Deformation Theory of Pseudoholomorphic Curves Relative to an SNC Divisor

Mohammad Farajzadeh-Tehrani

BICMR/Peking University Fukaya Category and Homological Mirror Symmetry Conference in honor of Fukaya's 60th birthday

August 2019

Notation

- X: smooth complex proj variety OR symplectic manifold with an ω-tame almost complex structure J
- Genus g curves (Σ, \mathfrak{j}) with k marked points $\vec{z} = (z_1, \ldots, z_k)$

• $A \in H_2(X, \mathbb{Z})$ • $\mathcal{M}_{g,k}(X, A) = \{(u, (\Sigma, j, \vec{z})) : \Sigma \xrightarrow{u} X, \ \bar{\partial}u = 0, \ [u(\Sigma)] = A\} / \sim$

Relative case

• SNC divisor in X:
$$D = \bigcup_{i=1}^{N} D_i$$

 Remark. In Symp case, definition of SNC divisor is due to McLean, Zinger, and I (2014). We prove existence of J that is compatible with D and several other structures

$$\mathcal{M}_{g,k}(X,A) \supset \mathcal{M}_{g,\mathfrak{s}}(X,D,A) = \\ \left\{ [u,(\Sigma,\mathfrak{j},\vec{z})] \colon u^{-1}(D) \subset \{z_1,\ldots,z_k\}, \text{ ord}_{z_a}(u,D_i) = s_{ai} \right\}$$

Tangency orders: $\mathfrak{s} = (s_1, \dots, s_k)$

$$s_a = (s_{ai})_{i=1}^N \in \mathbb{N}^N, \qquad A \cdot D_i = \sum_{a=1}^k s_{ai}$$

 $\blacksquare \; \operatorname{Exp-dim}_{\mathbb{C}} \; \mathcal{M}_{g, \mathfrak{s}}(X, D, A) = c_1^{TX}(A) + (n-3)(1-g) + k - A \cdot D$

Example 1

• $X = \mathbb{P}^2$, $D = D_1 \cup D_2$ union of two hyperplanes (lines)

•
$$A = [3] \in H_2(\mathbb{P}^2, \mathbb{Z}) \cong \mathbb{Z}, g = 0, k = 3$$

•
$$\mathfrak{s} = (s_1 = (3, 2), s_2 = (0, 1), s_3 = (0, 0))$$

•
$$u([z,w]) = [z^3, z^2w, p(z,w)]$$

Example 2

- (X,D) arbitrary, A=0 (constant maps), $\mathfrak{s}=\vec{0}=\left(0,\ldots,0
 ight)$
- $\blacksquare \ \mathcal{M}_{g,\vec{0}}(X,D,0) \cong \mathcal{M}_{g,k} \times (X-D) \text{ has dimension } n+3(g-1)+k$
- The expected dimension is n(1-g) + 3(g-1) + k, which is \underline{ng} less than the actual dimension
- Question: What is the obstruction bundle?
- In the classical case,

$$\overline{\mathcal{M}}_{g,k}(X,0) \cong \overline{\mathcal{M}}_{g,k} \times X$$

and the obstruction bundle is

$$\pi_1^* \mathcal{E}_g^* \otimes \pi_2^* T X$$

GOAL (analytical approach)

• Compactify
$$\mathcal{M}_{g,\mathfrak{s}}(X,D,A) \rightsquigarrow \overline{\mathcal{M}}_{g,\mathfrak{s}}(X,D,A)$$

Set up the deformation theory

Construct VFC

Compactness Theorem (-, 2017) For suitable choice of J (including holomorphic case), there exists a metrizable compactification M^{log}_{q,s}(X, D, A) such the natural forgetful map

$$\overline{\mathcal{M}}_{g,\mathfrak{s}}^{\log}(X,D,A)\longrightarrow\overline{\mathcal{M}}_{g,k}(X,A)$$

is locally an embedding. It is an embedding if g = 0.

Proposition (-, 2017) If D is smooth, there is a surjective map

$$\overline{\mathcal{M}}_{g,\mathfrak{s}}^{\mathsf{rel}}(X,D,A)\longrightarrow \overline{\mathcal{M}}_{g,\mathfrak{s}}^{\log}(X,D,A)$$

Previous works (smooth D, early 2000)

Relative compactification of Jun Li, Ionel-Parker, and Li-Ruan

Jun Li and Ionel-Parker setup:

- Ionel-Parker's work is limited to the semi-positive setting
- It does not contain a dedicated deformation-obstruction theory or a gluing analysis

Li-Ruan setup is a Morse-Bott version of the SFT setup

SFT setup can be modified to address the analytical problems

• Working with X - D is hard if D is not smooth

Previous works (SNC D and more, mid 2000-current)

- Gross-Siebert, Abramovich-Chen, ... (2010-2012, Working with log varieties)
 - idea: They consider pairs of holomorphic maps and maps between certain sheaves of monoids on domains and a fixed sheaf of monoids on the target
 - Also, recent results by Ruddat, Ranganathan, Wise, ...
- Brett Parker (analytical, 2007-Current, working with his Exploded category)
 - idea: Similarly, pairs of holomorphic maps and maps of certain analytical sheaves
- lonel (analytical, 2015, assuming certain *J* exists)
 - Claimed a construction of GW invariants relative to SNC divisors using expanded degenerations

Deformation theory and transversality

- When is $\mathcal{M}_{g,\mathfrak{s}}(X,D,A)$ an orbifold of the expected dimension?
- What are the deformation/obstruction spaces?
- How to achieve transversality?
- and, the analogue of these questions for nodal maps in the compactification

Classical setup

For fixed (Σ, \mathfrak{j}) and A, we consider the ∞ -dimensional bundle

$$\mathcal{E} \longrightarrow \mathcal{B} = \mathsf{Map}_A(\Sigma, X), \qquad \mathcal{E}|_u = \Gamma(\Sigma, \Omega^{0,1}_{\Sigma, \mathfrak{j}} \otimes u^* TX)$$

• $\bar{\partial}: \mathcal{B} \longrightarrow \mathcal{E}$ is a smooth section; where $\bar{\partial}u = \frac{1}{2}(du + Jdu \circ \mathfrak{j})$

- $\bar{\partial}^{-1}(0)$ is the set of (J,\mathfrak{j}) -holomorphic maps from Σ into X
- $D_u \bar{\partial} = \bar{\partial}_{std} + compact perturbation, and$

 $Def(u) = ker(D_u\bar{\partial})$ $Obs(u) = coker(D_u\bar{\partial})$

are finite dimensional

By Riemann-Roch

$$\mathsf{dim}_{\mathbb{R}}\mathsf{Def}(u) - \mathsf{dim}_{\mathbb{R}}\mathsf{Obs}(u) = 2(c_1^{TX}(A) + n(1-g))$$

If $D_u \bar{\partial}$ is surjective $(Obs(u) = 0) \Rightarrow \underline{around \ u}$, $\mathcal{M}_{g,k}(X, A)$ is a smooth oriented orbifold of real dimension

$$2(c_1^{TX}(A) + n(1-g) + 3(g-1) + k) = 2(c_1^{TX}(A) + (n-3)(1-g) + k)$$

 How to achieve transversality? Consider global (Ruan-Tian) or local (Li-Tian, Fukaya-Ono, etc) deformations of

• For
$$f = (u, C = (\Sigma, j, \vec{z}))$$

 $0 \longrightarrow \mathsf{Def}(u) \longrightarrow \mathsf{Def}(f) \longrightarrow \mathsf{Def}(C)$
 $\longrightarrow \mathsf{Obs}(u) \longrightarrow \mathsf{Obs}(f) \longrightarrow 0$

•
$$\mathsf{Def}(C) = H^1(T\Sigma(-\log \vec{z})) = \mathbb{E}\mathsf{xt}^1(\Omega_{\Sigma}(\vec{z}))$$

 \blacksquare We just need ${\rm Obs}(f)=0$ for ${\mathcal M}_{g,k}(X,A)$ to be smooth orbifold near f

Ruan-Tian perturbations

Consider "regular" covering $\overline{\mathfrak{M}}_{g,k} \longrightarrow \overline{\mathcal{M}}_{g,k}$ admitting a universal family $\overline{\mathfrak{U}}_{g,k} \longrightarrow \overline{\mathfrak{M}}_{g,k}$

If
$$g = 0$$
, we can simply take $\overline{\mathfrak{U}}_{0,k} = \overline{\mathcal{M}}_{0,k+1} \longrightarrow \overline{\mathcal{M}}_{0,k}$

- Ω^{0,1}_{g,k} → Ū_{g,k} whose restriction to each curve C is the sheaf of smooth (0, 1)-forms on C supported away from the nodes
- Perturbation: $\nu \in \Gamma(\overline{\mathfrak{U}}_{g,k} \times X, \Omega^{0,1}_{g,k} \otimes_{\mathbb{C}} TX)$

$$\overline{\mathcal{M}}_{g,k}(X, A, \nu) = \left\{ \left(\phi, u, C = (\Sigma, \mathfrak{j}, \vec{z}) \right) : \\ \Sigma \xrightarrow{u} X, \ C \xrightarrow{\phi} \overline{\mathfrak{U}}_{g,k}, \ \bar{\partial}u = (\phi, u)^* \nu, \ [u(\Sigma)] = A \right\} / \sim$$

GW invariants

Theorem (Ruan-Tian, 97): If X is semi-positive, for generic (J, ν) ,

$$\mathsf{st}\times\mathsf{ev}\colon\overline{\mathcal{M}}_{g,k}(X,A,\nu)\longrightarrow\overline{\mathcal{M}}_{g,k}\times X^k$$

is a pseudo-cycle of the expected dimension

- Theorem (McDuff-Salamon, 94): Same result for generic J (no ν) if g = 0 and X is positive
- Intersecting homology classes in $\overline{\mathcal{M}}_{g,k} \times X^k$ with the homology class of st \times ev gives GW invariants

Log tangnet bundle

• Observation:
$$\operatorname{Exp-dim}_{\mathbb{C}} \mathcal{M}_{g,\mathfrak{s}}(X, D, A)$$

$$= c_1^{TX}(A) + (n-3)(1-g) + k - A \cdot D$$

= $c_1^{TX(-\log D)}(A) + (n-3)(1-g) + k$

- Log tangent bundle can also be defined for SNC symplectic divisors
- Construction of $TX(-\log D)$ uses the notion of regularization defined by McLean, Zinger, and I
- Deformation equivalence class of the complex vector bundle $TX(-\log D)$ only depends on ω
- There is a \mathbb{C} -linear homomorphism $\iota \colon TX(-\log D) \longrightarrow TX$ that is an isomorphism away from D

Setup

For a fixed (Σ, j, z), A, and s, we can construct a configuration space

$$\mathsf{Map}_{A,\mathfrak{s}}((\Sigma,\vec{z}),(X,D))\subset\mathsf{Map}_{A}(\Sigma,X)$$

such that for each map u in this space

$$T_u\mathsf{Map}_{A,\mathfrak{s}}((\Sigma, \vec{z}), (X, D)) \cong \Gamma(\Sigma, u^*TX(-\log D))$$

and $\bar{\partial}u$ lifts to a section $\bar{\partial}_{\log}u \in \Gamma(\Sigma, \Omega^{0,1}_{\Sigma,j} \otimes u^*TX(-\log D))$:

Log linearization of CR operator

• Therefore, ∂_{\log} defines a section of ∞ -dimensional bundle $\mathcal{E}_{\log} \longrightarrow \mathsf{Map}_{A\mathfrak{s}}((\Sigma, \vec{z}), (X, D))$ $\mathcal{E}_{\log}|_{u} = \Gamma(\Sigma, \Omega^{0,1}_{\Sigma, \mathbf{i}} \otimes u^{*}TX(-\log D))$ $\mathbf{M}_{q,\mathfrak{s}}(X,D,A) = \bar{\partial}_{\log}^{-1}(0) / \sim$
$$\begin{split} \Gamma(\Sigma, u^*TX(-\log D)) & \xrightarrow{\quad \mathsf{D}_u\bar{\partial}_{\log}} \Gamma(\Sigma, \Omega^{0,1}_{\Sigma, \mathbf{j}} \otimes u^*TX(-\log D)) \\ & \downarrow^{\iota} & \downarrow^{\iota} \\ \Gamma(\Sigma, u^*TX) & \xrightarrow{\quad \mathsf{D}_u\bar{\partial}} \Gamma(\Sigma, \Omega^{0,1}_{\Sigma, \mathbf{j}} \otimes u^*TX) \end{split}$$
 $\mathsf{Def}_{\log}(u) = \mathsf{ker}(\mathsf{D}_u\partial_{\log})$ $\mathsf{Obs}_{\log(u)} = \mathsf{coker}(\mathsf{D}_u\bar{\partial}_{\log})$

Transversality (Main stratum)

By Riemann-Roch

$$\mathsf{dim}_{\mathbb{R}}\mathsf{Def}_{\mathrm{log}}(u) - \mathsf{dim}_{\mathbb{R}}\mathsf{Obs}_{\mathrm{log}}(u) = 2\big(c_1^{TX(-\log D)}(A) + n(1-g)\big)$$

• If $Obs_{log}(u) = 0 \Rightarrow \underline{Around \ u}$, $\mathcal{M}_{g,\mathfrak{s}}(X, D, A)$ is a smooth oriented orbifold of real dimension

$$2(c_1^{TX(-\log D)}(A) + (n-3)(1-g) + k)$$

• For $f = (u, C = (\Sigma, j, \vec{z}))$ $0 \longrightarrow \mathsf{Def}_{\log}(u) \longrightarrow \mathsf{Def}_{\log}(f) \longrightarrow \mathsf{Def}(C)$ $\longrightarrow \mathsf{Obs}_{\log}(u) \longrightarrow \mathsf{Obs}_{\log}(f) \longrightarrow 0$

• We just need $Obs_{log}(f) = 0$ for $\mathcal{M}_{g,\mathfrak{s}}(X, D, A)$ to be a smooth orbifold near f

Log maps with smooth domain and image in D

 A sequence of curves sinking into D_I gives us a J-holomoprhic map

$$u\colon \Sigma \longrightarrow D_I = \bigcap_{i\in I} D_i,$$

and holomorphic sections ζ_i of $u^* \mathcal{N}_X D_i$, for all $i \in I$

- ζ_i is only well-defined up to the action of \mathbb{C}^*
- The pair $(u, \zeta = (\zeta_i)_{i \in I})$ allows us to define a tangency order vector in \mathbb{Z}^N for each $x \in \Sigma$:

$$\operatorname{ord}_x(u,\zeta) = (\operatorname{ord}_x^i(u,\zeta))_{i=1}^N, \quad \operatorname{ord}_x^i(u,\zeta) = \begin{cases} \operatorname{ord}_x(u,D_i) & \text{if } i \not\in I \\ \operatorname{ord}_x(\zeta_i) & \text{if } i \in I \end{cases}$$

Log maps with smooth domain and image in D

• The equivalence class of a tuple $f = (u, \zeta, (\Sigma, j, \vec{z}))$ defines a log curve in $\overline{\mathcal{M}}_{g,\mathfrak{s}}(X, D, A)$ if

 $\operatorname{ord}_{z_a}(u,\zeta) = s_a \qquad \text{and} \qquad \operatorname{ord}_x(u,\zeta) = 0 \ \, \forall \, x \!\in\! \Sigma \!-\! \{z_1,\ldots,z_k\}$

- Denote the stratum of such maps by $\mathcal{M}_{g,\mathfrak{s}}(X,D,A)_I$
- There is a forgetful embedding map

$$\mathcal{M}_{g,\mathfrak{s}}(X, D, A)_I \longrightarrow \mathcal{M}_{g,\overline{\mathfrak{s}}}(D_I, \partial D_I, A)$$
$$(u, \zeta, (\Sigma, \mathfrak{j}, \vec{z})) \longrightarrow (u, (\Sigma, \mathfrak{j}, \vec{z}))$$

where

$$\partial D_I = \bigcup_{j \in [N] - I} D_{I \cup j}$$

and

$$\overline{\mathfrak{s}} = (\overline{s}_1, \dots, \overline{s}_k), \qquad \overline{s}_a = (s_{aj})_{j \in [N] - I}.$$

Log maps with smooth domain and image in D

Lemma: There exists a map

$$P\colon \mathcal{M}_{g,\overline{\mathfrak{s}}}(D_I,\partial D_I,A) \longrightarrow (\mathsf{Pic}_g^0)^I$$

such that

$$\mathcal{M}_{g,\mathfrak{s}}(X,D,A)_I = P^{-1}(\mathcal{O}^I)$$

Conclusion: If $\mathcal{M}_{g,\overline{\mathfrak{s}}}(D_I, \partial D_I, A)$ is cut transversely at u and \mathcal{O}^I is a regular value of P at u then

$$\mathcal{M}_{g,\mathfrak{s}}(X,D,A)_I$$

is a smooth oriented orbifold of $\mathbb{C}\text{-dimension}$

$$\begin{split} c_1^{TD_I(-\log\partial D_I)}(A) + (n-|I|-3)(1-g) + k - |I|g = \\ c_1^{TX(-\log D)}(A) + (n-3)(1-g) + k - |I| \end{split}$$

around \boldsymbol{f}

Nodal log maps

An element of $\overline{\mathcal{M}}_{g,\mathfrak{s}}(X,D,A)$ is the equivalence class of a tuple

$$f = \left(u_v, \zeta_v = (\zeta_{v,i})_{i \in I_v}, (\Sigma_v, \mathfrak{j}_v, \vec{z}_v \cup q_v)\right)_{v \in \mathbb{V}}$$

such that

- 1. each tuple $(u_v, \zeta_v, (\Sigma_v, \mathfrak{j}_v, \vec{z}_v \cup q_v))$ is as above except that $\zeta_{v,i}$ can have poles
- 2. forgetting ζ_v we get a stable map

$$\overline{f} = \left(u_v, (\Sigma_v, \mathfrak{j}_v, \vec{z}_v \cup q_v)\right)_{v \in \mathbb{V}}$$

in $\overline{\mathcal{M}}_{g,k}(X,A)$

- 3. tangency order vector at the marked point z_a is s_a
- 4. tangency orders at nodal points are dual of each other
- 5. tangency order vector at any other point is trivial
- 6. plus two more conditions!

Dual Graph and associated structures

Nodal Curve and its Dual Graph:

- $\varrho \colon \mathbb{Z}^{\mathbb{E}} \oplus \bigoplus_{v \in \mathbb{V}} \mathbb{Z}^{I_v} \longrightarrow \bigoplus_{e \in \mathbb{E}} \mathbb{Z}^{I_e}$
- $\operatorname{Ker}(\varrho) = \left\{ \left((\lambda_e)_{e \in \mathbb{E}}, (s_v)_{v \in \mathbb{V}} \right) \colon s_{v_2} s_{v_1} = \lambda_e s_{\underline{e}} \quad \forall v_1 \stackrel{\underline{e}}{\longrightarrow} v_2 \right\}$
- $\bullet \exp(\varrho) \colon (\mathbb{C}^*)^{\mathbb{E}} \times \prod_{v \in \mathbb{V}} (\mathbb{C}^*)^{I_v} \longrightarrow \prod_{e \in \mathbb{E}} (\mathbb{C}^*)^{I_e}$
- $\mathcal{G} = \text{cokernel of } \exp(\varrho)$
- In the classical case ϱ is the trivial map $\mathbb{Z}^{\mathbb{E}} \longrightarrow 0$ and \mathcal{G} is trivial

Log maps

- **Lemma:** There is a map $f \longrightarrow ob(f) \in \mathcal{G}$
- A log map is a tuple f as above satisfying the additional conditions
 - 1. Condition 1 (combinatorial): $ker(\varrho)$ has an element in the positive quadrant
 - 2. Condition 2 (non-combinatorial): $ob(f) = 1 \in \mathcal{G}$
- Condition 1 is equivalent to the existence of certain tropical curves in \mathbb{R}^N modeled on the dual graph Γ (used in works of AC-GS)
- Condition 2 has no explicit analogue in the literature (it is needed for the construction of gluing map)

Expected dimension

• $\overline{\mathcal{M}}_{g,\mathfrak{s}}^{\log}(X, D, A)$ is coarsely stratified by $\bigcup_{\Gamma} \mathcal{M}_{g,\mathfrak{s}}(X, D, A)_{\Gamma}$

Lemma: If

- 1. $\mathcal{M}_{g_v,\overline{s}_v}(D_{I_v},\partial D_{I_v},A_v)$ is cut transversely at u_v and \mathcal{O}^{I_v} is a regular value of P at u_v , for each $v \in \mathbb{V}$,
- 2. the evaluation map at the nodal points are transverse to the diagonal,
- 3. 1 is a regular value of the map ob

then $\mathcal{M}_{g,\mathfrak{s}}(X,D,A)_{\Gamma}$ is an oriented smooth orbifold of real dimension

$$2\big(c_1^{TX(-\log D)}(A) + (n-3)(1-g) + k - \dim \operatorname{Ker}(\varrho)\big)$$

around f

• If N>1, there are configurations with arbitrary large number of nodes but $\dim\, {\rm Ker}(\varrho)=1$

How to achieve transversality?

Genus 0 simple maps
$$\longrightarrow$$
 generic J

• Higher genus simple maps \longrightarrow generic (J, ν)

What is the right class of perturbations?

- Classical case (Ruan-Tian): $\nu \in \Gamma(\overline{\mathfrak{U}}_{g,k} \times X, \Omega^{0,1}_{q,k} \otimes_{\mathbb{C}} TX)$
- Relative case (lonel-Parker): ν with conditions along D

$$\nu|_{D} \in \Gamma(\overline{\mathfrak{U}}_{g,k} \times D, \ \Omega^{0,1}_{g,k} \otimes_{\mathbb{C}} TD),$$

$$\frac{1}{2} (J\nabla_{\nu}J + \nabla_{J\nu}J)w - (\widetilde{\nabla}_{w}\nu + J\widetilde{\nabla}_{Jw}\nu) \in \Omega^{0,1}_{g,k} \otimes_{\mathbb{C}} T_{x}D;$$

for all $x \in D$, $w \in T_x X$

Logarithmic Ruan-Tian perturbations

• Recall:
$$\bar{\partial}_{\log} u \in \Gamma(\Sigma, \Omega^{0,1}_{\Sigma,j} \otimes u^* TX(-\log D))$$

Definition: Logarithmic Ruan-Tian perturbation

$$\nu_{\log} \in \Gamma(\overline{\mathfrak{U}}_{g,k} \times X, \ \Omega^{0,1}_{g,k} \otimes_{\mathbb{C}} TX(-\log D))$$

• $\overline{\mathcal{M}}_{g,\mathfrak{s}}^{\log}(X, D, A, \nu_{\log})$ can be defined for such ν_{\log}

• Lemma: via $\iota: TX(-\log D) \longrightarrow TX$, from each ν_{\log} we obtain a classical ν satisfying IP conditions

The forgetful map

$$\overline{\mathcal{M}}_{g,\mathfrak{s}}^{\log}(X, D, A, \nu_{\log}) \longrightarrow \overline{\mathcal{M}}_{g,k}(X, A, \nu)$$

is still a local embedding. It is an embedding if g = 0.

Transversality theorem

- A (J, ν)-holomorphic map (φ, u, C) is called simple if no bubble (a non-trivial contracted component of φ) is a multiple cover, and images of every two bubbles are different
- A log map is called simple if the underlying stable map is simple
- Theorem (-, 2019) For generic (J, v) the subspace of simple maps

$$\overline{\mathcal{M}}_{g,\mathfrak{s}}^{\log,\star}(X,D,A,\nu_{\log})\subset\overline{\mathcal{M}}_{g,\mathfrak{s}}^{\log}(X,D,A,\nu_{\log})_{\Gamma}$$

is an oriented smooth manifold of real dimension

$$2\bigg(c_1^{TX(-\log D)}(A) + (n-3)(1-g) + k - \dim \operatorname{Ker}(\varrho)\bigg)$$

Semi-positive pairs

• We say
$$(X, D = \bigcup_{i=1}^{N} D_i, \omega)$$
 is semi-positive if
 $A \cdot D_i \ge 0$, and $c_1^{TX(-\log D)}(A) \ge 1 - n \Rightarrow c_1^{TX(-\log D)}(A) \ge 0$
for all $A \in \pi_2(M)$ such that $\omega(A) > 0$.

Other notions of semi-positivity (and positivity) can be defined

For each
$$a = 1, \ldots, k$$
, let

$$I_a = \{i : s_{ai} \neq 0\} \subset \{1, \dots, N\}$$

•
$$X^{\mathfrak{s}} = \prod_{a=1}^{k} D_{I_a}$$

Evaluation map at marked points has image in $X^{\mathfrak{s}}$

Claim. If (X, D, ω) is semi-positive, for generic (J, ν) , 1. the map

$$\mathsf{st} \times \mathsf{ev} : \mathcal{M}_{g,\mathfrak{s}}(X, D, A, \nu_{\log}) \longrightarrow \overline{\mathcal{M}}_{g,k} \times X^{\mathfrak{s}}$$

defines a pseudo-cycle of $\mathbb{C}\text{-dimension}$

$$c_1^{TX(-\log D)}(A) + (n-3)(1-g) + k;$$

- 2. the integral homology class $\widetilde{\mathsf{GW}}_{g,\mathfrak{s},A}^{X,D}$ in $\overline{\mathcal{M}}_{g,k} \times X^{\mathfrak{s}}$ determined by this pseudo-cycle is independent of the choice of (J,ν) ;
- 3. furthermore, the rational class

$$\mathsf{GW}_{g,\mathfrak{s},A}^{X,D} \equiv \frac{1}{\deg p} \widetilde{\mathsf{GW}}_{g,\mathfrak{s},A}^{X,D} \in H_*(\overline{\mathcal{M}}_{g,k} \times X^{\mathfrak{s}}, \mathbb{Q}),$$

where deg p is the degree of the regular covering used to define ν , is an invariant of the deformation equivalence class of ω .