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Basic Ratio of Uniforms Method
Introduced by Kinderman and Monahan (1977).

e Suppose f is a (possibly unnormalized) density

e Suppose V,U are uniform on
o ={(,u):0<u<+/f(v/u)}

e Then X =V /U has density (proportional to) f(x)
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Example: Standard Normal Distribution
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e Then ./ IS bounded. ‘-

0.0

e Can use rejection sampling
from an enclosing rectangle.
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Some Generalizations

o If f(X) = fp(X)f1(X) and V,U has density proportional to
fo(v/u) on

o ={(vu):0<u<+/fi(v/u)}

then X =V /U has density proportional to f

e If V,U are uniform on

o ={(vu):0<u</f(v/u+u)l

then X =V /U + u has density proportional to f
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Some Generalizations (cont.)

e Choosing u as the mode of f often works well.

e For a Gamma(oa = 50) density f(x) O x*¥e™;

u=0 U=o—1=49
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Higher Dimensions

Stefanescu and Vaduva (1987); Wakefield, Gelfand and Smith (1991)
If V,U are uniform on

o ={(vu):veRy0<u< *Vi(v/u+u)}

then X =V /U + u has density proportional to f
e Can rejection sample from hyper-rectangle
— Usually not practical in higher dimensions

e Alternative: Sample .« by MCMC



Markov Chain Monte Carlo Using the Ratio-of-Uniforms Transformation Bormio 2005

Higher Dimensions (cont.)

Some Regions for d = 2

Bivariate Normal, p =0.73 Variance Components
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Some Properties of the Region &/

e o/ is bounded if f(x) and ||x||9"1f(x) are bounded.
e o/ is convex if f(x) is log concave.
o If f(X) = fo(x)f1(x) and

o ={(vu):0<u< Vi (v/u+u)}

and fy Is log concave, then

— &/ IS convex
— o/ is bounded if and only if [ fy(X)dX < co.

Leydold (2001); Hormann, Leydold, Derflinger (2004)
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Auxiliary Variable Approach
Suppose X has density proportional to f(x) on RY

° LetU|X rd+1 rd
wherer > —1/d. Then X, U have joint density

fxu(x,u) O f(x)u/f(x) = u"

for 0 < u< "1/ f(x).

e LetV = XU'. Then V,U have joint density

rd+1 f (X

fvu(v,u) OuI(v,u)| =u®u™ =1

for 0 <u< "R/ f(v/ur).



Markov Chain Monte Carlo Using the Ratio-of-Uniforms Transformation Bormio 2005

Auxiliary Variable Approach (cont.)

Generalized RU sampler: X =V /U" with V,U uniform on

o ={(uv):0<u< "“"Yiv/u)}
e r = 1: standard RU sampler

e I = 0: slice sampler
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A Simple Gibbs Sampler Approach
Alternate sampling V|U =uandU|V =v

e Sampling V|U = uis equivalent to

sample X|U =u
set V= Xu®

e SamplingV|U =uor X|U =u

— may not be practically feasible for large d
— may be theoretically useful to consider

Call this the simple RU sampler.
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Slice and RU Sampler Comparison
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Other MCMC Approaches
Updating V and U separately:

e Updating V:

— by any method that leaves V|U = u or X|U = u invariant
— one or more coordinates at a time, or all at once
— Neal (2003) describes many approaches

e Updating U:

— for log convex f can use adaptive rejection
— again, methods from Neal (2003) can be used
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Other MCMC Approaches (cont.)
Marginal updating of X:

e Update to X, by any method that is invariant for f

e generate Ug|X = X, as in the auxiliary variable approach
e compute V = XUy

e choose U; by a method that leaves U |V = v invariant

e compute X .1 =V /Uy = XUp/Uy

This is a random rescaling of X, that leaves f invariant
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Other MCMC Approaches (cont.)
Joint sampling of V,U.
e Hit and run (random direction) methods

— uniform conditionals for log concave f
— other univariate uniform samplers when .« Is not
convex

e Random walk Metropolis-Hastings methods

— For symmetric, e.g. Gaussian, proposal acceptance
probability is zero or one.

e Shape/scaling of .&7 Is important.
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Other MCMC Approaches (cont.)

Suppose g is an approximation to f with RU region 4, and
g(y|x) is a symmetric proposal kernel. Let

Gi(yIx) 21%1%<y>+<1_a>q<y|x>

Then the Metropolis-Hastings acceptance probabillities are

y

1 fxeagNABorye .o NHE
—1
a(xy) = (1+mayg)  fxeon#zcandye o/ nz
0 otherwise
\
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Theoretical Properties

Uniform ergodicity: z(x) O f(x), #P = 7 and
IP"(x,dy) — z(dy)[ltv < Mp"

forsome M <o andp <1

e If f is log concave with mode at the origin, then the
simple RU Gibbs sampler is uniformly ergodic.

e If f is log concave, then the hit-and-run sampler is
uniformly ergodic.

o If f and ||x||"*1f(x) are bounded then Gaussian MH
samplers are uniformly ergodic.
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A Simple Example
Suppose f(x) is a density on RY with

LI

The RU region <7 is the sphere

o ={(vu) :[V[*+ (u-1)* < 1}

Simple RU sampler, run of 10,000, d = 10, 20,50, 100, 200

e absolute lag one autocorrelations are around 0.03
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A Simple Example (cont.)

e Gaussian random walk Metropolis-Hastings:

— optimal proposal SD seems to be around 1.5/d%°
— absolute lag d autocorrelations are around 0.5

e Hit and run:
— absolute lag d autocorrelations are around 0.35
e Coordinate-wise Gaussian random walk M-H:

— optimal proposal SD seems to be around 2.4/+/d
— absolute lag one autocorrelations are around 0.6

e Coordinate-wise Gibbs:

— absolute lag one autocorrelations are around 0.35
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Further Work and Open Questions

e Computational issues

— numerical considerations
— computational efficiency
— efficient single coordinate updates

e Transformations and parameterization

— location scale choices for f

— scaling of U

— nonlinear transformations, e.g. logs
— opportunities for adaptive methods
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Further Work and Open Questions (cont.)

e Use with marginals and conditionals

— sample joint conditionals for blocking
— sample marginals If available (variance components)

e Multi-modality issues

— o/ IS connected at the origin
— allows transitions between modes
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A Multi-Modal Target Density

Two well-separated modes:
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Further Work and Open Questions (cont.)

e Diagnostic uses

— maybe useful for discovering additional modes
— unbounded behavior may indicate improper f

e Theoretical considerations

— explicit transition kernels and convergence rates
— perfect sampling opportunities
— hybrids to make other samplers uniformly ergodic
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Conclusions

e The value of the ratio of uniforms transformation for
random variate generation is well known

e |t also has interesting uses in MCMC construction.
e |ts simplicity leads to interesting theoretical properties.

e With good scaling there is promise for good practical
results.

e More work and experience is needed to fully understand
the practical and theoretical value.
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