# A Literate Programming Example 

February 25, 2022

## The Log-Likelihood

The log-likelihood for the leukemia data is

$$
\ell\left(\beta_{0}, \beta_{1}, \beta_{2}, \delta\right)=-n \log \delta+\sum\left(z_{i}-e^{z_{i}}\right)
$$

with $\delta=1 / \gamma$ and $z_{i}=\left(\log t_{i}-\beta_{0}-\beta_{1} x_{i}-\beta_{2} u_{i}\right) / \delta$.
The log likelihood is computed by the expression

```
<compute log-likelihood\\=
-n * log(delta) + sum(z - exp(z))
```

after computing n and z as

```
<compute n and z>>
    n <- length(t)
    z <- (log(t) - beta[1] - beta[2] * x - beta[3] * u) / delta
```

A function to compute the log-likelihood is therefore

```
<log-likelihood\\=
    ll <- function(beta, delta, t, x, u) {
        \compute n and z\
        |compute log-likelihood\rangle
}
```


## The Gradient of the Log-Likelihood

The values of $\exp (z)$ and $\exp (z)-1$ are needed several times in computing the gradient, so it is useful to compute these once and save them in variables:

```
<compute exp_z and exp_z_m_1>=
    exp_z <- exp(z)
    exp_z_m_1 <- exp_z - 1
```

The gradient is then computed by the expression

```
<compute gradient\rangle\rangle=
c(sum(exp_z_m_1) / delta,
    sum(exp_z_m_1 * x) / delta,
    sum(exp_z_m_1 * u) / delta,
    (sum(exp_z * z - z) - n) / delta)
```

A function to compute the gradient of the log-likelihood is then

```
\gradient\rangle}\rangle
llg <- function(beta, delta, t, x, u) {
    \compute n and z\rangle
    \compute exp_z and exp_z_m_1\rangle
    \compute gradient\rangle
}
```

