
A new relational solver for the Alloy Analyzer
Mudathir Mohamed, Baoluo Meng, Andrew Reynolds and Cesare Tinelli

†Department of Computer Science, University of Iowa, Iowa City, USA

Abstract—We present a new relation solver for Alloy Analyzer,
the CVC4 Relational Solver (CRS), that translates Alloy models
to SMT formulas over the theory of finite relations. It extends the
Alloy Analyzer to prove properties on unbounded domains unlike
Kodkod, the default solver of the Alloy Analyzer, which only
works with bounded domains. CRS implements a new semantics
over arithmetic operators on integer signatures which is simple,
intuitive, and consistent with interpreting the applications of
arithmetic operations as relational joins.

I. INTRODUCTION

Alloy is a formal language for software specification based
on relational logic that combines predicate calculus and re-
lational calculus [1]. The Alloy Analyzer is a static analysis
tool that translates Alloy specifications, or models, to a set of
constraints in predicate logic with relations for the Kodkod
solver [2]. Kodkod in turn translates its input to propositional
logic formulas to be solved by off-the-self SAT solvers. While
Kodkod is a very efficient solver, it needs concrete lower and
upper bounds on the cardinality of each relational domain,
called a signature in Alloy, thus requiring users to specify
all bounds in advance, including a maximum bitwidth for
bounded integers. As a result, model properties, or assertions
in Alloy, can be verified only within the specified bounds.

Meng et al. [3] added the theory of finite relations to the
SMT Solver CVC4, and used it to build an early prototype
of CRS as an alternative to Kodkod. This prototype translates
models in a restricted fragment of Alloy to SMT formulas
without imposing artificial bound constraints on signatures.

We report here on our extension of CRS to support more
Alloy features. These include modules, nested multiplicities,
commands and integer signatures. We also propose a new
semantics for arithmetic operators on integer signatures that
we believe is more intuitive, and consistent with interpreting
the application of arithmetic operations as relational joins.

CRS1 is now integrated with Alloy Analyzer. It translates
Alloy models to an extension of the SMT-LIB 2 format with
finite sets, tuples and relational operators from the theory of
finite relations. The solver transforms satisfying models found
by CVC4 to Alloy model instances. It can return different
instances when the constraints are satisfiable, and supports
incremental solving when executing multiple commands.

II. EXAMPLES

The examples in Figures 1 and 2 demonstrate CRS features
compared to Kodkod solver. In Figure 1, lines 1 and 2 define
two top-level signatures (representing two disjoint domains)

1Available at https://github.com/CVC4/org.Alloytools.Alloy .

1 sig B {}
2 sig A { f: disj one B } // f: A x B is injective
3 fact { f[A] = B } // f is surjective
4 // no two distinct elements have the same image
5 assert assertion {
6 no disj x, y : A | x != y and f[x] = f[y]
7 }
8 check assertion for 3 A, 3 B
9 check assertion for 5 A, 5 B

Fig. 1. Kodkok can prove valid assertions only in bounded scopes such scopes
3 and 5 for A and B in lines 10 and 11, respectively. CRS can prove valid
assertions in an unbounded scope.

1 sig A, B, C in Int {}
2 fact {
3 A = 1 + 2 // A = {1} ∪ {2}
4 B = 4 + 5 // B = {4} ∪ {5}
5 C = plus[A, B]
6 }
7 one sig x, y in Int {} // x, y are singletons
8 fact { plus[x, y] in C and minus[x, y] in C }
9 run {} for 6 Int

10 run {} for 3 Int

Fig. 2. In line 11, CRS returns C = {5, 6, 7}, x = {6}, y = {1}, whereas
Kodkod returns C = {12} = {sum[A] + sum[B]}, x = {12}, y = {0}.

named A and B. Line 2 Also defines a field (or a relation)
f ⊆ A×B, the keyword one is a multiplicity constraint that
restricts the relation f to be a function, and the keyword disj
restricts the function f to be injective. Line 3 defines a fact (or
an invariant) that restricts f to be surjective. Line 5 defines an
assertion (a property) which is a formula we expect to logically
follow from the model. Lines 8, 9 check the validity of the
assertion when A and B have scope 3 (i.e., their cardinality is
≤ 3) and 5, respectively. Since Kodkod can disprove assertions
only in bounded domains, it concludes there are no counter
examples for the assertion within the given scopes. In contrast,
CRS ignores the scope constraints by default and can prove
in this case that the assertion is valid in unbounded scopes.
It can also prove the validity in bounded scopes if the input
option “include scope” is enabled.

In Figure 2, line 1 defines three integer subsignatures A,B,
and C (denoting possibly overlapping sets of integers). Lines
3 and 4 constraint A to be the set {1, 2} and B the set {4, 5}.
Note that, by design, Alloy does not provide ways to denote
scalar values [1]. Each numeral denotes the singleton unary
relation containing the number (e.g., 5 denotes the set {5}).
Also note that the + operator denotes set union.

https://github.com/CVC4/org.Alloytools.Alloy


Line 5 restricts C to be the addition of sets A and B
(explained below). Line 7 defines two integer singletons x, y,
and line 8 constrains the sets resulting from the addition and
the subtraction to be subsets of C.

Lines 9 and 10 define two run commands which attempt to
find instances satisfying all constraints within integer scopes 6
and 3, respectively. Scope 6 in line 9 represents the maximum
bitwidth for integers when expressed in two’s complement
(binary) notation [1]. This restricts integers to be in the range
[−32,+31]. Similarly, scope 3 denotes the range [−4,+3].

Kodkod applies the builtin sum function to the arguments
of plus before computing the result [1]. The sum function
takes a set of integers as an argument and returns their sum
[1]. In this example, C = plus[A,B] is the same as C =
plus[sum[A], sum[B]]. Since sum[A] = 3 and sum[B] = 9,
then Kodkod returns C = {12} for scope 6. For scope 3, 12
is outside the bitwidth range. So Kodkod finds no instance if
the “Prevent Overflows” option is enabled, or returns a result
modulo 2w for the prescribed bitwidth w if it is disabled. In
the latter, C = {−4} =8 {12} is returned.

CRS does not use sum for the plus operation. Instead,
it follows the semantics described in Table I. In this
semantics, plus is interpreted as a finite subset of the
ternary relation corresponding to integer addition. In our
example, CRS returns a model instance where plus =
{(1, 4, 5), (1, 5, 6), (2, 4, 6), (2, 5, 7)} and C = {5, 6, 7}. Since
by default CRS imposes no bounds on integers, both com-
mands at line 9 and 10 return the same instance. When the
“include scope” option is enabled, CRS adds (in essence) the
the constraints below to the commands in lines 9 and 10,
respectively where intuniv is a builtin signature described in
the next section. In that case, it returns C = {5, 6, 7} for scope
6, and returns unsat for scope 3.
run {all z: intuniv | z>=-32 and z<=31} for 6 Int
run {all z: intuniv | z>=- 4 and z<= 3} for 3 Int

III. TRANSLATION TO SMT
Alloy has a rich type systems that includes subtypes and

union and intersection types. Roughly speaking, every signa-
ture is also a type. Non-integer signatures are all subtypes of a
root type of (uninterpreted) atoms. The Int signature is a builtin
signature denoting the mathematical integers. The language
provides the builtin unary signature univ which, for each Alloy
model, is the union of Int and all the top-level signatures
in the model. CRS conforms to the Alloy type system with
the exception of prohibiting the construction of expressions
that mix integer and non-integer elements. For example, the
following predicate is considered ill-typed by CRS, whereas
it is well-typed (and always true) in standard Alloy.
pred p {univ & Int = Int} // Int is a subset of univ

This facilitates the translation to CVC4, whose type sys-
tems has only simple types, and does not appear to be
a major restriction in common usage [4]. Another notable,
albeit mostly nominal, difference is that CRS treats all user-
defined signatures as finite sets. CRS translates all non-integer

TABLE I
SEMANTICS OF FUNCTIONS PLUS, DIV, AND REM (MINUS AND MUL ARE

DEFINED ANALOGOUSLY).

Operation Join syntax Meaning

plus[A,B] B.A.plus {z | ∃ x ∈ A, y ∈ B . x+ y = z}
div[A,B] B.A.div {z | ∃ x ∈ A, y ∈ B . x/y = z}
rem[A,B] B.A.rem {z | ∃ x ∈ A, y ∈ B . x mod y = z}

signatures as finite sets of elements of a single uninterpreted
type called Atom. Signature hierarchies are translated using
subset and disjoint union constraints. Integer signatures are
translated as finite sets of elements of an uninterpreted type
UInt equipped with an injective mapping to the builtin type
Z. The rationale behind using UInt instead of Z is to avoid
universal quantification over the infinite set Z. CRS interprets
univ as the universe set for the type Atom and introduces the
new builtin signature intuniv to denote the finite universe set
for UInt. Based on this translation, CRS supports quantified
expressions over intuniv but not over Int.

IV. SEMANTICS OF INTEGER ARITHMETIC

CRS interprets the builtin arithmetic operations plus, minus,
mul, div, and rem differently from standard Alloy, and more
consistently with the use of function application in Alloy as
syntactic sugar for relational joins. Specifically, it uses the
semantics in Table I where plus, minus, mul, div, and rem are
interpreted as ternary relations in Z× Z× Z.

For comparison operators, which apply to two sets of
integers, Alloy prescribes the application of the sum function
to the arguments before the comparison. In contrast, the
semantics of a comparison operator op ∈ {<,≤, >,≥} in
CRS is based on singletons as follows:

JA op BK = ∃ x, y ∈ Z. A = {x} ∧B = {y} ∧ (x op y)

CRS evaluates A < B in Figure 2 as false since both A and
B are not singletons, while Kodkod evaluates it as 3 < 9.

V. CONCLUSION AND FUTURE WORK

Currently, Kodkod has superior performance in the bounded
case, especially in models with large relations and transitive
closures. We are working on improving CRS’s performance
by enhancing the encoding to SMT, and further optimizing
the relational solver in CVC4.

CRS supports most Alloy constructs. For cardinality con-
straints, it accepts only the comparison of a relation’s cardi-
nality to a numeral. Supporting general cardinality constraints
is a longer term goal because it will require a corresponding
extension of CVC4’s relational solver.

REFERENCES

[1] D. Jackson, Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2012.

[2] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in
Proceedings of TACAS 2007, ser. LNCS, vol. 4424. Springer, 2007.

[3] B. Meng, A. Reynolds, C. Tinelli, and C. Barrett, “Relational constraint
solving in SMT,” in Proceedings of CADE-26, ser. LNCS, vol. 10395.
Springer, 2017.

[4] D. Jackson, Jun. 2018, personal communication.


	Introduction
	Examples
	Translation to SMT
	Semantics of Integer Arithmetic
	Conclusion and Future Work
	References

