Gromov-Witten theory relative to an SNC divisor

Mohammad Farajzadeh-Tehrani

University of Missouri-Columbia Geometry/Topology Seminar April 2019

Holomorphic curves

• X: smooth complex proj variety OR symplectic manifold with an almost complex structure $J(J: TX \longrightarrow TX, J^2 = -id)$

Genus g curve Σ with k distinct marked points $\vec{z} = (z_1, \dots, z_k)$

Degree $A \in H_2(X, \mathbb{Z})$

$$\Rightarrow \mathcal{M}_{g,k}(X,A) = \left\{ (u, \Sigma, \vec{z}) : \Sigma \stackrel{u}{\longrightarrow} X, \ \bar{\partial}u = 0, \ [u(\Sigma)] = A \right\} / \sim$$

Relative case

• SNC divisor in X:
$$D = \bigcup_{i=1}^{N} D_i$$

 Remark. In Symp case, general definition of SNC divisor is due to McLean, Zinger, and I (2014). We need J that is compatible with both ω and D, plus more conditions

Tangency orders:
$$\mathfrak{s} = (s_1, \ldots, s_k)$$

$$s_a = (s_{ai})_{i=1}^N \in \mathbb{N}^N, \qquad A \cdot D_i = \sum_{a=1}^k s_{ai}$$

$$\mathcal{M}_{g,k}(X, A) \supset \mathcal{M}_{g,\mathfrak{s}}(X, D, A) = \left\{ [u, \Sigma, \vec{z}] : u^{-1}(D) \subset \{z_1, \ldots, z_k\}, \text{ ord}_{z_a}(u, D_i) = s_{ai} \right\}$$

$$\mathsf{Exp-dim}_{\mathbb{C}} \mathcal{M}_{g,\mathfrak{s}}(X, D, A) = c_1^{TX}(A) + (n-3)(1-g) + k - A \cdot D$$

Example

•
$$X = \mathbb{P}^2$$
, $D = D_1 \cup D_2$ union of two hyperplanes (lines)
• $A = [3] \in H_2(\mathbb{P}^2, \mathbb{Z}) \cong \mathbb{Z}$, $g = 0$, $k = 3$
• $\mathfrak{s} = (s_1 = (3, 2), s_2 = (0, 1), s_3 = (0, 0))$
• $u([z, w]) = [z^3, z^2 w, p(z, w)]$, $\dim_{\mathbb{C}} \mathcal{M}_{0,\mathfrak{s}}(\mathbb{P}^2, D, [3]) = 5$

GOAL (analytical approach)

• Compactify
$$\mathcal{M}_{g,\mathfrak{s}}(X,D,A) \rightsquigarrow \overline{\mathcal{M}}_{g,\mathfrak{s}}(X,D,A)$$

Set up the deformation theory

Construct VFC

 $\Rightarrow \text{ we can define Gromov-Witten invariants of } (X, D):$ count <u>k-marked genus g degree A holomorphic curves of</u> tangency type \mathfrak{s} with D plus other conditions on the domain or the image

Compactification (classical case)

■ **Stable** (Gromov) compactification $\overline{\mathcal{M}}_{g,k}(X, A)$: holomorphic maps with <u>nodal</u> domain and finite automorphism

Decorated dual graph Γ

• Vertices $v \in \mathbb{V} \rightsquigarrow$ irreducible components Σ_v

• Edge $e \in \mathbb{E} \rightsquigarrow$ nodes q_e connecting $q_e \in \Sigma_{v_1}$ and $q_e \in \Sigma_{v_2}$

■ Flags (open edges) ~→ marked points

Decorations: $\mathbb{V} \ni v \rightsquigarrow$ genus g_v of Σ_v , degree A_v of $u_v = u|_{\Sigma_v}$

Extra decorations in the relative case:

$$\begin{array}{ll} a\text{-th marked point } z_a \rightsquigarrow s_a \in \mathbb{N}^N \\ \mathbb{E} \ni e \rightsquigarrow I_e \subset \{1, \dots, N\}, \quad u(q_e) \subset D_{I_e} = \bigcap_{i \in I_e} D_i \\ \mathbb{V} \ni v \rightsquigarrow I_v \subset \{1, \dots, N\}, \quad \operatorname{Im}(u_v = u|_{\Sigma_v}) \subset D_{I_v} \end{array}$$

Example

Previous works (smooth *D*, early 2000)

- Jun Li (algebraic), lonel-Parker and Li-Ruan (symplectic)
 - idea: In order to construct a (so called relative) compactification, they also degenerate the target

- issue 1: Changing the target makes the analysis hard (so details still incomplete after 15 years)
- **issue 2:** It does not generalize to SNC case

Previous works (SNC D and more, mid 2000-current)

Gross-Siebert, Abramovich-Chen, ... (algebraic case)

- idea: They consider pairs of holomorphic maps and maps between certain sheaves of monoids on domains and a fixed sheaf of monoids on the target
- **issue 1:** complicated for computations
- issue 2: specific to the algebraic category
- Brett Parker (analytical, certain almost Kähler cases)
 - idea: Similarly, pairs of holomorphic maps and maps of certain analytical sheaves
 - **issue 1:** very complicated (involves non-Hausdorff spaces)
 - **issue 2:** it essentially works in the Kähler category

Observation 1

in the limit, for each $u_v \colon \Sigma_v \longrightarrow D_{I_v}$ and every $i \in I_v$, we get a meromorphic section

$$\zeta_{v,i} \in \Omega_{\text{mero}}(u^* \mathcal{N}_X D_i)$$

with zeros/poles only at marked or nodal points

• $\zeta_{v,i}$ is well-defined up to action of \mathbb{C}^*

Observation 2

• A tuple $(u_v \colon \Sigma_v \longrightarrow D_{I_v}, \zeta_v = (\zeta_{v,i})_{i \in I_v})$ allows us to define tangency order of each point as a vector in \mathbb{Z}^N

$$\begin{aligned} \operatorname{ord}_{u_v,\zeta_v}(x) &= \left(\operatorname{ord}_{u_v,\zeta_v}^i(x)\right)_{i=1}^N \in \mathbb{Z}^N \qquad \forall \ x \in \Sigma_v \\ \operatorname{ord}_{u_v,\zeta_v}^i(x) &= \begin{cases} \operatorname{ord}_x(u_v,D_i) & \text{ if } i \notin I_v \\ \operatorname{ord}_x(\zeta_{v,i}) & \text{ if } i \in I_v \end{cases} \end{aligned}$$

Definition: A pre-log map is a tuple

$$f = \left(u_v \colon (\Sigma_v, \vec{z}_v) \longrightarrow D_{I_v}, \zeta_v = (\zeta_{v,i})_{i \in I_v}\right)_{v \in \mathbb{V}}$$

such that

- 1. order at the a-th marked point is s_a
- 2. at each node $q_e = (q_{\underline{e}} \sim q_{\underline{e}})$, orders are dual: $s_{\underline{e}} = -s_{\underline{e}}$
- 3. at any other point, order is trivial

Back to the Example

In case 2, on Σ_{v_2} we need one holomorphic section of $\mathcal{N}_{\mathbb{P}^2}D_1 = \mathcal{O}(1)$ with a simple zero at $q_{\underline{e}_2}$: there is exactly one such section up to action of \mathbb{C}^*

 \star : We need more conditions as case 1 is still OK

A linear map associated to the decorated dual graph

Extra decoration: $\underline{e} \rightsquigarrow s_{\underline{e}} \in \mathbb{Z}^N$ at each nodal point

After fixing random orientations on edges:

$$\begin{split} p: \mathbb{Z}^{\mathbb{E}} \oplus \bigoplus_{v \in \mathbb{V}} \mathbb{Z}^{I_v} & \longrightarrow \bigoplus_{e \in \mathbb{E}} \mathbb{Z}^{I_e} \\ 1_e & \longrightarrow \begin{cases} s_{\underline{e}} & e-\text{th component} \\ 0 & \text{otherwise} \end{cases} \\ 1_{v,i} & \longrightarrow \begin{cases} 1_{e,i} & \text{if } \underline{e} \text{ begins with } v \\ -1_{e,i} & \text{if } \underline{e} \text{ ends at } v \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Claim: some part of the Def-Obs information is encoded

$$\mathsf{K} = \mathsf{ker}(\rho_{\mathbb{R}})$$
 $\mathsf{Ck} = \mathsf{coker}(\rho_{\mathbb{C}})$

These are independent of the orientation we chose to define ρ

Def-Obs information encoded in K and Ck

Inside K we consider the cone

$$\sigma = \mathsf{K} \cap (\mathbb{R}^{\mathbb{E}}_{\geq 0} \oplus \bigoplus_{v \in \mathbb{V}} \mathbb{R}^{I_v}_{\geq 0})$$

which possibly could be just the origin!

Corresponding to Ck we get the complex Lie group

$$\mathcal{G} = \mathsf{exp}(\mathsf{Ck}) := rac{\prod_{e \in \mathbb{E}} (\mathbb{C}^*)^{I_e}}{(\mathbb{C}^*)^{\mathbb{E}} imes \prod_{v \in \mathbb{V}} (\mathbb{C}^*)^{I_v}}$$

• Lemma: Corresponding to every pre-log map f with the decorated dual graph Γ we get an element $ob(f) \in \mathcal{G}$

Log holomorphic curves

■ **Definition**. Define $\mathcal{M}_{g,\mathfrak{s}}(X, D, A)_{\Gamma}$ to be the space of equivalence classes of stable pre-log maps

$$f = \left(u_v \colon (\Sigma_v, \vec{z}_v) \longrightarrow D_{I_v}, \zeta_v = (\zeta_{v,i})_{i \in I_v}\right)_{v \in \mathbb{V}}$$

where

1. $\exists s_v \in \mathbb{R}^{I_v}_+ \times \{0\}^{[N]-I_v} \subset \mathbb{R}^N$ and positive numbers $\lambda_e \in \mathbb{R}_+$ such that

$$s_{v_2} - s_{v_1} = \lambda_e s_{\underline{e}}$$

for all oriented edges \underline{e} from v_1 to v_2

2. ob(f) = 1

Define

$$\overline{\mathcal{M}}_{g,\mathfrak{s}}^{\log}(X,D,A) = \bigcup_{\Gamma} \mathcal{M}_{g,\mathfrak{s}}(X,D,A)_{\Gamma}$$

- \blacksquare Condition 1 is equivalent to σ being a maximal convex rational polyhedral cone in K
- In the works of ACGS, Condition 1 is equivalent to the existence of certain tropical curves
- Comparing to relative GW theory, the vectors s_v in Condition 1 give N-partial orderings on the irreducible components relative to D_1, \ldots, D_N
- From σ we get an affine toric variety Y_{σ} with the fan σ
- Lemma: The space of gluing parameters (up to some multiplicity) is a neighborhood of 0 in Y_σ

 $\operatorname{codim}_{\mathbb{C}} \mathcal{M}_{g,\mathfrak{s}}(X,D,A)_{\Gamma} = \dim \mathsf{K}$

- Condition 1 is equivalent to σ being a maximal convex rational polyhedral cone in K
- In the works of ACGS, Condition 1 is equivalent to the existence of certain tropical curves
- Comparing to relative GW theory, the vectors s_v in Condition 1 give N-partial orderings on the irreducible components relative to D₁,..., D_N
- From σ we get an affine toric variety Y_{σ} with the fan σ
- Lemma: The space of gluing parameters (up to some multiplicity) is a neighborhood of 0 in Y_σ

 $\operatorname{codim}_{\mathbb{C}} \mathcal{M}_{g,\mathfrak{s}}(X,D,A)_{\Gamma} = \dim \mathsf{K}$

- Condition 1 is equivalent to σ being a maximal convex rational polyhedral cone in K
- In the works of ACGS, Condition 1 is equivalent to the existence of certain tropical curves
- Comparing to relative GW theory, the vectors s_v in Condition 1 give N-partial orderings on the irreducible components relative to D_1, \ldots, D_N
- From σ we get an affine toric variety Y_{σ} with the fan σ
- Lemma: The space of gluing parameters (up to some multiplicity) is a neighborhood of 0 in Y_σ

 $\operatorname{codim}_{\mathbb{C}} \mathcal{M}_{g,\mathfrak{s}}(X,D,A)_{\Gamma} = \dim \mathsf{K}$

- Condition 1 is equivalent to σ being a maximal convex rational polyhedral cone in K
- In the works of ACGS, Condition 1 is equivalent to the existence of certain tropical curves
- Comparing to relative GW theory, the vectors s_v in Condition 1 give N-partial orderings on the irreducible components relative to D_1, \ldots, D_N
- From σ we get an affine toric variety Y_{σ} with the fan σ
- Lemma: The space of gluing parameters (up to some multiplicity) is a neighborhood of 0 in Y_σ

 $\operatorname{codim}_{\mathbb{C}} \mathcal{M}_{g,\mathfrak{s}}(X,D,A)_{\Gamma} = \dim \mathsf{K}$

- \blacksquare Condition 1 is equivalent to σ being a maximal convex rational polyhedral cone in K
- In the works of ACGS, Condition 1 is equivalent to the existence of certain tropical curves
- Comparing to relative GW theory, the vectors s_v in Condition 1 give N-partial orderings on the irreducible components relative to D_1, \ldots, D_N
- From σ we get an affine toric variety Y_{σ} with the fan σ
- Lemma: The space of gluing parameters (up to some multiplicity) is a neighborhood of 0 in Y_σ

$$\operatorname{\mathsf{codim}}_{\mathbb{C}} \mathcal{M}_{g,\mathfrak{s}}(X,D,A)_{\Gamma} = \dim \mathsf{K}$$

- \blacksquare Condition 1 is equivalent to σ being a maximal convex rational polyhedral cone in K
- In the works of ACGS, Condition 1 is equivalent to the existence of certain tropical curves
- Comparing to relative GW theory, the vectors s_v in Condition 1 give N-partial orderings on the irreducible components relative to D_1, \ldots, D_N
- From σ we get an affine toric variety Y_{σ} with the fan σ
- Lemma: The space of gluing parameters (up to some multiplicity) is a neighborhood of 0 in Y_σ

$$\operatorname{codim}_{\mathbb{C}} \mathcal{M}_{g,\mathfrak{s}}(X,D,A)_{\Gamma} = \dim \mathsf{K}$$

Back to example

- So the first configuration does not satisfy condition 1
- Second one does and G is trivial (nothing to check in Condition 2)

Compactness Theorem (–, 2017) For suitable choice of *J* (including holomorphic case)

• $\overline{\mathcal{M}}_{g,\mathfrak{s}}^{\log}(X,D,A)$ is compact, metrizable, and of the expected \mathbb{C} -dimension

$$c_1^{TX}(A) + (n-3)(1-g) + k - A \cdot D = c_1^{TX(-\log D)}(A) + (n-3)(1-g) + ($$

the natural forgetful map

$$\overline{\mathcal{M}}_{g,\mathfrak{s}}(X,D,A)\longrightarrow\overline{\mathcal{M}}_{g,k}(X,A)$$

is an embedding if g=0, and it is locally an embedding (like an immersion) if g>0

Proposition (-, 2017) If D is smooth, there is a surjective map

$$\overline{\mathcal{M}}_{g,\mathfrak{s}}^{\mathsf{rel}}(X,D,A) \longrightarrow \overline{\mathcal{M}}_{g,\mathfrak{s}}^{\log}(X,D,A)$$

Transversality (deformation theory): classical case

For a fixed
$$\Sigma$$
, ∞ -dimensional bundle

$$\mathcal{E} \longrightarrow \mathcal{B} = \mathsf{Map}(\Sigma, X), \qquad \mathcal{E}_u = \Omega^{0,1}(u^*TX)$$

• $\bar{\partial} \colon \mathcal{B} \longrightarrow \mathcal{E}$ is a smooth section

- zero set of $\bar{\partial}$ is the set of holomorphic maps from Σ into X■ $D_u\bar{\partial}: \Omega^0(u^*TX) \longrightarrow \Omega^{0,1}(u^*TX)$: linearization of $\bar{\partial}$ at u
- $D_u \bar{\partial} = \bar{\partial}_{std} + compact perturbation, and$

$$\mathsf{Def}(u) = \mathsf{ker}(D_u\bar{\partial})$$
$$\mathsf{Obs}(u) = \mathsf{coker}(D_u\bar{\partial})$$

are finite dimensional

By Riemann-Roch

$$\dim_{\mathbb{R}}\mathsf{Def}(u) - \dim_{\mathbb{R}}\mathsf{Obs}(u) = 2(c_1^{TX}(A) + n(1-g))$$

If $D_u\bar{\partial}$ is surjective (Obs(u) = 0) \Rightarrow <u>Around u</u>, $\mathcal{M}_{g,k}(X, A)$ is a smooth orbifold of real dimension

$$2(c_1^{TX}(A) + (n-3)(1-g) + k)$$

 The idea around the transversality issue is to consider global (Ruan-Tian) or local (Li-Tian, Fukaya-Ono, etc) deformations *∂u* = ν of *∂*-section

• For
$$f = (u, \Sigma, \vec{z})$$

 $0 \longrightarrow \mathsf{Def}(u) \longrightarrow \mathsf{Def}(f) \longrightarrow \mathsf{Def}(\Sigma, \vec{z})$
 $\longrightarrow \mathsf{Obs}(u) \longrightarrow \mathsf{Obs}(f) \longrightarrow 0$
• $\mathsf{Def}(\Sigma, \vec{z}) = H^1(T\Sigma(-\log \vec{z})) = \mathbb{E}\mathsf{xt}^1(\Omega_{\mathbb{T}}(\vec{z}))$

$$\square \operatorname{Der}(\Sigma, z) = \Pi \left(\operatorname{I} \Sigma(-\log z) \right) = \operatorname{Ext} \left(\operatorname{I} \Sigma(z) \right)$$

•
$$\mathsf{Def}(u) = H^0(u^*TX) = \mathbb{E}\mathsf{xt}^1(u^*\Omega_X \longrightarrow \Omega_{\Sigma}(\vec{z}), \mathcal{O}_{\Sigma})$$

- $\mathsf{Obs}(u) = H^1(u^*TX) = \mathbb{E}\mathsf{xt}^2(u^*\Omega_X \longrightarrow \Omega_\Sigma(\vec{z}), \mathcal{O}_\Sigma)$
- \blacksquare We just need ${\rm Obs}(f)=0$ for ${\mathcal M}_{g,k}(X,A)$ to be smooth orbifold near f

Transversality (deformation theory): log case

Theorem (in preparation)

For a fixed (Σ, \vec{z}) and $\mathfrak{s},$ we can construct an $\infty\text{-dimensional bundle}$

$$\begin{split} \mathcal{E}_{\mathrm{log}} & \longrightarrow \mathcal{B}_{\mathrm{log}} = \mathsf{Map}_{\mathfrak{s}}((\Sigma, \vec{z}), (X, D)) \\ \mathcal{E}_{u} & = \Omega^{0,1}(u^{*}(TX(-\log D))) \end{split}$$

such that $\bar{\partial} \colon \mathcal{B} \longrightarrow \mathcal{E}$ restricts to a smooth section $\bar{\partial}_{\log}$ of

$$\mathcal{E}_{\log} \longrightarrow \mathcal{B}_{\log}$$

- Zero set of $\bar{\partial}_{\log}$ is the set of log holomorphic maps of tangency type \mathfrak{s} from (Σ, \vec{z}) into (X, D)
- $\bullet \ D_u \bar{\partial}_{\log} \colon \Omega^0(u^*TX(-\log D)) \longrightarrow \Omega^{0,1}(u^*TX(-\log D))$

$$\begin{split} \mathsf{Def}_{\log}(u) &= \mathsf{ker}(D_u \bar{\partial}_{\log}) \\ \mathsf{Obs}_{\log(u)} &= \mathsf{coker}(D_u \bar{\partial}_{\log}) \end{split}$$

By Riemann-Roch

$$\mathsf{dim}_{\mathbb{R}}\mathsf{Def}_{\mathrm{log}}(u) - \mathsf{dim}_{\mathbb{R}}\mathsf{Obs}_{\mathrm{log}}(u) = c_1^{TX(-\log D)}(A) + n(1-g)$$

• If $Obs_{log}(u) = 0 \Rightarrow \underline{Around \ u}$, $\mathcal{M}_{g,\mathfrak{s}}(X, D, A)$ is a smooth orbifold of real dimension

$$2(c_1^{TX(-\log D)}(A) + (n-3)(1-g) + k)$$

Theorem (in preparation) There is a class of "semi-positive" pairs (X, D) where global perturbation of $\bar{\partial}_{\log}$ (as in Ruan-Tian) allows a geometric construction of log GW invariants for (X, D)

What is left to be done?

- Constructing Virtual Fundamental Cycle (Gluing analysis)
- Comparing to algebraic log moduli spaces
- Calculating the resulting Gromov-Witten type invariants
- Looking into applications (Mirror Symmetry ...)

Thank you for your attention