Symplectic normal crossings (sub-)varieties and their smoothings

Mohammad Farajzadeh-Tehrani

Based on joint work with M. Mclean and A. Zinger

Aarhus University, Denmark

May 26 2017

Goal: bring well-known algebraic structures to symplectic topology

Pioneers: Gromov (85), Donaldson(95)

Motivations: Gromov-Witten theory, Gross-Siebert Program, Geography of symplectic manifolds

Symplectic manifold:

- 1. 2n-dim manifold X, plus
- 2. 2-form ω which is closed (d ω =0) and non-degenerate ($\omega^n \neq 0$)

■ Link to algebraic geometry: ∃ almost complex structure

$$J: TX \longrightarrow TX \qquad s.t.$$

- 1. $J^2 = -id$ 2. $\omega(\cdot, J \cdot)$ is a metric
- Space of such J: infinite dimensional, but contractible
- **Kähler** manifold: (X, ω, J) s.t. J comes from a complex str on X

Example: $X = \mathbb{R}^{2n} = \mathbb{C}^n$, $\omega_{std} = dx_1 \wedge dy_1 + \ldots + dx_n \wedge dy_n$

• Every (X, ω) is locally isomorphic to $(\mathbb{R}^{2n}, \omega_{std})$

Algebraic geometry: studying varieties and subvarities

- 1. **curves**: dim 1
- 2. **divisors**: codim 1, locally f = 0
- **Symplectic submanifold** $Y \subset X$: $\omega|_Y$ is symplectic

Gromov(85): J-holomorphic curves

- $\bullet \ u \colon (\Sigma, \mathfrak{j}) \longrightarrow (X, J) \qquad \bar{\partial} u = \mathsf{d} u + J \circ \mathsf{d} u \circ \mathfrak{j} = 0$
- C = Im(u): *J*-holomorphic curve
- As singular as curves in algebraic geometry
- Moduli space of *J*-holomorphic maps ~→ **Gromov-Witten** theory, **Floer** homology, etc
- $\int_C \omega > 0$: energy bound.
- Particular choice of ω in its deformation equivalence class is NOT important

Gromov(86 Book):

He asked about **feasibility** of defining **higher dimensional singular varieties and sub-varieties** and studying their **smoothing** in symplectic category

- Normal crossings (NC) divisors and varieties: appear in Hodge Theory, Mirror Symmetry, compactification of moduli spaces, Gromov-Witten theory, etc.
- X complex manifold \rightsquigarrow an NC divisor V is locally given by $z_1 z_2 \cdots z_k = 0$ where (z_1, \dots, z_n) are local coordinates on X.

Simple NC divisor: global transverse union of smooth divisors $\bigcup_{i\in S}V_i$

- **NC variety**: Locally can be embedded as simple NC divisor in \mathbb{C}^{n+1}
- Simple NC variety: Global union of smooth varieties glued along simple NC divisors

along simple NC divisors $\bigcup_{i=1}^N X_i, \quad X_{ij} = X_i \cap X_j, \quad \{X_{ij}\}_{j \neq i} \subset X_i \text{ an SNC divisor}$

 Important case of Gromov's inquiry: Define symplectic notions of NC varieties and subvarieties and study their properties. Some facts about smooth divisors and earlier results:

• $V \subset (X, \omega)$ smooth divisor \rightsquigarrow

Normal bundle $\mathcal{N}_X V$ of V in X: rank 2 real vector bundle, inherits a symplectic form $\omega|_{\mathcal{N}_X V}$ from ω

• Hermitian structure (i, ρ, ∇) on $\mathcal{N}_X V$:

- i: $\omega|_{\mathcal{N}_X V}$ -compatible (fiber-wise) complex structure
- ρ : Hermitian metric with real part $\rho_{\mathbb{R}} = \omega|_{\mathcal{N}_X V}(\cdot, \mathfrak{i} \cdot)$
- ∇ : connection compatible with (i, ρ)

Space of such Hermitian structures: non-empty and contractible

• $\nabla \rightsquigarrow 1$ -form α on $\mathcal{N}_X V - V$ s.t. on each fiber $\mathcal{N}_X V|_x \cong \mathbb{C}$:

 $\alpha \approx 1$ -form d θ w.r.t polar coordinates (r, θ) on $\mathbb C$

• $\rho(v,\overline{v})$ on each fiber pprox square norm $r^2\!=\!|z|^2$ on $\mathbb C$

$$\widehat{\omega} = \pi^*(\omega|_V) + \frac{1}{2}\mathsf{d}(\rho\alpha)$$

- restricts to standard symplectic 2-form $d(r^2 d\theta)$ on each fiber - symplectic in a small neighborhood of V in $\mathcal{N}_X V$.
- Symplectic Neighborhood Theorem (special case of Moser argument): There is an identification (we call it regularization)

$$\Psi\colon \mathsf{Dom}(\Psi)\subset \mathcal{N}_XV\longrightarrow \mathsf{Im}(\Psi)\subset X$$

such that

$$\Psi(V)=V,\qquad \mathsf{d}\Psi|_V=\mathsf{id},\qquad \Psi^*\omega=\widehat\omega$$

Some applications:

- 1. Space of almost complex structures J on X compatible with ω and V (JTV = TV): still non-empty and contractible.
- 2. Such $(\Psi, \mathfrak{i}) \rightsquigarrow$ a complex line bundle

$$\mathcal{O}_X(V) = \Psi_* \pi^* \mathcal{N}_X V|_{\mathsf{Im}(\Psi)} \sqcup (X - V) \times \mathbb{C} / \sim (\Psi(v), cv) \sim (\Psi(v), c)$$

with $c_1(\mathcal{O}_X(V)) = \mathsf{PD}(V)$ as in algebraic geometry.

 Symplectic Sum Construction Gompf (94), McCarthy-Wolfson (94): First realization of Gromov's inquiry to define singular varieties and study their smoothings in symplectic categor • (X_1, ω_1) and (X_2, ω_2) with smooth symplectic divisor $V \subset X_1, X_2 \rightsquigarrow$ simple NC variety $X_1 \cup_V X_2$ with two components.

Question: Does there exists

and all other fibers are smooth symplectic submanifolds.

Symplectic Sum Theorem: $X_1 \cup_V X_2$ is smoothable $\Leftrightarrow \mathcal{N}_{X_1} V$ and $\mathcal{N}_{X_2} V$ are dual to each other, i.e.

 $c_1(\mathcal{N}_{X_1}V) + c_1(\mathcal{N}_{X_2}V) \!=\! 0 \quad \text{or} \quad \mathcal{N}_{X_1}V \otimes \mathcal{N}_{X_2}V \cong V \!\times\! \mathbb{C}$

- The construction of $\pi \colon \mathcal{Z} \longrightarrow \Delta$ uses
 - 1. regularizations $\Psi_i \colon \mathsf{Dom}(\Psi_i) \subset \mathcal{N}_{X_i}V \longrightarrow \mathsf{Im}(\Psi_i) \subset X$, for i = 1, 2,
 - 2. a trivialization $\Phi \colon \mathcal{N}_{X_1}V \otimes \mathcal{N}_{X_2}V \longrightarrow V \times \mathbb{C}$
 - 3. various cut-off functions.

Conclusion:

Since only deformation equivalence class of smooth fibers of \mathcal{Z} (as the out put of the construction) is well-defined \rightsquigarrow **Only** the deformation equivalence class of (X_1, ω_1) , (X_2, ω_2) , Φ (as inputs of this construction) matter and the particular choice is not important. A cool application of the symplectic sum construction in Gompf's paper:

Theorem(Gompf 94): Every finitely generated group G can be realized as the fundamental group of a smooth closed symplectic manifold of real dimension 4.

Questions

1. How to define NC symplectic varieties with (locally) more than two components?

- 2. How to define NC symplectic divisors?
- 3. Which NC symplectic varieties are smoothable?

- **First Guess**: Transverse union $\{V_i\}_{i \in S}$ of smooth divisors
- Symplectic-ness issue: The intersections $V_I = \bigcap_{i \in I} V_i$ do not have to be symplectic
- Orientation issue, example: X: blowup of \mathbb{P}^2 at a point, V₁: exceptional divisor, V₂: a C^1 -small deformation of that s.t. V₁₂ = V₁ \cap V₂ is a point with intersection number -1

- simple NC symplectic divisor: A transverse union of smooth symplectic divisors $V \equiv \{V_i\}_{i \in S}$ in (X, ω) s.t.
 - 1. all V_I are symplectic
 - 2. intersection orientation = symplectic orientation for each V_I
- Symp(X, V) = space of all symplectic structures ω such that V is an NC symplectic divisor in (X, ω)
- Blow-up example above: $V_{12} = V_1 \cap V_2$ is a point with the intersection orientation -1.

However, the symplectic orientation of any point is $\omega^0 = +1$

•
$$X = \mathbb{C}^3$$
, $V_i = (z_i = 0) \cong \mathbb{C}^2$ (coordinate hyperplanes) for $i = 1, 2, 3$.

$$\omega = dx_1 \wedge dy_1 + dx_2 \wedge dy_2 + dx_3 \wedge dy_3 -a(dx_1 \wedge dy_2 + dx_2 \wedge dy_1 + dx_1 \wedge dy_3 + dx_3 \wedge dy_1)$$

•
$$V_I$$
 are all symplectic if $a \neq \pm \sqrt{.5}, \pm 1$

•
$$|a| > 1 \rightsquigarrow$$
 Not satisfied along V_{23}

•
$$\sqrt{.5} < |a| < 1 \rightsquigarrow$$
 Not satisfied along V_{12} , V_{13} , V_{23}
• $|a| < \sqrt{.5} \rightsquigarrow \checkmark$

What is the analogue of Symplectic Neighborhood Theorem for NC symplectic divisors?

• For every $I \subset S$, $\mathcal{N}_X V_I \cong \bigoplus_{i \in I} \mathcal{N}_{V_{I-i}} V_I \cong \bigoplus_{i \in I} \mathcal{N}_X V_i|_{V_I}$

■ $\forall j \in I$, fix Hermitian structure $(j_j, \rho_{I;j}, \nabla_{I;j})$ on $\mathcal{N}_{V_{I-j}}V_I$ ■ The closed 2-form

$$\widehat{\omega}_{I} = \pi^{*}(\omega|_{V_{I}}) + \frac{1}{2}\sum_{j \in I} \mathsf{d}(\rho_{I;j}\alpha_{I;j})$$

is a symplectic structure on a neighborhood of V_I in $\mathcal{N}_X V_I$.

An ω -regularization for $V \equiv \{V_i\}_{i \in S}$ in (X, ω) is a set of identifications

$$\mathcal{R} = \{\Psi_I \colon \mathsf{Dom}(\Psi_I) \subset \mathcal{N}_X V_I \longrightarrow \mathsf{Im}(\Psi_I) \subset X\} \qquad \text{such that}$$

- stratified: $\Psi_I(\mathsf{Dom}(\Psi_I) \cap \mathcal{N}_{V_{I'}}V_I) = \mathsf{Im}(\Psi_I) \cap V_{I'}.$
- \blacksquare identity to the first order: $\mathsf{d} \Psi_I|_{V_I} = \mathsf{id}$
- symplectic: $\Psi_I^* \omega = \widehat{\omega}_I$
- Ψ_I are compatible in a suitable sense.
- Question: Does every NC symplectic divisor admit a regularization? NO, except in the smooth case!!!!!!
- Why? A necessary condition for existence of a regularization or an almost complex structure which is compatible with all V_i is that they intersect **orthogonally**.
- $\operatorname{Aux}(X, V) = \operatorname{space} \operatorname{of} \operatorname{all} \operatorname{pairs} (\mathcal{R}, \omega) \operatorname{such} \operatorname{that} \omega \in \operatorname{Symp}(X, V)$ and \mathcal{R} is an ω -regularization for $\{V_i\}_{i \in S}$ in X.

Theorem(F.T., McLean, Zinger): The map

$$\mathsf{Aux}(X, \{V_i\}_{i \in S}) \longrightarrow \mathsf{Symp}(X, \{V_i\}_{i \in S}), \quad (\mathcal{R}, \omega) \longrightarrow \omega$$

is a weak homotopy equivalence (i.e. equal π_i for all $i \ge 0$).

- What does it mean in practice?
 - 1. Any ω in Symp(X, V) can be deformed in a small neighborhood of the singular locus to a cohomologous ω' such that $\{V_i\}_{i\in S}$ admits an ω' -regularization.
 - 2. Given $(\mathcal{R}_0, \omega_0)$ and $(\mathcal{R}_1, \omega_1)$, and a path of symplectic forms $(\omega_t)_{t \in [0,1]}$ in Symp(X, V) connecting ω_0 and ω_1 , there exists a cohomologous deformation of this path with the same end points $(\omega'_t)_{t \in [0,1]}$ that lifts to $(\mathcal{R}'_t, \omega'_t)$ with

$$\mathcal{R}'_0 \approx \mathcal{R}_0 \qquad \mathcal{R}'_1 \approx \mathcal{R}_1.$$

Moral conclusion: Our definition of NC symplectic divisor is good for any application that mostly cares about **deformation equivalence class** of symplectic structures, such as Gromov-Witten theory, symplectic sum construction, etc.

Some applications:

(1) Space of good almost Kähler structures:

 $\mathsf{AK}(X,V)$: Space of triples (J,\mathcal{R},ω) s.t. $(\mathcal{R},\omega) \in \mathsf{Aux}(X,V)$ and J is a compatible with (\mathcal{R},ω) in the sense that

1. $\omega(\cdot,J\cdot)$ is a metric

2.
$$JTV_i = TV_i$$
 for all $i \in S$

3.
$$\Psi_I^*J = \pi^*(J|_{V_I}) \oplus \bigoplus_{j \in I} \pi^* \mathfrak{i}_{I;j}$$
 for all $I \subset S$

Proposition(F.T., McLean, Zinger) The map

$$\mathsf{AK}(X,V) \longrightarrow \mathsf{Symp}(X,V), \quad (J,\mathcal{R},\omega) \longrightarrow \omega$$

is also a weak homotopy equivalence.

■ **Conclusion** We can use moduli space of *J*-holomorphic maps with *J* in AK(*X*, *V*) to define invariants of deformation equivalence classes of symplectic structures on (*X*, {*V*_{*i*}}_{*i*∈*S*})

(2) Natural vector bundles associated to NC divisors:

- A pair $(\mathcal{R}, \omega) \rightsquigarrow$ a complex line bundle $\mathcal{O}_X(V)$ with $c_1(\mathcal{O}_X(V)) = \mathsf{PD}(V)$ whose deformation equivalence class only depends on the class of $\omega \in \mathsf{Symp}(X, V)$
- A triple $(J, \mathcal{R}, \omega) \rightsquigarrow$ a complex vector bundle

$$TX(-\log V) \longrightarrow X$$

which generalizes the notion of **logarithmic tangent bundle** in algebraic geometry. Deformation equivalence class of $TX(-\log V)$ only depends on the class of $\omega \in \text{Symp}(X, V)$.

(3) Smoothing of NC varieties (generalization of symplectic sum):

• Simple NC symplectic variety $X_{\emptyset} = \bigcup_{i=1}^{N} X_i$, with singular locus

$$X_{\partial} = \bigcup_{\substack{i,j=1\\i\neq j}}^{N} X_{ij}$$

we can define a complex line bundle $\mathcal{O}_{X_{\partial}}(X_{\emptyset}) \longrightarrow X_{\partial}$ whose restriction to each X_{ij} is equal to

$$\mathcal{N}_{X_i}X_{ij}\otimes\mathcal{N}_{X_j}X_{ij}\otimes\bigotimes_{k
eq i,j}\mathcal{O}_{X_{ij}}(X_{ijk})$$

■ Friedman (1983): In complex algebraic geometry, triviality of *O*_{X∂}(X_∅) (d-semistability condition) is a necessary condition for the smoothability of X_∅ in a smooth one-parameter family. The condition is however not sufficient even if *N*=2 (U. Persson and H. Pinkham)

- Theorem (F.T., McLean, Zinger) A NC symplectic variety is smoothable (in the symplectic category) if and only if O_{X∂}(X_∅) is isomorphic to the trivial complex line bundle.
- The proof is constructive
- Depends on a regularization $(\mathcal{R}, \omega) \in \operatorname{Aux}(X_{\emptyset})$, a compatible trivialization of $\mathcal{O}_{X_{\partial}}(X_{\emptyset})$, and lots of other auxiliary smooth functions
- Smooth fibers of the smoothing are called **multifold** symplectic sum of X_{\emptyset}
- The deformation equivalence class of the multifold symplectic sum only depends on the deformation equivalence class of the symplectic structure on X_{\emptyset} and the homotopy class of the trivialization of $\mathcal{O}_{X_{\partial}}(X_{\emptyset})$.

Some words on proofs

(1) The essential idea in the proof of regularization theorem:

- Consider \mathbb{C}^N with $\omega_{std} = dx_1 \wedge dy_1 + \dots, dx_n \wedge dy_n$ and coordinate hyperplanes $V_i \equiv (x_i = y_i = 0)$.
- Lemma: Let ω be a linear symplectic form on \mathbb{C}^N such that ω -orientation and complex orientation (intersection orientation) of every V_I are the same. Then ω can be deformed (via linear symplectic forms of the same sort) to ω_{std} .
- This lemma exhibits the necessity of orientation condition in the definition of SC divisors.

Proof of Lemma

• $\omega^{\bullet} = \oplus \omega|_{\mathbb{C}^i}$: this is diagonal part of ω

 $\bullet \ \omega^{\circ} = \omega - \omega^{\bullet}$

- We increase diagonal part of ω by replacing ω with $\omega_t = \omega + t \omega^\bullet, \, t >> 0$
- We eliminate the off diagonal part
- We scale it back to ω^{\bullet}
- Note that ω^{\bullet} is deformable to $\omega_{\rm std}$
- In practice we need to consider vector spaces $\mathcal{N}_{V_I}X$ with $\omega = \omega_V + \frac{1}{2}d(\iota_{\zeta}\Omega_{\nabla})$ instead of just \mathbb{C}^N which makes the argument technical, specially if V_I is not compact, and inductively build and merge these deformations.

(2) necessity of d-semistability condition:

- Extension Lemma: $\pi: L \longrightarrow M$ a Hermitian line bundle, and $M' \subset M$ complement of closed submanifolds $V_1, \ldots, V_\ell \subset M$ of real codimension c or higher. If $c \ge 2$, any two trivializations of L over M that restrict to homotopic trivializations of $L|_{M'}$ are homotopic as trivializations of L over M. If $c \ge 3$, every trivialization of $L|_{M'}$ is homotopic to the restriction of a trivialization of L over M.
- Proposition: Let π: Z → Δ be a one-parameter family of smoothings of a connected simple NC symplectic variety X_∅ = ⋃^N_{i=1} X_i, and s_∅ be the canonical section of the line bundle

$$\mathcal{O}_{\mathcal{Z}}(X_{\emptyset}) = \bigotimes_{i=1}^{N} \mathcal{O}_{\mathcal{Z}}(X_i)$$

Then there exists a non-vanishing section s of $\mathcal{O}_{\mathcal{Z}}(X_{\emptyset})$ so that the smooth maps $s_{\emptyset}/s|_{\mathcal{Z}-X_{\emptyset}}$ and $\pi|_{\mathcal{Z}-X_{\emptyset}}$ to \mathbb{C}^* are homotopic.

Tak for din opmærksomhed