ) ∼= H0,2

∂̄
(M,C).

Therefore, we have an exact sequence.

0 −→ Pic0(M) −→ Pic(M) −→ H2
sing(M,Z) −→ H0,2

∂̄
(M,C)

If H0,2

∂̄
(M,C) = 0, every element of H2

sing(M,Z) is the first chern class of some holomorphic
line bundle. Otherwise, there are (smooth) complex line bundles on M that do not admit any
holomorphic structure. If M is a Riemann-surface, for dimensional reasons, H0,2

∂̄
(M,C)=0. In

complex dimension 2, a K3 surface is a simply connected (Kahler) holomorphic surface M with
c1(TM) = 0. If M is a K3 surface, we have H0,2

∂̄
(M,C) ∼= C. All K3 surfaces are smoothly

identical (diffeomorphic). The complex line

C ∼= H0,2

∂̄
(M,C) ⊂ H2

dR(M,C) ∼= C22

defines a point in the projective space P21 = P(H2
dR(M,C)). This gives us a map

{The space of all K3 surfaces} −→ P21

that helps us understand the “moduli” space of K3 surfaces.
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We finish this section with the following result.

Theorem 3.65. Suppose M is a smooth m-manifold, then

Ȟk(M,Z) ∼= Hk
sing(M,Z).

Proof. Fix a triangulation K of M . For each k-simplex τ ∈ K, let Uτ denote the interior of
the union of m-simplices containing τ (in their boundary); c.f. Example 3.44. For a sufficiently
refined K, each Uτ is homeomorphic to Rm. For every k ≥ 0, let K(k) denote the set of k-simplices
in K. Then,

A = {Up}p∈K(0)

is a good covering of M such that

Up0···pk =

{
Uτ if p0, . . . , pk are vetrices of τ ∈ K(k)

∅ otherwise.

Therefore, the correspondence τ ↔ Uτ gives a natural isomorphism

Hom(Ck(K,Z),Z) ∼= Ck(A,Z)

that matches the coboudary maps ∂∗ and R. Since A is a good covering, Ȟk(M,Z) = Ȟk(A,Z).
Therefore, Ȟk(M,Z) ∼= Hk

sing(M,Z), for all k ≥ 0.

If M is an oriented smooth manifold, combining all the previous duality results over R we have

Hm−k
c,dR (M,R)∗ ∼= Hk

dR(M,R) ∼= Ȟk(M,R) ∼= Hk
sing(M,R) ∼= Hk(M,R)∗

If M is closed, the first term above is just Hm−k
dR (M,R) and we can add one more term to right

to get

Hm−k
dR (M,R)∗ ∼= Hk

dR(M,R) ∼= Ȟk(M,R) ∼= Hk
sing(M,R) ∼= Hk(M,R)∗ = Hm−k(M,R).

If M is the interior of a compact manifold with boundary N , i.e. M = N − ∂N , then, there are
relative singular homology groups Hk(N/∂N,Z) such that

Hm−k
c,dR (M,R)∗ ∼= Hk

dR(M,R) ∼= Ȟk(M,R) ∼= Hk
sing(M,R) ∼= Hk(M,R)∗ ∼= Hm−k(N/∂N,R).

The direct duality between the first and the last term

Hm−k
c,dR (M,R)∗ ∼= Hm−k(N/∂N,R)

comes from integration of compactly supported forms on simplices.

3.4 Morse (co-)homology

Let M be a smooth oriented closed m-manifold, and f : M −→R be a smooth Morse function;
see Definition 2.85. Fix a Riemannian metric g on M and let ∇f denote the gradient vector
field of f . Let

φ : R×M −→M, (x, t) −→ φt(x),
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denote the ODE of the vector field ∇f (If we replace ∇f with −∇f , we will get a homology
theory instead of a cohomology theory). For each critical point x∈Crit(f), the unstable manifold
Ux is the set

Ux = {y ∈M : lim
t−→−∞

φt(y) = x}

and the stable manifold Sx is the set

Sx = {y ∈M : lim
t−→∞

φt(y) = x}.

They are submanifolds by the following result.

Proposition 3.66. Suppose M is a closed manifold. The stable and unstable sets of a critical
point x are submanifolds. Moreover, they are diffeomorphic to open disks.

Let 0 ≤ index(x) ≤ m denote the index of x as in Definition 2.86. By definition, we have
decomposition

TxM = T+
x M ⊕ T−x M (3.44)

where T±x M are the (±)-eigen spaces of the second-derivative map Qx in (2.42). By (2.43), the
subspaces T+

x M and T−x M are the tangent spaces at x to the unstable and stable submanifolds
of ∇f . Therefore,

dimR Ux = m− index(x) and dimR Sx = index(x).

If x, y ∈ Crit(f), we define

M̃(x, y) = {z ∈M : lim
t−→∞

φt(z) = y, lim
t−→−∞

φt(z) = x} = Ux ∩ Sy. (3.45)

The ODE flow of ∇f gives an action of R on M̃(x, y); the quotient space

M(x, y) = M̃(x, y)/R (3.46)

is the set of orbits connecting x to y.

Definition 3.67. The pair (f, g) of a function f : M −→ R and a metric g is called Morse-Smale
if f is Morse, and for every pair of critical points x and y, the intersection (3.45) is transverse.

Theorem 3.68. Given a Morse function f , there is a metric g such that the pair (f, g) is
Morse-Smale.

Example 3.69. The function f : T2 −→ R in Figure 1 is Morse but not Morse-Smale. If we
tilt the torus in Figure 1 a little bit so that it is not standing upright, the hight function f will
become Morse-Smale; see Figure 6. In this Picture, x has index 0, y and z have index 1, and
w has index 2. Furthermore, each of M(x, y), M(x, z), M(y, w), and M(z, w) is a set of size 2,
while M(x,w) is an open 1-dimensional manifold isomorphic to the disjoint union of 4 copies of
(0, 1).

HW 3.70. Thinking of a torus as a rectangle with its opposite sides attached (with x corre-
sponding to the corner points), draw a picture which illustrates the (pre-image of the) Morse
flow lines of Example 3.69 on the rectangle.
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Figure 6: Gradient trajectories of a Morse-Smale function on torus.

If f is Morse-Smale, then for every x, y ∈ Crit(f), M(x, y) is a smooth (but usually open)
manifold of dimension

dimR M(x, y) = index(y)− index(x)− 1. (3.47)

In particular, (we will prove that)

(1) if index(y) = index(x)− 1, then M(x, y) is a finite set of orbits

M(x, y) = {γ1
x,y, . . . , γ

k
x,y};

(2) and if index(y) = index(x) − 2, then M(x, y) has a finite number of components that are
diffeomorphic to (0, 1) or S1.

For each x ∈ Crit(f), fix an orientation on T+
x M . Since M is oriented, by (3.44), we also get

an orientation on T−x M . These orientations extend to orientations on Ux and Sx. Then, in the
case (1), for each γix,y, we obtain an intersection orientation on the 1-dimensional manifold

R ∼= γix,y ⊂ Ux ∩ Sy.

We say γix,y is oriented positively, and write ε(γix,y) = +1, if and only if the intersection orien-
tation on γix,y coincides with the orientation of the flow of ∇f . We write

nx,y =

k∑
i=1

ε(γix,y) ∈ Z.

The Morse cochain complex is defined in the following way:

Cq(f) =
⊕

x∈Crit(f)
index(x)=q

Z · x,

∂∗ : Cq(f) −→ Cq+1(f), ∂∗x =
∑

y∈Crit(f)
index(y)=q+1

nx,y y .
(3.48)

Theorem 3.71. The coboundary operator ∂∗ above is well-defined (i.e. the coefficients nx,y are
finite) and satisfies ∂∗ ◦ ∂∗ = 0.
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Proof. Here is a sketch of the proof. For every x, z ∈ Crit(f) with index(z)− index(x) = 2, the
coefficient of z in ∂∗ ◦ ∂∗(x) is the quantity∑

y∈Crit(f)
index(y)=index(x)+1

nx,y · ny,z. (3.49)

This quantity is the signed number of broken trajectories from x to y. By (3.47), the orbit
space M(x, z) is 1-dimensional. Therefore, it is made of (a finite number of) components that
are diffeomorphic to either S1 or (0, 1). For each component that is diffeomorphic to (0, 1),
we have a 1-parameter family of orbits {γt}t∈(0,1). As t −→ 0, 1, γt converges to a broken
trajectory. Therefore, broken trajectories counted in (3.49) come in pairs. Furthermore, in each
pair, the signs are different; therefore, the contribution of each pair is zero. We conclude that
∂∗ ◦ ∂∗(x) = 0.

Example 3.72. In the example of Figure 6, for suitable choice of orientation on T+
x M , T+

y M ,
T+
z M , and T+

wM , the cochain complex is

0 −→ C0(f) = Z · x −→ C1(f) = Z · y ⊕ Z · z −→ C2(f) = Z · w −→ 0

where all the coboundary maps are trivial because for every R-orbit there is a mirror orbit with
the opposite sign. Therefore, the Morse cohomology groups of the cochain complex are the same
as the singular cohomology groups of the 2-torus.

Remark 3.73. The metric plays little role in the definition of Morse homology. It only allows
us to define a vector field from a function f and study its flow. More generally, we can consider
the flow of any gradient-like vector field. A vector field is called gradient-like for f if (1)
dxf(ζ(x)) ≥ 0 for all x ∈ M , and equality holds if and only if x is a critical point of f ; and
(2) in a Morse chart around a critical point x, ζ agrees with ∇f (w.r.t. the canonical metric of
Rm).

Remark 3.74. One may work with Z2 instead of Z to avoid the orientation problem and extend
the construction of Morse cohomology to non-oriented manifolds.

Remark 3.75. The Morse homology is defined by following the flow of−∇f , instead. Therefore,
the chain complex is defined in the following way:

Cq(f) =
⊕

x∈Crit(f)
index(x)=q

Z · x,

∂ : Cq(f) −→ Cq−1(f), ∂y =
∑

x∈Crit(f)
index(x)=q−1

nx,y x .
(3.50)

It is easy to see that cochain complex (3.48) is the dual of the chain complex (3.50).

Theorem 3.76. Every Morse-Smale function f : M −→ R gives M the structure of a CW
complex C such that the Morse homology of f coincides with the cellular homology of C.

Proof. By Theorem 3.66, take C to be the CW complex whose k-cells are the stable manifolds
of the index k critical points.
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Theorem 3.76 shows that Morse (co-)homology is independent of the particular choice of f and
metric. This can also be shown directly in the following way.

HW 3.77. Suppose (f, g) and (f ′, g′) are two different pairs. Choose a function h : R −→ R
that is Morse with two critical points at 0 and 1 (the minimum and maximum respectively),
such that h is increasing sufficiently fast between 0 and 1 so that

∂F (t, x)

∂t
+ h′(t) > 0 ∀ (t, x) ∈ [0, 1]×M.

Equip [0, 1]×M with a metric G and a Morse-Smale function F such that

• F (t, x) = f(x) + h(t) on [0, 1/3]×M and F (t, x) = f ′(x) + h(t) for [2/3, 1]×M ;

• G is the product metric dt2 + g on [0, 1/3]×M and dt2 + g′ on [2/3, 1]×M .

Then, show that
Ck(F ) = Ck(f)⊕ Ck−1(f ′)

and
∂∗F : Ck(F ) −→ Ck+1(F )

has the form

∂∗F =

[
∂∗f ΦF

0 ∂∗f ′

]
.

Show that the (cochain) map
Φ: C•(f) −→ C•(f ′)

descends to an isomorphism of Morse cohomology groups.

Theorem 3.76 has some interesting consequences/applications. First, it gives an upper bound
for the Betti numbers

bk(M) = rank Hk(M,Z)

which is known as the “Weak Morse inequalities”: if M is an oriented closed manifold, then
bk(M) is smaller than the number nk of index k critical points of any Morse function on M .
Therefore, f has at least as many critical points as the sum of the ranks of the homology groups
of M . If we compare the rank of the homology groups of (3.50) and that of finite dimensional
spaces Ck(f) more carefully, we obtain the following result.

Theorem 3.78. (Strong Morse inequalities) Let M be a closed oriented manifold, and f a
Morse function on M . Then for every ` ≥ 0 we have

∑̀
k=0

(−1)knk ≥
∑̀
k=0

(−1)kbk(M).

Also, a careful comparison of Definition 2.14 and the numbers nk shows that

χ(M) =

dim(M)∑
k=0

(−1)knk.

Since the chain complex (3.50) and its homology have the same euler characteristic, it follows
that

χ(M) =

dim(M)∑
k=0

(−1)kbk(M).
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4 Classifying spaces

4.1 Classification spaces of vector bundles

If π : E −→ M is a (smooth or topological) vector bundle and f : N −→ M is a (smooth or
continuous) map, the pullback vector bundle f∗E is a vector bundle over N whose fiber at x ∈ N
is E|f(x). If E is a complex vector bundle, using the de Rham cohomology description of chern
classes using the curvature (2.32), it is easy to confirm the functorial property that

ci(f
∗E) = f∗ci(E) ∀ k ∈ N.

For every k ∈ Z>0, it is natural to ask whether:

there exists a topological space Pk and a (real/complex) rank k vector bundle Ek such that
every other rank k vector bundle E −→ M is of the form E = f∗Ek for some f : M −→ Pk.
Below, first, we answer this question for complex line bundles. We then extend it to higher ranks.

For every n ≥ 0, consider the tautological line bundle

γn −→ CPn

defined in Example 2.30. For every m ≥ n, the natural inclusion Cn = Cn × {0}m−n ⊂ Cm
results in a natural embedding CPn ⊂ CPm such that γm|CPn = γn. Therefore, increasing n
from 0 to ∞, we obtained a sequence of embeddings

γ0
� � //

��

γ1
� � //

��

γ2
� � //

��

· · ·

CP0 � � // CP1 � � // CP2 � � // · · ·

We define γ∞ −→ CP∞ to be the limiting complex line bundle. More explicitly, C∞ is the
infinite dimensional complex vector space of non-trivial sequences x = (x0, x1, x2, . . .) such that
all but finitely many xi are 0, CP∞ is the qoutient of C∞ by the component-wise C∗-action,
and γ∞ is the complex line bundle whose fiber over [x] is the line C · x. By Example 3.6 and
Poincare duality (of singular homology with singular cohomology), for each n ≥ 0, we have

H i(CPn,Z) =

{
Z if i = 2k, 0 ≤ k ≤ n,
0 otherwise.

Furthermore, the ring H∗(CPn,Z) is generated by h = c1(γ∗n) = −c1(γn) satisfying hn+1 = 0;
i.e.

H∗(CPn,Z) =
Z[h]

(hn+1 = 0)
. (4.1)

Here Z[h] is the integral polynomial ring with variable h. It is easy to see that γ∗n admits a
transversal section that vanishes along CPn−1 ⊂ CPn−1. Therefore, h is the poincare dual of
the hyperplane CPn−1. As n −→∞, the relation hn+1 = 0 disappears; i.e. in a suitable infinite
dimensional sense we have

H∗(CP∞,Z) = Z[h].

Theorem 4.1. For every complex line bundle E −→ M , there is a map f : M −→ CP∞ such
that f∗γ∗∞ = E. If f1 and f2 are two such maps, then f1 is homotopic to f2.
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The first statement in Theorem 4.1 allows us to define c1(E) to be

c1(E) = f∗h. (4.2)

By the second statement, (4.2) is well-defined.

Next, we will extend the construction above to the higher rank and prove the generalization of
Theorem 4.1. For arbitrary r ∈ Z>0, the generalization of CPn is the complex Grassmannian
Grr(n,C) mentioned in HW 2.59. The complex manifold Grr(n) = Grr(Cn) is the space of k-
dimensional subspaces of Cn. Every r-dimensional subspace W ⊂ Cn is generated by r linearly
independent vectors v1, . . . , vr ∈ Cn. These vectors form the the rows of an r×n matrix Y . The
matrix Y ′ corresponding to a different basis is equal to Y for some A ∈ GL(r,C). Therefore,
Grr(n) is the quotient manifold

Grr(n) = GL(r,C)\{Y ∈Mr×n(C) : rank(Y ) = r}.

From a slightly different perspective, the unitary group U(n) ⊂ GL(n,C) acts transitively on
the set of r-dimensional subspaces of Cn, and the stabilizer of Cr ⊂ Cn is U(r) × U(n − r).
Therefore, Grr(n) is equal to the homogenous space (A Lie group quotient10)

U(n)

U(r)× U(n− r)
=

GL(n,C)

GL(r,C)×GL(n− r,C)
.

From the matrix point of view above, the space of (r × n) matrices

V =
{
Y = [I Z] : Z ∈Mr×(n−r)(C)} ∼= Cr×(n−r)

defines a (holomorphic) chart around Cr⊂Cn. The transitive action of U(n) on V gives a chart
around every other point in Grr(n). We conclude that Grr(n) has complex dimension r×(n−r).
A Hermitian pairing

Cn × Cn −→ C

gives an isomorphism Gr(n) −→ Grn−r(n) that sends an r-dimensional subspace W to its
orthogonal complement W⊥. Functorially, this is the isomorphism

Grr(Cn) −→ Grn−r
(
(Cn)∗

)
that sends W to the dual subspace W⊥ ⊂ (Cn)∗ of those linear maps on Cn that vanish on W .
A Hermitian metric identifies Cn with its dual space (Cn)∗ and realizes W⊥ as the orthogonal
complement.

Generalizing Example 2.47, every Gr(k, n) admits a rank r tautological vector bundle

γr,n −→ Grr(n)

whose fiber over the k-dimensional subspace W ⊂ Cn is W it self. In other words,

γr,n = {(W, z) ∈ Grr(n)× Cn : z ∈W} ⊂ Grr(n)× Cn.

The inclusion γr,n ⊂ Grr(n)× Cn gives rise to a short exact sequence of vector bundles

0 −→ γr,n −→ Grr(n)× Cn −→ Qr,n −→ 0 (4.3)

10The quotient of a Lie group by closed subgroup is manifold by [?, p.120].
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such that Qr,n has rank n− r. Dualizing this sequence we get

0 −→ Q∗r,n −→ Grr(n)× (Cn)∗ −→ γ∗r,n −→ 0.

Therefore, under the isomorphism Grr(Cn) ∼= Grn−r
(
(C∗)n

)
, we have

Q∗r,n = γn−r,n and γ∗r,n
∼= Qn−r,n.

If we write

c(γr,n) = 1− c1 + c2 + · · ·+ (−1)rcr and c(Qr,n) = 1 + c∗1 + c∗2 + · · ·+ c∗n−r

then
c(γr,n)c(Qr,n) = 1 + (c∗1 − c1) + (c∗2 + c2 − c∗1c1) + · · · = 1

and

c(γn−r,n) = 1− c∗1 + c∗2 + · · ·+ (−1)rc∗r and c(Qn−r,n) = 1 + c1 + c2 + · · ·+ cr.

Remark 4.2. By HW 2.48, putting r = 1, we get

• Gr(1, n) = CPn−1;

• E(1, n) = γn;

• Q(1, n) = TPn−1 ⊗ γn.

Since c(γn) = (1− h), by (4.3), we have

c(Q1,n) =
1

1− h
= 1 + h+ . . .+ hn−2.

The following theorem generalizes (4.1).

Theorem 4.3. (1) The cohomology ring of Grr(n) is given by

H∗(Grr(n)) =
Z[c1, . . . , cr, c

∗
1, . . . , c

∗
n−r](

c(γr,n)c(Qr,n) = 1
) ;

(2) The chern classes c1, . . . , cr generate H∗(Grr(n));

(3) For a fixed r and every i ≥ 0, there is sufficiently large n0 = n0(r, i) such that for every
n ≥ n0 there are no polynomial relations of degree i (or lower) among c1, . . . , ck.

We will comeback to this later in this section. As before, for every m ≥ n, the natural in-
clusion Cn = Cn × {0}m−n ⊂ Cm results in a natural embedding Grr(n) ⊂ Grr(m) such that
γr,m|Grr(n) = γr(n). Therefore, increasing n from r to∞, we obtained a sequence of embeddings

γr,r
� � //

��

γr,r+1
� � //

��

γr,r+2
� � //

��

· · ·

Grr(r)
� � // Grr(r + 1) �

� // Grr(r + 2) �
� // · · ·

We define γr,∞ −→ Grr(∞) to be the limiting rank r complex vector bundle. The following is
a corollary of Theorem 4.3.(3).
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Corollary 4.4. H∗(Grr(∞)) = Z[c1, . . . , cr].

Theorem 4.5. For every rank r complex vector bundle E −→ M , there is a map f : M −→
Gr(r,∞) such that f∗E∗(r,∞) = E. If f and f ′ are two such maps, then f is homotopic to f ′.

Proof. For simplicity, we assume M is compact; otherwise, in the following argument, one must
consider a countable cover and directly work with C∞. Therefore, there is a sufficiently large n
and n sections {s1, . . . , sn} of E that span (every fiber of) E. These sections result in a surjective
complex linear bundle homomorphism

% : M × Cn −→ E, (p, (x1, . . . , xn)) −→
n∑
i=1

xisi(p) ∈ Ep.

Taking the dual of % we obtain an embedding of E∗ into the trivial bundle

%∗ : E∗ −→ (M × Cn)∗ ∼= M × Cn.

Define
f : M −→ Grr(n), f(p) = [%∗(E∗p)]. (4.4)

We have (
f∗γ∗r,n

)
|p = γ∗r,n|f(p) =

(
%∗(E∗p)

)∗
= Ep.

Therefore, f∗γ∗r,∞ = E.

The second statement says: if we have two maps f, f ′ : M −→ Grr(∞) such that E = f∗γ∗r,∞ =
(f ′)∗γ∗r (∞) then f and f ′ are homotopic. Again, for simplicity we assume M is compact and
f, f ′ have image in some Grr(n). A general proof of this based on obstruction theory may be
found in Steenord [?, Sec 19] and Husemoller [?, Sec 7.6]. This proof has two steps. First, we
show that every f is of the form (4.4), i.e. there are n-sections s1, . . . , sn such that such that f
is the map corresponding to these sections in (4.4).

The surjective bundle map
Grr(n)× (Cn)∗ −→ γ∗r,n

gives us n sections e∗1, . . . , e
∗
n of γ∗r,n that generate γ∗r,n at every point. For every f : M −→ Grr(n)

let si = f∗e∗i , for i = 1, . . . , n, denote the corresponding pullback sections of E = f∗γ∗r,n. If
f ′ : M −→ Grr(n) is the map corresponding to these sections as in (4.4); show that f = f ′.

Now suppose f and f ′ are two maps as in (4.4) given by sections s1, . . . , sn and s′1, . . . , s
′
n.

Consider the product M × [0, 1]. For some N ≥ n, we can find N sections S1, . . . , SN such that
for some ε > 0

• on M × [0, ε] only n of S1, . . . , Sn are non-zero and they coincide with the trivial extensions
of s1, . . . , sn,

• on M× [1−ε, 1] only n of S1, . . . , Sn are non-zero and they coincide with the trivial extensions
of s′1, . . . , s

′
n,

• S1, . . . , SN generate each fiber of E over M × [0, 1].
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Therefore, the map F : M × [0, 1] −→ Grr(N) gives a homotopy between

M
f−→ Grr(n) −→ Grr(N) and M

f ′−→ Grr(n) −→ Grr(N).

If a complex vector bundle E or rank r splits as a sum of complex line bundles

E =

r⊕
i=1

Li (4.5)

and c1(Li) = xi, then we have

c(E) =
n∏
i=1

(1 + xi) = 1 +
(∑

i

xi
)

+
(∑
i<j

xixj
)

+ · · ·+
(
x1 . . . xr

)
.

Every term on the righthand side is a symmetric polynomial in x1, . . . , xr. Moreover, the de-
composition (4.5) allows us to calculate the chern classes of other vector bundles constructed
functorially from E. For example,

• Since E∗ =
⊕r

i=1 L
∗
i and c1(L∗i ) = −xi, we conclude that

c(E∗) =
n∏
i=1

(1− xi) = 1− c1(E) + c2(E)± . . .+ (−1)rcr(E);

• Since E ⊗ E =
⊕r

i=1

⊕r
j=1 Li ⊗ Lj and c1(Li ⊗ Lj) = xi + xj , we conclude that

c(E ⊗ E) =

r∏
i=1

r∏
j=1

(1 + xi + xj) = 1 + (r + 1)
(∑

i

xi
)

+ · · · = 1 + 2rc1 + · · · ; .

In general, for every vector bundle F functorially constructed from E, c(F ) will be a symmetric
polynomial in xi; therefore, it can be written in terms of the chern classes of E. The problem
is, not every arbitrary complex vector bundle admits a decomposition as in (4.5). Nevertheless,
the following result, known as the splitting principle allows us to assume such a splitting exists
to find c(F ).

Theorem 4.6. To prove a polynomial identity in the chern classes of a complex vector bundle,
it suffices to prove it under the assumption that the vector bundles are direct sum of line bundles.

For the proofs of Theorems 4.6 and 4.3, we need to define and study Flag manifolds (varieties).
Flag varieties can be defined in two ways.

Given n ≥ 1, a flag in Cn is a sequence of subspaces

0 = W0 ⊂W1 ⊂W2 ⊂ · · · ⊂Wn = Cn

such that dimCWi = i. Let Fl(n) denote the set of all flags in Cn. Similarly, one may use an
abstract vector space V instead of Cn to define Fl(V ). The group GL(n,C) acts transitively on
Fl(n). The stabilizer of the standard flag

0 ⊂ C ⊂ C2 ⊂ · · · ⊂ Cn
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is the subgroup of upper-triangular matrices H(n,C). Therefore,

Fl(n) = GL(n,C)/H(n,C) (4.6)

is naturally a complex manifold.

More generally, for every rank n complex vector bundle V −→M , the flag manifold Fl(V ) can
be defined inductively in the following way. First, for each x ∈M , we consider the of set of lines
W1 ⊂ Vx which gives us the fiber bundle π1 : F1 = P(V ) −→ F0

..= M with fibers CPn−1. We
have an exact sequence

0 −→ γ1 −→ π∗1V −→ Q1 −→ 0

where γ1 is the tautological line bundle on F1 and Q1 is the rank (n− 1) quotient bundle. Next,
we consider the fiber bundle π2 : F2 = P(Q1) −→ F1 whose fibers are isomorphic CPn−2. Again,
we have an exact sequence

0 −→ γ2 −→ π∗2Q1 −→ Q2 −→ 0

where γ2 is the tautological line bundle on F2 and Q2 is the rank (n − 2) quotient bundle.
Continuing inductively, we obtain a sequence of fiber bundles

Fn
πn−→ Fn−1

πn−1−−−→ · · · −→ F1
π1−→ F0 = M

such that the fiber of Fk
πk−→ Fk−1 is isomorphic to CPn−k for all k = 1, . . . , n. Define

Fl(V ) = Fn
π=π1◦πn−1◦πn−−−−−−−−−→M.

Lemma 4.7. Each fiber of Fl(V ) is the flag variety Fl(V ); i.e. if M = point and V is a vector
bundle of rank n then Fl(V ) is the flag variety defined in (4.6).

Proof. For every k = 1, a point in F1 corresponds to a line W1 in V . A point in F2 over W1 in
F1 is a line in Q1; that is equivalent to the quotient W2/W1 of a 2-dimensional subspace W2 of
V including W1. Then, inductively, a line in Qk is equivalent to the quotient of a k-dimensional
subspace of V and the k−1-dimensional subspace of that constructed in the previous steep.

Let
F`

π`,k
..=πk+1◦...◦π`−−−−−−−−−−−→ Fk ∀ ` > k.

It also follows from the inductive construction that

π∗V = π∗n,1γ1 ⊕ π∗n,2γ2 ⊕ · · ·π∗n,n−1γn−1 ⊕ γn;

i.e. the pullback of V to Fn splits! The line bundles π∗n,1γ1, π
∗
n,2γ2, . . . γn can alternatively be

described in the following way. For every flag

x =
(

0 ⊂W1 ⊂W2 ⊂ · · · ⊂Wn = V
)
∈ Fl(V ),

the fiber of π∗n,1γ1 over x is the line W1, the fiber of π∗n,2γ2 over x is the line W2/W1, and in
general, the fiber of π∗n,kγk over x is the line Wk/Wk−1.

Remark 4.8. Note that Qn = 0. Also, Fn = Fn−1 and γn = Qn−1. To keep the notation
symmetric, we have included Fn as the last step (even though, the last step is trivial).
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For every 1 ≤ k ≤ n, by Leray-Hirsh (see (3.23)), we know that H∗(Fk,Z) is a free module over
H∗(Fk−1,Z) generated by c1(γ∗k) subject to one relation

c1(γ∗k)n−k+1 + ck−1,1 c1(γ∗k)n−k + . . .+ ck−1,n−k+1 = 0

where ck−1,1, . . . , ck−1,n−k+1 are the chern classes ofQk−1. Inductively, we conclude thatH∗(Fn,Z)
is a free module over H∗(M,Z) generated by

h1 = c1(π∗n,1γ
∗
1), h2 = c1(π∗n,2γ

∗
2) . . . hn = c1(γ∗n)

subject to the only relation (known as Whitney Product Formula)

n∏
i=1

(1− hi) = c(V )

which corresponds to the isomorphism

π∗V ∼= π∗n,1γ1 ⊕ π∗n,2γ2 ⊕ · · · ⊕ γn.

From Leray-Hirsch, we conclude that

H∗(Fl(V ),Z) =
H∗(M,Z)[h1, h2, . . . , hn]∏n

i=1(1− hi) = c(V )
. (4.7)

For M = point, since c(V ) = 1, we get the following corollary. Moreover, in each step of the
induction

Corollary 4.9. For every n ≥ 1, we have

H∗(Fl(n),Z) =
Z[h1, . . . , hn]∏n
i=1(1− hi) = 1

.

Proof of Theorem 4.6. Suppose E and F are complex vector bundles on M and we want to
prove a polynomial relation

P (c(E), c(F )) = 0.

By the discussion above, after passing to the fiber product of π : Fl(E) ×M Fl(F ) −→ M , E
and F decompose to complex line bundles. So if we know that

P (c(π∗E), c(π∗F )) = π∗P (c(E), c(F )) = 0,

by the infectivity of
π∗ : H∗(M,Z)−→H∗(Fl(E)×MFl(F ),Z),

we conclude that P (c(E), c(F ))=0.

Proof of Theorem 4.3. Part (1). Consider the exact sequence

0 −→ γr,n −→ Grr(n)× (Cn) −→ Qr,n −→ 0.

First, we apply the flag manifold construction to γr,n to get π1 : F1 = Fl(γr,n) −→ Grr(n). Let
Q′ = π∗1Qr,n. Next, we apply the flag manifold construction to Q′ to get π2 : F2 = Fl(Q′) −→ F1.
Let π = π1 ◦ π2 : F2 −→ Grr(n). It is easy to see that F2 = Fl(n). By (4.7), we have

H∗(F2,Z) =
H∗(Grr(n))[x1, . . . , xk, y1, . . . , yn−k]∏k

i=1(1− xi) = c(γr,n),
∏n−k
i=1 (1− yi) = c(Qr,n)
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On the other hand

H∗(Fl(n),Z) =
Z[h1, . . . , hn]∏n
i=1(1− hi) = 1

where (x1, . . . , xk, y1, . . . , yn−k) = (h1, . . . , hn). Therefore, in H∗(Grr(n)), the cohomology
classes c(γr,n) and c(Qr,n) satisfy no relation other than c(γr,n)c(Qr,n) = 1, because any other
relation among them will give additional relations among xi and yj and thus among hi. We
conclude that there is an injection of rings

Z[c(γr,n), c(Qr,n)]

c(γr,n)c(Qr,n) = 1
↪→ H∗(Grr(n)).

We will show later that every cohomology class in Grr(n) can be written in terms of the classes
in c(γr,n) and c(Qr,n), concluding that the injection above is an isomorphism. For every manifold
M , its poincare polynomial is defined by

P (t) =

dim(M)∑
i=0

dim H i(M,R) ti.

One can also use the Poincare polynomial to make the same conclusion; see [?, p. 294].

Parts (2) and (3) of Theorem 4.3 follows from expanding the equation c(γr,n)c(Qr,n) = 1.

4.2 Equivariant cohomology and localization

The infinite projective space CP∞ and the identity

H∗(CPn,Z) = Z[h]

have another meaning and application that we will discuss in this section.

Suppose a group G acts on a manifold M . This action induces an action of G on the vector
space H∗(M,R). By Theorem 2.57 (or 2.54), if G acts freely and properly on M , then M/G is a
manifold. The projection π : M −→M/G gives a pull back map π∗ : H∗(M/G,R) −→ H∗(M,R)
whose image is the subset of H∗(M,R) preserved by the action of G; i.e. the trivial component
of the representation G −→ Aut(H∗(M,R)). We

HW 4.10. Explain the map π∗ : H∗(M/G,R) −→ H∗(M,R) for the example of M = S2n+1,
G = S1, and M/G = CPn.

The question is, if the action is not free and proper, what can we say about the G-equivariant
cohomology classes on M , i.e. the subset of H∗(M,R) that is preserved by G.

Example 4.11. Consider the action of Tn = (S1)n on CPn given by

(eiθ1 , . . . , eiθn) · [x0, x1, . . . , xn] −→ [x0, e
iθ1x1, . . . , e

iθnxn].

This torus action has n+ 1 fixed points

p0 = [1, 0, . . . , 0], p0 = [0, 1, . . . , 0], pn = [0, 0, . . . , n].
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There is an idea to turn every action into a free action without changing the homotopy type
of M as follows. For every G, the idea is to find a contractible space EG on which the group
G acts freely and properly. Then EG ×M will have the same homotopy type as M and the
diagonal action of G on EG ×M will always be free and proper. The homotopy quotient MG

of M by G, also called the Borel construction, is defined to be the quotient of EG×M by the
diagonal action of G. We can also see MG as the fiber product of M and the principal G-bundle

EG −→ BG = EG/G.

The quotient space BG is called the classifying space of G. The equivariant cohomology
H∗G(M,−) of M is defined to be the cohomology H∗(MG,−) of the homotopy quotient MG.
Here H∗ denotes singular cohomology with any coefficient ring. We will also develop a de Rham
version of this cohomology (with coefficients in R).

Remark 4.12. A principal G-bundle is a fiber bundle P −→ M such that (i) fibers of P are
isomorphic to G, (ii) G acts on P and preserves each fiber, (iii) the action on each fiber is
by multiplication in G. The theory of principal bundles is closely related to theory of vector
bundles. Associated to every representation % : G −→ Aut(V ) of G, we obtain a vector bundle

E =
(
P × V

)
/G

where g ∈ G acts on the product by (p, v) −→ (p · g, g−1v). Conversely, if E is a vector bundle
of real rank r, the space of frames on E is a principal GL(r)-bundle. If we fix a metric and
consider orthonormal frames, we obtain a principal O(r)-bundle. As another example, complex
line bundles (with a Hermitian metric) are equivalent to principal U(1) = S1-bundles.

The following is the analogue/generalization of Theorem 4.13.

Theorem 4.13. For every principal G-bundle P −→ M , there is a map f : M −→ BG such
that f∗EG = P . If f and f ′ are two such maps, then f is homotopic to f ′.

Example 4.14. These classifying spaces are often infinite dimensional. Here are some examples.

• For G = S1, by the relation between S1-bundles and complex line bundles, we have
BG = CP∞ and EG = S∞ = limn−→∞ S

2n+1. Show that S∞ is contractible!

• For G = Z, we have BG = S1 and EG = R.

• For G = Z2, we have BG = RP∞ and EG = S∞.

• For G = U(n), by the relation between U(r)-bundles and complex vector bundles of rank
r, we have BG = Grr(∞) and EG is the frame bundle of γr,∞.

If we apply the construction above to M = pt with the trivial action of G, we get

H∗G(pt) = H∗(BG).

For every other manifold M with an action of G, the obvious G-equivariant map M −→ pt gives
H∗G(M) the structure of a module over H∗(BG). Therefore, this process will result in working
with the often larger coefficient ring H∗(BG) instead of the original coefficient ring (R or Z).
Also, the projection M × EG −→ EG descends to a fiberation MG −→ BG whose fibers are
isomorphic to M . Therefore, MG is a fiber bundle over BG with fibers MG. Restriction to a
fiber defines a map

H∗G(M) −→ H∗(M) (4.8)

that does not need not be surjective.
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Example 4.15. Here are the H∗(BG)s corresponding to the first two examples in 4.14.

• For G=S1, we get H∗(BG,R) = H∗(CP∞,R) is the polynomial ring R[h].

• For G = Z, we get H∗(BG,R) = R[x]/x2 = 0.

Remark 4.16. If the action of G on M is free and proper so that M/G is a manifold, the
projection M × EG −→M descends to a projection

π : MG −→M/G

whose fibers are EG. Since EG is contractible, we obtain

H∗G(M) = H∗(M/G)

with the trivial module structure.

If G acts on M and N is a G-invariant submanifold of M then we get an inclusion ιN : NG −→
MG; therefore, at the level of cohomology, we get a restriction map ι∗N : H∗G(M) −→ H∗G(N).
For example, if N = p is a fixed point of G, then H∗G(p) = H∗(BG) and the map above is an
evaluation

ι∗p : H∗G(M) −→ H∗(BG) (4.9)

corresponding to the fixed point p. These evaluations will appear in localization formula.

In what follows, I will follow the paper of Atiyah and Bott in a reverse order. First, we discuss a
de Rham (Cartan) model of H∗G(M,R) when G = S1, then, we study localization and do some
interesting computations.

Associated to any action of S1 on a manifold M we obtained a vector field ζ on M given by

ζ(x) =
d

dθ
(eiθ · x)|θ=0 ∀ x ∈M

The S1-action is the flow of ζ.

Fix a formal variable u of degree 2. Let

Ω∗(M,R[u]) = Ω∗(M,R[u])⊗ R[u] =
{∑

α

ηαu
nα : ηα ∈ Ω∗(M,R)

}
denote the space of differential forms with coefficients in R[u]. Therefore, for each d ≥ 0, the
degree piece Ωd(M,R[u]) consists of finite sums of the form

η̃ = ηd + ηd−2u+ · · ·+ ηd−2ku
k + · · ·

such that ηi ∈ Ωi(M,R). The map

Ωd(M,R[u])
D=d+u ιζ−−−−−−→ Ωd+1(M,R[u])

is R[u]-linear and

D ◦D = (d + u ιζ) ◦ (d + u ιζ) = d ◦ d + uLζ + u2ιζ ◦ ιζ = uLζ .

Let Ω∗S1(M,R) denote the space of differential forms η where Lζη = 0. By (2.20), Ω∗S1(M,R)
is the space of S1-invariant differential forms on M . By the identity above, restricted to
Ω∗S1(M,R[u]) we have D ◦D.
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Theorem 4.17. There is an isomorphism between the cohomology of (Ω∗S1(M,R[u]), D) the
equivariant cohomology H∗S1(M,R) that maps u to h.

Remark 4.18. The restriction map (4.8) sends the cohomology class of a D-closed form

η̃ = ηd + ηd−2u+ · · ·+ ηd−2ku
k + · · ·

to [ηd] (Check that if η̃ is D-closed then ηk is d-closed); i.e. (4.8) is given by putting u = 0.
This map need not to be surjective. Starting from a closed and S1-invariant d-form ηd, in order
to build a D-closed η̃ that starts with ηd, we need a sequence of S1-invariant differential forms
ηd−2, ηd−4, . . . such that

ιζηd−2k + dηd−2(k+1) = 0 ∀ k ≥ 0. (4.10)

In particular, ηd is itself D-closed if and only if ιζηd = 0 (which is stronger that Lζηd = dιζηd =
0). Given a closed S1-invariant ηd, an extension η̃, if it exists, is called an equivariant extension
of ηd.

For
η̃ =

∑
ηαPα(u) ∈ Ω∗(M,R[u]),

if M is oriented, we define ∫
M
η̃ =

∑
α

Pα(u)

∫
M
ηα.

Of course,
∫
M ηα can only be non-trivial if deg(ηα) = dimM . One peculiarity of equivariant

integration is the possibility of obtaining a nonzero answer while integrating a form over a
manifold whose dimension is not equal to the degree of the form.

Example 4.19. With notation as above Ω0
ζ(M,R[u]) = Ω0

ζ(M,R) is the space of S1-invariant

smooth functions f : M −→ R. Therefore, H0
S1

(M) calculates the number of connected compo-
nents of M/S1 which is equal to H0(M) because S1 is connected. In degree 1, Ω1

ζ(M,R[u]) =

Ω1
ζ(M,R) is the space of S1-invariant 1-forms η. Furthermore,

Dη = dη + u ιζη

is zero if and only if η is closed and ιζη = 0.

Example 4.20. Consider M = C and let S1 act by z −→ eimθz. This is called a linear action
of weight m. We denote C with this action by Cm. Since CS1 is a complex line bundle over
BS1 = CP∞, we conclude that

H∗S1(Cm,R) = H∗(CP∞,R) = R[u].

Example 4.21. Consider M = S2 and the standard action of S1 by rotation (one may also
consider a weighted action). Write S2 = U0∪U∞ where U0

∼= C and U∞ ∼= C are neighborhoods
of the north and south poles, respectively. The action on U0 ∩ U∞ is free. Therefore, by the
previous example

H∗S1(U0,R) = H∗S1(U∞,R) = R[u]

and
H∗S1(U0 ∩ U∞,R) = H(S1/S1,R) = R
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is concentrated in degree zero. From Mayer-Vietoris, we can conclude that

H∗S1(S2,R) = {(f0, f∞) ∈ R[u]⊕ R[u] : f0(0) = f∞(0)}.

This is a a free R[u]-module where a basis is given by (1, 1) and (u,−u). For the fixed points
p0 and p∞, the evaluation maps in (4.9) map (f0, f∞) to f0 and f∞ respectively. So every
equivariant differential form on S2 is uniquely specified by the information of its restriction to
the fixed points! With respect to the polar coordinates (r, θ) on U0, the Fubini-Study volume
form of S2 is the closed S1-invarinat 2-form

ω =
2rdr ∧ dθ

(1 + r2)2
.

The equivariant extension ω̃ of ω exists and is given by a sum of the form ω̃ = ω+uH where H
is a function satisfying

−ι∂θω =
2rdr

(1 + r2)2
= dH.

see (4.10). Solving this equation we get

H(r) = H0 +

∫ r

0

ds2

(1 + s2)2
= H0 +

r2

(1 + r2)

The restrictions of ω̃ = ω + uH to p0 and p∞ are f0(u) =H0u and f∞(u) =H∞u= (1 + H0)u,
respectively. Note that

1 =

∫
S2

ω =

∫
S2

ω̃ = −
(f0(u)

u
+
f1(u)

−u

)
.

This is a special case of the localization formula below. In this example, if we replace the
standard S1-action with z −→ eimθz, over Z, we get

H∗S1(S2,Z) = {(f0, f∞) ∈ R[u]⊕ R[u] : f0 − f∞ = muh(u)}.

However, over R, there is no torsion and we get the same answer as above. Consequently, H,
f0, and f∞ will be replaced with mH, mH0u, and mH∞u and we get

1 =

∫
S2

ω = −
(f0(u)

mu
+
f1(u)

−mu

)
.

Remark 4.22. For G = Tk = (S1)k, we have BG =
(
CP∞

)k
. Therefore, H∗(BTk,Z) =

Z[h1, . . . , hk]. In this case, the torus action is given by k vector fields ζ1, . . . , ζk such that
[ζi, ζj ] = 0 for all 1 ≤ i, j ≤ k. Similarly to the case of S1 above, a de Rham model is obtained
by considering Tk-invariant differential forms with values in R[u1, . . . , ud] and the deformed
derivative map

Ω∗(M,R[u1, . . . , uk])
D=d+u1ιζ1+···+ukιζk−−−−−−−−−−−−−−→ Ω∗(M,R[u1, . . . , uk]).

What kind of information can be mined from the fixed points of an action? This is the question
we want to answer next.
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If a Lie group G acts on a manifold by diffeomorphisms,

ϕ : G×M −→M, (g, x) −→ ϕg(x),

at a fixed point p ∈M , the differential dϕg : TpM −→ TpM is a linear automorphism of the tan-
gent space, giving rise to a representation of the group G on the tangent space TpM . Invariants
of the representation are then invariants of the action at the fixed point. If dimCM = 2n, for a
circle action, at an isolated fixed point p, the tangent space TpM decomposes into a direct sum
Cm1 ⊕ · · · ⊕ Cmn , where Cm is the representation of weight m in Example 4.20. The integers
m1, . . . ,mn are defined only up to sign, but if M is oriented, the sign of the product m1 · · ·mn

is well defined by the orientation of M . The localization formula then states that for every
equivariant form ω̃ we have ∫

M
ω̃ =

∑
p∈Fix(S1)

ι∗pω̃

ep

where ep is the equivariant Thom-form/Euler-form of p. In our notation, ep is equal to

ep = m1 · · ·mn(−u)n ∈ H∗S1(p,R) = R[u].

In general, the fixed locus of a Tk-action may have higher dimensional components, but each
connected component F ⊂ M will be a smooth manifold. Similarly to above, we obtain an
action of Tk on the normal bundle NMF . The formula above will continue to hold with eF
instead of ep, where

eF ∈ H∗Tk(F,R)

is the equivariant Thom-form/Euler-form of NMF .

Below, we only outline the proof of localization formula. For each Tk-invariant embedding
ι : N −→M , we have the pullback map ι∗ : H∗Tk(M) −→ H∗

Tk
(N). There is also a push-forward

map

ι∗ : H∗Tk(N) −→ H
∗+dim(M)−dim(N)

Tk
(M)

that is multiplication by Thom-form of N ; i.e.

ι∗ι
∗η̃ = η̃ ∧ eN

where eN is the degree dim(M)− dim(N) Thom-form of N ⊂M . Let R = R[u1, . . . , uk]. Both
H∗Tk(N) and H∗Tk(N) are R-modules and the maps above are maps of R-modules. For any
R-module H, the set

Ann(H) = {f ∈ R : fα = 0 ∀ α ∈ H}
is an ideal. For R = R[u1, . . . , uk], the support of H is the affine variety (possibly singular
complex manifold)

Supp(H) = {(x1, . . . , xk) ∈ Ck : f(x1, . . . , xk) = 0 ∀ f ∈ Ann(H)}.

Let F denote the field of fractions of R[u1, . . . , uk]. For every R[u1, . . . , uk]-module H, by killing
the torsion elements, i.e. elements that are annihilated by some nontrivial element in Ann(H),
we obtain an F-vector space called the localization HR of H. Suppose Fix(Tk) =

⋃
α Fα and

define

Q =
∑
α

ιFα∗ι
∗
Fα

eFα
: H∗Tk(M)R −→ H∗Tk(M)R.

The localization formula follows from showing that this is an isomorphism of F-vector spaces.
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Figure 7: Left. Harmonic oscillator. Right. Graph of location vs. time.

5 An introduction to symplectic topology

Symplectic topology has origin in the study of Hamiltonian dynamical systems. Let us start
with a classical and simple example in physics. The differential equation governing the motion
of a harmonic oscillator (Figure 7) with no damping is the second order ODE

mẍ = −κx, (5.1)

where m is the mass of the object attached to the spring and κ is a constant that depends on
the spring. Let p = mẋ denote the momentum. We can rewrite (5.1) as

ẋ =
p

m
ṗ = −κx (5.2)

to turn in into a pair of first order ODEs in the “phase space” R2 with coordinates (x, p) =(location,
momentum). The phase space of an object moving in Rn is Rn × Rn = R2n with coordinates
(x, p) = (x1, . . . , xn, p1, . . . , pn) such that (xa, pa) is the (location, momentum) in the a-th direc-
tion. More generally, the phase of an object moving in a manifold M is the cotangent bundle
T ∗M . Every solution of (5.2) has the form

(x(t), p(t)) = A
(

cos(wt+ θ0),−mw sin(wt+ θ0)
)

where w =
√
κ/m. The curve (x(t), p(t)) traces an ellipse in the phase space R2 with that initial

(location, momentum)
(x0, p0) = A

(
cos(θ0),−mw sin(θ0)

)
;

see Figure 8. For each time t, the map

ϕt : R2 −→ R2, (x0, p0) −→ (x(t), p(t))

is a diffeomorphism of R2 such that ϕ0 = id and ϕt ◦ ϕs = ϕt+s. In other words, the flow of a
(time independent) ODE defines an action of R on the underlying manifold. One of the major
goals of studying such systems is to understand the dynamics of ϕt. Define

H : R2 −→ R, H(x, p) =
1

2

(p2

m
+ κx2

)
.

The first term 1
2
p2

m = 1
2mẋ

2 is the kinetic energy of the moving object and the second term 1
2κx

2

is the potential energy; thus, H is the total energy of the system. Observe that the equation
(5.2) has the form

ẋ =
∂H

∂p
ṗ = −∂H

∂x
.
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Figure 8: Orbit of a harmonic oscillator in phase space

Definition 5.1. A Hamiltonian ODE in R2n with coordinates (x, p) = (x1, . . . , xn, p1, . . . , pn)
is an equation of the form

ẋa =
∂H

∂pa
ṗa = − ∂H

∂xa
∀ a = 1, . . . , n, (5.3)

for some “energy” function H : R2n −→ R.

It is easy to show that the value of H does not change along any orbit (x(t), p(t)); i.e. H is a
conserved quantity and the orbits of (5.3) live on the level sets of the function H. The ODE
(5.3) can be re-written in the compact form

d

dt
(x, p) = ζH(x, p)

where

ζH =
n∑
a=1

∂H

∂pa
∂xa −

∂H

∂xa
∂pa

is a vector field associated to H on R2n. The vector field ζH and the 1-form dH are related by

ιζHω0 = dH (5.4)

where ω0 is the 2-form

ω0 =

n∑
a=1

dxa ∧ dpa.

The 2-form ω0 is called the standard symplectic form on R2n. Let ω be a 2-form on a manifold
M ; the following properties are equivalent:

• dim(M) = 2n and ωn is a volume form on M ;

• for every x ∈M , the map
TxM −→ T ∗xM, ζ −→ ιζω

is an isomorphism.

100



If these properties hold, we say ω is a non-degenerate 2-form on M .

Definition 5.2. A symplectic manifold is a smooth manifold M equipped with a closed non-
degenerate 2-form ω.

Example 5.3. The standard 2-form ω0 defines a symplectic structure on the phase space R2n.

Example 5.4. An area form on every oriented surface Σ defines a symplectic structure on Σ.

The following is a fundamental theorem in symplectic topology which shows symplectic manifolds
are all locally trivial.

Theorem 5.5. Suppose (M,ω) is a symplectic manifold. For every q ∈ M there is a chart
ψ : U −→ V ⊂ R2n around x (known as Darboux chart) such that ψ∗ω0 = ω.

Definition 5.6. Let (M,ω) be a symplectic manifold. A Hamiltonian ODE on M is an ODE
of the form

ẋ = ζH(x) ∀ x ∈M
where H: M−→R is a smooth function and ζH is uniquely determined by the equation

dH=−ιζHω. (5.5)

Remark 5.7. Note that the identity (5.5) differs by a minus sign from (5.4). This is the common
convention in symplectic topology to make certain actions counter clock-wise.

Lemma 5.8. Let {ϕt : M −→ M}t∈R denote the flow of the Hamiltonian ODE corresponding
to the function H on the symplectic manifold M . Then

ϕ∗tω = ω ∀ t ∈ R.

Proof. By (2.20),

d

dt
ϕ∗tω = ϕ∗tLζHω = ϕ∗t (ιζHdω + dιζHω) = ϕ∗t (0− ddH) = 0.

The claim follows.

Definition 5.9. Let (M,ω) be a symplectic manifold, we say a diffeomorphism ψ : M −→ M
is a symplectomorphism if ψ∗ω = ω. We say ϕ : M −→ M is a Hamiltonian diffeomorphism if
there exists H such that ϕ = ϕt for some t ∈ R (we can always change H so that t = 1).

By Lemma 5.8, every Hamiltonian diffeomorphism is a symplectomorphism but the converse is
not true for arbitrary manifold M .

Let M be a smooth manifold and (x1, . . . , xn) be local coordinates on an open set U ⊂M . For
x ∈ U , every cotangent vector η ∈ T ∗xM can be written as

η =
n∑
a=1

ηadxa.

The assignment η −→ (x1, . . . , xn, p1, . . . , pn) defines a local trivialization of T ∗M |U . Let

ωU =

n∑
a=1

dxa ∧ dpa ∈ Ω2(T ∗M |U ,R).

The following lemma follows from Chain Rule.
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Lemma 5.10. The two forms ωU are independent of the choice of local coordinates on U and
patch together to define a canonical symplectic structure on T ∗M

Next, we study Hamiltonian torus actions on symplectic manifolds and describe a way of con-
structing more complicated symplectic manifolds as quotient spaces.

Let (M,ω) be a symplectic manifold and

Tk ×M −→M,
(
(eiθ1 , . . . , eiθk), x

)
−→ eiθ1 · · · eiθk · x

be a torus action given by the vector fields

ζi(x) =
d

dθ
(eiθi · x)|θi=0 ∀ x ∈M.

We say this action is Hamiltonian if there are functions Hi :M −→ R such that ζi = ζHi ; i.e.
ιζiω = −dHi. Then we say

H = (H1, . . . ,Hk) : M −→ Rk

is the moment map of the action. The example of harmonic oscillator is a Hamiltonian S1-
action on R2. We will implicitly assume that the ζi are linearly independent, i.e. the action is
generically free.

Theorem 5.11. (1) If a = (a1, . . . , ak) is a regular value of H, then

Ma = H−1(a)/Tk

is a 2(n − k)-dimensional manifold and admits a canonical symplectic structure ωa such that
π∗ωa = ω|H−1(a). Here π : H−1(a) −→ Ma is the quotient map. (2) If M is closed, then the

image of H is a rational polyhedral polytope ∆ in Rk. (3) If k = n, then M can be uniquely
reconstructed from ∆.

The symplectic manifold (Ma, ωa) is known as a symplectic reduction of M .

Example 5.12. Consider (Cn = R2n, ω0) and the function

H(x, p) =
1

2

∑
a

(x2
a + p2

a) =
1

2
|z|2, (5.6)

where
z = (z1 = x1 + ip1, . . . , zn = xn + ipn).

Then
ζH =

∑
a

−pa∂xa + xa∂pa =
∑
a

∂θa

where θa is the angle coordinate in the (xa, pa)-plane. The flow of ζH is the diagonal S1-action(
eiθ, z

)
−→ eiθz = (eiθz1, . . . , e

iθzn).

The level set H−1(R2) is the sphere S2n+1
R of radius R. For each R, the quotient space

MR2 = H−1(R2)/S1

is the complex projective space CPn−1. The symplectic form ωR2 = R2ω1 is a multiple of the
well-known Fubini-Study Kähler form on CPn−1.

102



Symplectic reduction can also be used to define symplectic blowup. For a holomorphic manifold
M of complex dimension n, the blowup M̃ of M at a point q ∈ M is another holomorphic
manifold that has a copy of E = CPn−1 in place of q. It admits a projection map π : M̃ −→M
that collapses E to q and is an isomorphism outside E. Intuitively, M̃ is obtained by replacing
q with all the (complex) tangent directions at q. Explicitly, it is constructed in the following
way. Fix local holomorphic coordinates (z1, . . . , zn) ∈ Cn on an open neighborhood U 3 q such

that q corresponds to the origin. Then the pre-image of U in M̃ is the open set{(
z1, . . . , zn), [x1, . . . , xn]

)
∈ U × CPn−1 : zixj = zjxi

}
with

E = 0× CPn−1.

Note that if zi 6= 0 for some i = 1, . . . , n, then [x1, . . . , xn] is uniquely determined by

xj =
zj
zi
xi ⇒ [x1, . . . , xn] = [z1/zi, z2/zi, . . . , zn/zi].

Topologically, blowup corresponds to the connect sum of M and CPn (CPn with the reversed
orientation) at a point. In the symplectic world, blowup is constructed in the following way.
First, by Theorem 5.5, there are local coordinates (x, p) around q with respect to which ω
coincides with ω0. Let

H : U −→ R, H(z) =
1

2
|z|2

denote the restriction of the function H in (5.6) to U . For sufficiently small ε > 0, the level set
H−1(ε) divides M into two components M+ ∪M− such that

M− = H−1([0, ε]) and M+ = M −H−1([0, ε)).

Then M+ is a manifold with boundary ∂M+ = H−1(ε) ∼= S1. Roughly speaking, the blowup

manifold M̃ is obtained by collapsing the boundary of M+ using the S1-action into manifold
E ∼= CPn−1 of real dimension 2(n− 2). More precisely, M̃ is a union of two charts

M̃ = W ∪ (M −H−1([0, ε])

where W is constructed in the following way. Extend H to function H̃ on U × C by

H̃(z, t) = H(z)− 1

2
|t|2.

Then,

H̃−1(ε) =
{

(z, t) ∈ U × C : H(z) ≥ ε, 1

2
|t|2 = H(z)− ε

}
.

Let (W = H̃−1(0)/S1, ωW ) denote the symplectic reduction of U × C with respect to H̃ at the
level set ε. Then,

• The subset
E =

(
H̃−1(ε) ∩ U × {0}

)
/S1 ∼= H−1(ε)/S1 ∼= CPn−1

is a symplectic submanifold of W ;
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• The complement of E is naturally identified with the open set U −H−1(ε) ⊂ (M −H−1([0, ε])
by

W − E =
{

(z, t) ∈ U × C : H(z) > ε,
1

2
|t|2 = H(z)− ε

} ∼= U −H−1(ε).

• The symplectic forms ωW and ω agree on this overlap region.

Therefore, ωW and ω patch together to define a symplectic form on M̃ = W ∪ (M −H−1([0, ε]).

Remark 5.13. Unlike in holomorphic blowup, in the case of symplectic blowup, there is no
canonical projection map π : M̃ −→M .
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