Gromov-Witten theory relative to an SNC divisor

Mohammad Farajzadeh-Tehrani

University of Missouri-Columbia
Geometry/Topology Seminar April 2019

Holomorphic curves

- X : smooth complex proj variety OR symplectic manifold with an almost complex structure $J\left(J: T X \longrightarrow T X, J^{2}=-\mathrm{id}\right)$

■ Genus g curve Σ with k distinct marked points $\vec{z}=\left(z_{1}, \ldots, z_{k}\right)$

- Degree $A \in H_{2}(X, \mathbb{Z})$
$\Rightarrow \mathcal{M}_{g, k}(X, A)=\{(u, \Sigma, \vec{z}): \Sigma \xrightarrow{u} X, \bar{\partial} u=0,[u(\Sigma)]=A\} / \sim$

Relative case

\square SNC divisor in $X: D=\bigcup_{i=1}^{N} D_{i}$

- Remark. In Symp case, general definition of SNC divisor is due to McLean, Zinger, and I (2014). We need J that is compatible with both ω and D, plus more conditions
- Tangency orders: $\mathfrak{s}=\left(s_{1}, \ldots, s_{k}\right)$

$$
s_{a}=\left(s_{a i}\right)_{i=1}^{N} \in \mathbb{N}^{N}, \quad A \cdot D_{i}=\sum_{a=1}^{k} s_{a i}
$$

- $\mathcal{M}_{g, k}(X, A) \supset \mathcal{M}_{g, \mathfrak{s}}(X, D, A)=$

$$
\left\{[u, \Sigma, \vec{z}]: u^{-1}(D) \subset\left\{z_{1}, \ldots, z_{k}\right\}, \operatorname{ord}_{z_{a}}\left(u, D_{i}\right)=s_{a i}\right\}
$$

$■{\operatorname{Exp}-\operatorname{dim}_{\mathbb{C}}}^{\mathcal{M}_{g, \mathfrak{s}}(X, D, A)=c_{1}^{T X}(A)+(n-3)(1-g)+k-A \cdot D}$

Example

- $X=\mathbb{P}^{2}, \quad D=D_{1} \cup D_{2}$ union of two hyperplanes (lines)

■ $A=[3] \in H_{2}\left(\mathbb{P}^{2}, \mathbb{Z}\right) \cong \mathbb{Z}, \quad g=0, \quad k=3$
■ $\mathfrak{s}=\left(s_{1}=(3,2), s_{2}=(0,1), s_{3}=(0,0)\right)$
■ $u([z, w])=\left[z^{3}, z^{2} w, p(z, w)\right], \quad \operatorname{dim}_{\mathbb{C}} \mathcal{M}_{0, \mathfrak{s}}\left(\mathbb{P}^{2}, D,[3]\right)=5$

GOAL (analytical approach)

■ Compactify $\mathcal{M}_{g, \mathfrak{s}}(X, D, A) \rightsquigarrow \overline{\mathcal{M}}_{g, \mathfrak{s}}(X, D, A)$

- Set up the deformation theory
- Construct VFC
\Rightarrow we can define Gromov-Witten invariants of (X, D) :
count k-marked genus g degree A holomorphic curves of tangency type \mathfrak{s} with D plus other conditions on the domain or the image

Compactification (classical case)

■ Stable (Gromov) compactification $\overline{\mathcal{M}}_{g, k}(X, A)$: holomorphic maps with nodal domain and finite automorphism

A nodal curve of genus 4 with 2 marked points

Decorated dual graph Γ

■ Vertices $v \in \mathbb{V} \rightsquigarrow$ irreducible components Σ_{v}

- Edge $e \in \mathbb{E} \rightsquigarrow$ nodes q_{e} connecting $q_{e} \in \Sigma_{v_{1}}$ and $q_{e} \in \Sigma_{v_{2}}$
- Flags (open edges) \rightsquigarrow marked points

■ Decorations: $\mathbb{V} \ni v \rightsquigarrow$ genus g_{v} of Σ_{v}, degree A_{v} of $u_{v}=\left.u\right|_{\Sigma_{v}}$

- Extra decorations in the relative case:

$$
\begin{aligned}
& \text { a-th marked point } z_{a} \rightsquigarrow s_{a} \in \mathbb{N}^{N} \\
& \mathbb{E} \ni e \rightsquigarrow I_{e} \subset\{1, \ldots, N\}, \quad u\left(q_{e}\right) \subset D_{I_{e}}=\bigcap_{i \in I_{e}} D_{i} \\
& \mathbb{V} \ni v \rightsquigarrow I_{v} \subset\{1, \ldots, N\}, \quad \operatorname{Im}\left(u_{v}=\left.u\right|_{\Sigma_{v}}\right) \subset D_{I_{v}}
\end{aligned}
$$

Example

Previous works (smooth D, early 2000)

■ Jun Li (algebraic), lonel-Parker and Li-Ruan (symplectic)

- idea: In order to construct a (so called relative) compactification, they also degenerate the target

- issue 1: Changing the target makes the analysis hard (so details still incomplete after 15 years)
- issue 2: It does not generalize to SNC case

Previous works (SNC D and more, mid 2000-current)

■ Gross-Siebert, Abramovich-Chen, ... (algebraic case)

- idea: They consider pairs of holomorphic maps and maps between certain sheaves of monoids on domains and a fixed sheaf of monoids on the target
- issue 1: complicated for computations
- issue 2: specific to the algebraic category
- Brett Parker (analytical, certain almost Kähler cases)
- idea: Similarly, pairs of holomorphic maps and maps of certain analytical sheaves
- issue 1: very complicated (involves non-Hausdorff spaces)
- issue 2: it essentially works in the Kähler category

Observation 1

$■$ in the limit, for each $u_{v}: \Sigma_{v} \longrightarrow D_{I_{v}}$ and every $i \in I_{v}$, we get a meromorphic section

$$
\zeta_{v, i} \in \Omega_{\text {mero }}\left(u^{*} \mathcal{N}_{X} D_{i}\right)
$$

with zeros/poles only at marked or nodal points

$■ \zeta_{v, i}$ is well-defined up to action of \mathbb{C}^{*}

Observation 2

- A tuple $\left(u_{v}: \Sigma_{v} \longrightarrow D_{I_{v}}, \zeta_{v}=\left(\zeta_{v, i}\right)_{i \in I_{v}}\right)$ allows us to define tangency order of each point as a vector in \mathbb{Z}^{N}

$$
\begin{gathered}
\operatorname{ord}_{u_{v}, \zeta_{v}}(x)=\left(\operatorname{ord}_{u_{v}, \zeta_{v}}^{i}(x)\right)_{i=1}^{N} \in \mathbb{Z}^{N} \quad \forall x \in \Sigma_{v} \\
\qquad \operatorname{ord}_{u_{v}, \zeta_{v}}^{i}(x)= \begin{cases}\operatorname{ord}_{x}\left(u_{v}, D_{i}\right) & \text { if } i \notin I_{v} \\
\operatorname{ord}_{x}\left(\zeta_{v, i}\right) & \text { if } i \in I_{v}\end{cases}
\end{gathered}
$$

- Definition: A pre-log map is a tuple

$$
f=\left(u_{v}:\left(\Sigma_{v}, \vec{z}_{v}\right) \longrightarrow D_{I_{v}}, \zeta_{v}=\left(\zeta_{v, i}\right)_{i \in I_{v}}\right)_{v \in \mathbb{V}}
$$

such that

1. order at the a-th marked point is s_{a}
2. at each node $q_{e}=\left(q_{\underline{e}} \sim q_{\underline{e}}\right)$, orders are dual: $s_{\underline{e}}=-s_{\underline{e}}$
3. at any other point, order is trivial

Back to the Example

In case 2 , on $\Sigma_{v_{2}}$ we need one holomorphic section of $\mathcal{N}_{\mathbb{P}^{2}} D_{1}=\mathcal{O}(1)$ with a simple zero at $q_{e_{2}}$: there is exactly one such section up to action of \mathbb{C}^{*}
\star : We need more conditions as case 1 is still OK

A linear map associated to the decorated dual graph

- Extra decoration: $\underset{\sim}{e} \rightsquigarrow s_{\underline{e}} \in \mathbb{Z}^{N}$ at each nodal point
- After fixing random orientations on edges:

$$
\begin{aligned}
\rho: \mathbb{Z}^{\mathbb{E}} \oplus \bigoplus_{v \in \mathbb{V}} \mathbb{Z}^{I_{v}} & \longrightarrow \bigoplus_{e \in \mathbb{E}} \mathbb{Z}^{I_{e}} \\
1_{e} & \longrightarrow \begin{cases}s_{e} & e-\text { th component } \\
0 & \text { otherwise }\end{cases} \\
1_{v, i} & \longrightarrow \begin{cases}1_{e, i} & \text { if } \underset{\sim}{e} \text { begins with } v \\
-1_{e, i} & \text { if } \underset{e}{e} \text { ends at } v \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

■ Claim: some part of the Def-Obs information is encoded

$$
\mathrm{K}=\operatorname{ker}\left(\rho_{\mathbb{R}}\right) \quad \mathrm{Ck}=\operatorname{coker}\left(\rho_{\mathbb{C}}\right)
$$

These are independent of the orientation we chose to define ρ

Def-Obs information encoded in K and Ck

- Inside K we consider the cone

$$
\sigma=\mathrm{K} \cap\left(\mathbb{R}_{\geq 0}^{\mathbb{E}} \oplus \bigoplus_{v \in \mathbb{V}} \mathbb{R}_{\geq 0}^{I_{v}}\right)
$$

which possibly could be just the origin!
■ Corresponding to Ck we get the complex Lie group

$$
\mathcal{G}=\exp (\mathrm{Ck}):=\frac{\prod_{e \in \mathbb{E}}\left(\mathbb{C}^{*}\right)^{I_{e}}}{\left(\mathbb{C}^{*}\right)^{\mathbb{E}} \times \prod_{v \in \mathbb{V}}\left(\mathbb{C}^{*}\right)^{I_{v}}}
$$

- Lemma: Corresponding to every pre-log map f with the decorated dual graph Γ we get an element $\operatorname{ob}(f) \in \mathcal{G}$

Log holomorphic curves

■ Definition. Define $\mathcal{M}_{g, 5}(X, D, A)_{\Gamma}$ to be the space of equivalence classes of stable pre-log maps

$$
f=\left(u_{v}:\left(\Sigma_{v}, \vec{z}_{v}\right) \longrightarrow D_{I_{v}}, \zeta_{v}=\left(\zeta_{v, i}\right)_{i \in I_{v}}\right)_{v \in \mathbb{V}}
$$

where

1. $\exists s_{v} \in \mathbb{R}_{+}^{I_{v}} \times\{0\}^{[N]-I_{v}} \subset \mathbb{R}^{N}$ and positive numbers $\lambda_{e} \in \mathbb{R}_{+}$ such that

$$
s_{v_{2}}-s_{v_{1}}=\lambda_{e} s_{e}
$$

for all oriented edges $\underset{\sim}{e}$ from v_{1} to v_{2}
2. $\mathrm{ob}(f)=1$

■ Define

$$
\overline{\mathcal{M}}_{g, \mathfrak{s}}^{\log }(X, D, A)=\bigcup_{\Gamma} \mathcal{M}_{g, \mathfrak{s}}(X, D, A)_{\Gamma}
$$

Remarks

■ Condition 1 is equivalent to σ being a maximal convex rational polyhedral cone in K

- In the works of ACGS, Condition 1 is equivalent to the existence of certain tropical curves
- Comparing to relative GW theory, the vectors s_{v} in Condition 1 give N-partial orderings on the irreducible components relative to D_{1}, \ldots, D_{N}
- From σ we get an affine toric variety Y_{σ} with the fan σ
- Lemma: The space of gluing parameters (up to some multiplicity) is a neighborhood of 0 in Y_{σ}
$\operatorname{codim}_{\mathbb{C}} \mathcal{M}_{g, 5}(X, D, A)_{\Gamma}=\operatorname{dim} K$
- Condition 2 has no explicit analogue in the literature

Remarks

■ Condition 1 is equivalent to σ being a maximal convex rational polyhedral cone in K

- In the works of ACGS, Condition 1 is equivalent to the existence of certain tropical curves
- Comparing to relative GW theory, the vectors s_{v} in Condition 1 give N-partial orderings on the irreducible components relative to D_{1}, \ldots, D_{N}
- From σ we get an affine toric variety Y_{σ} with the fan σ
- Lemma: The space of gluing parameters (up to some multiplicity) is a neighborhood of 0 in Y_{σ}
$\operatorname{codim}_{\mathbb{C}} \mathcal{M}_{g, 5}(X, D, A)_{\Gamma}=\operatorname{dim} K$
- Condition 2 has no explicit analogue in the literature

Remarks

■ Condition 1 is equivalent to σ being a maximal convex rational polyhedral cone in K

- In the works of ACGS, Condition 1 is equivalent to the existence of certain tropical curves
- Comparing to relative GW theory, the vectors s_{v} in Condition 1 give N-partial orderings on the irreducible components relative to D_{1}, \ldots, D_{N}
- From σ we get an affine toric variety Y_{σ} with the fan σ
- Lemma: The space of gluing parameters (up to some multiplicity) is a neighborhood of 0 in Y_{σ}
$\operatorname{codim}_{\mathbb{C}} \mathcal{M}_{g, 5}(X, D, A)_{\Gamma}=\operatorname{dim} K$
- Condition 2 has no explicit analogue in the literature

Remarks

■ Condition 1 is equivalent to σ being a maximal convex rational polyhedral cone in K

- In the works of ACGS, Condition 1 is equivalent to the existence of certain tropical curves
- Comparing to relative GW theory, the vectors s_{v} in Condition 1 give N-partial orderings on the irreducible components relative to D_{1}, \ldots, D_{N}
- From σ we get an affine toric variety Y_{σ} with the fan σ
- Lemma: The space of gluing parameters (up to some multiplicity) is a neighborhood of 0 in Y_{σ}
$\operatorname{codim}_{C} \mathcal{M}_{g, 5}(X, D, A)_{\Gamma}=\operatorname{dim} K$
- Condition 2 has no explicit analogue in the literature

Remarks

■ Condition 1 is equivalent to σ being a maximal convex rational polyhedral cone in K

- In the works of ACGS, Condition 1 is equivalent to the existence of certain tropical curves
- Comparing to relative GW theory, the vectors s_{v} in Condition 1 give N-partial orderings on the irreducible components relative to D_{1}, \ldots, D_{N}
- From σ we get an affine toric variety Y_{σ} with the fan σ

■ Lemma: The space of gluing parameters (up to some multiplicity) is a neighborhood of 0 in Y_{σ}

$$
\operatorname{codim}_{\mathbb{C}} \mathcal{M}_{g, \mathfrak{s}}(X, D, A)_{\Gamma}=\operatorname{dim} \mathrm{K}
$$

Remarks

■ Condition 1 is equivalent to σ being a maximal convex rational polyhedral cone in K

- In the works of ACGS, Condition 1 is equivalent to the existence of certain tropical curves
- Comparing to relative GW theory, the vectors s_{v} in Condition 1 give N-partial orderings on the irreducible components relative to D_{1}, \ldots, D_{N}
- From σ we get an affine toric variety Y_{σ} with the fan σ

■ Lemma: The space of gluing parameters (up to some multiplicity) is a neighborhood of 0 in Y_{σ}

$$
\operatorname{codim}_{\mathbb{C}} \mathcal{M}_{g, 5}(X, D, A)_{\Gamma}=\operatorname{dim} \mathrm{K}
$$

- Condition 2 has no explicit analogue in the literature

Back to example

- So the first configuration does not satisfy condition 1
- Second one does and \mathcal{G} is trivial (nothing to check in Condition 2)

■ Compactness Theorem (-, 2017) For suitable choice of J (including holomorphic case)
$\square \overline{\mathcal{M}}_{g, \mathfrak{s}}^{\log }(X, D, A)$ is compact, metrizable, and of the expected \mathbb{C}-dimension

$$
c_{1}^{T X}(A)+(n-3)(1-g)+k-A \cdot D=c_{1}^{T X(-\log D)}(A)+(n-3)(1-g)+k
$$

- the natural forgetful map

$$
\overline{\mathcal{M}}_{g, \mathfrak{s}}(X, D, A) \longrightarrow \overline{\mathcal{M}}_{g, k}(X, A)
$$

is an embedding if $g=0$, and it is locally an embedding (like an immersion) if $g>0$
■ Proposition (- , 2017) If D is smooth, there is a surjective map

$$
\overline{\mathcal{M}}_{g, \mathfrak{s}}^{\mathrm{rel}}(X, D, A) \longrightarrow \overline{\mathcal{M}}_{g, \mathfrak{s}}^{\log }(X, D, A)
$$

Transversality (deformation theory): classical case

■ For a fixed Σ, ∞-dimensional bundle

$$
\mathcal{E} \longrightarrow \mathcal{B}=\operatorname{Map}(\Sigma, X), \quad \mathcal{E}_{u}=\Omega^{0,1}\left(u^{*} T X\right)
$$

■ $\bar{\partial}: \mathcal{B} \longrightarrow \mathcal{E}$ is a smooth section

- zero set of $\bar{\partial}$ is the set of holomorphic maps from Σ into X

■ $D_{u} \bar{\partial}: \Omega^{0}\left(u^{*} T X\right) \longrightarrow \Omega^{0,1}\left(u^{*} T X\right)$: linearization of $\bar{\partial}$ at u

- $D_{u} \bar{\partial}=\bar{\partial}_{\text {std }}+$ compact perturbation, and

$$
\begin{aligned}
\operatorname{Def}(u) & =\operatorname{ker}\left(D_{u} \bar{\partial}\right) \\
\operatorname{Obs}(u) & =\operatorname{coker}\left(D_{u} \bar{\partial}\right)
\end{aligned}
$$

are finite dimensional

- By Riemann-Roch

$$
\operatorname{dim}_{\mathbb{R}} \operatorname{Def}(u)-\operatorname{dim}_{\mathbb{R}} \operatorname{Obs}(u)=2\left(c_{1}^{T X}(A)+n(1-g)\right)
$$

- If $D_{u} \bar{\partial}$ is surjective $(\operatorname{Obs}(u)=0) \Rightarrow$ Around $u, \mathcal{M}_{g, k}(X, A)$ is a smooth orbifold of real dimension

$$
2\left(c_{1}^{T X}(A)+(n-3)(1-g)+k\right)
$$

- The idea around the transversality issue is to consider global (Ruan-Tian) or local (Li-Tian, Fukaya-Ono, etc) deformations $\bar{\partial} u=\nu$ of $\bar{\partial}$-section

■ For $f=(u, \Sigma, \vec{z})$

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Def}(u) \longrightarrow \operatorname{Def}(f) \longrightarrow \operatorname{Def}(\Sigma, \vec{z}) \\
& \operatorname{Obs}(u) \longrightarrow \operatorname{Obs}(f) \longrightarrow 0
\end{aligned}
$$

■ $\operatorname{Def}(\Sigma, \vec{z})=H^{1}(T \Sigma(-\log \vec{z}))=\operatorname{Ext}^{1}\left(\Omega_{\Sigma}(\vec{z})\right)$
■ $\operatorname{Def}(u)=H^{0}\left(u^{*} T X\right)=\operatorname{Ext}^{1}\left(u^{*} \Omega_{X} \longrightarrow \Omega_{\Sigma}(\vec{z}), \mathcal{O}_{\Sigma}\right)$
■ $\operatorname{Obs}(u)=H^{1}\left(u^{*} T X\right)=\mathbb{E x t}^{2}\left(u^{*} \Omega_{X} \longrightarrow \Omega_{\Sigma}(\vec{z}), \mathcal{O}_{\Sigma}\right)$

- We just need $\operatorname{Obs}(f)=0$ for $\mathcal{M}_{g, k}(X, A)$ to be smooth orbifold near f

Transversality (deformation theory): log case

Theorem (in preparation)
■ For a fixed (Σ, \vec{z}) and \mathfrak{s}, we can construct an ∞-dimensional bundle

$$
\begin{array}{r}
\mathcal{E}_{\log } \longrightarrow \mathcal{B}_{\log }=\operatorname{Map}_{\mathfrak{s}}((\Sigma, \vec{z}),(X, D)) \\
\mathcal{E}_{u}=\Omega^{0,1}\left(u^{*}(T X(-\log D))\right)
\end{array}
$$

such that $\bar{\partial}: \mathcal{B} \longrightarrow \mathcal{E}$ restricts to a smooth section $\bar{\partial}_{\log }$ of

$$
\mathcal{E}_{\log } \longrightarrow \mathcal{B}_{\log }
$$

■ Zero set of $\bar{\partial}_{\text {log }}$ is the set of log holomorphic maps of tangency type \mathfrak{s} from (Σ, \vec{z}) into (X, D)

- $D_{u} \bar{\partial}_{\text {log }}: \Omega^{0}\left(u^{*} T X(-\log D)\right) \longrightarrow \Omega^{0,1}\left(u^{*} T X(-\log D)\right)$

$$
\begin{aligned}
\operatorname{Def}_{\log }(u) & =\operatorname{ker}\left(D_{u} \bar{\partial}_{\log }\right) \\
\operatorname{Obs}_{\log (u)} & =\operatorname{coker}\left(D_{u} \bar{\partial}_{\log }\right)
\end{aligned}
$$

■ By Riemann-Roch

$$
\operatorname{dim}_{\mathbb{R}} \operatorname{Def}_{\log }(u)-\operatorname{dim}_{\mathbb{R}} \operatorname{Obs}_{\log }(u)=c_{1}^{T X(-\log D)}(A)+n(1-g)
$$

■ If $\operatorname{Obs}_{\log }(u)=0 \Rightarrow \underline{\text { Around } u}, \mathcal{M}_{g, \mathfrak{s}}(X, D, A)$ is a smooth orbifold of real dimension

$$
2\left(c_{1}^{T X(-\log D)}(A)+(n-3)(1-g)+k\right)
$$

Theorem (in preparation) There is a class of "semi-positive" pairs (X, D) where global perturbation of $\bar{\partial}_{\text {log }}$ (as in Ruan-Tian) allows a geometric construction of log GW invariants for (X, D)

What is left to be done?

- Constructing Virtual Fundamental Cycle (Gluing analysis)

■ Comparing to algebraic log moduli spaces

- Calculating the resulting Gromov-Witten type invariants

■ Looking into applications (Mirror Symmetry ...)

Thank you for your attention

