Graphical Methods and Visualization

- There are two kind of graphics used in data analysis:
 - static graphics
 - dynamic, or interactive, graphics
 - There is overlap:
 - interactive tools for building static graphs
- Graphics is used for several purposes
 - exploration and understanding
 - * of raw data
 - * of residuals
 - * of other aspects of model fit, misfit
 - displaying and communicating results
- Historically, display and communication usually used static graphics
- Dynamic graphs were used mostly for exploration
- With digital publishing, dynamic graphics are also used for communication:
 - 2014 as hottest year on record on Bloomberg
 - Subway crime on New York Daily News
 - Who was helped by Obamacare on New York Times' Upshot
 - Paths to the White House on Upshot
 - LA Times years in graphics: 2014 and 2015

Historical Graphics

- Easy construction of graphics is highly computational, but a computer isn't necessary.
- Many graphical ideas and elaborate statistical graphs were creates in the 1800s.
- Some classical examples:
 - Playfair's *The Commercial and Political Atlas* and *Statistical Breviary* introduced a number of new graphs including
 - * a bar graph
 - * a pie chart
 - Minard developed many elaborate graphs, some available as thumbnail images, including an illustration of Napoleon's Russia campaign
 - Florence Nightingale uses a polar area diagram to illustrate causes of death among British troops in the Crimean war.
 - John Snow used a map (higher resolution) to identify the source of the 1854 London cholera epidemic. An enhanced version is available on http://www.datavis.ca/. A short movie has recently been produced.
 - Statistical Atlas of the US from the late 1800s shows a number of nice examples. The complete atlases are also available.
 - Project to show modern data in a similar style.
- Some references:
 - Edward Tufte (1983), The Visual Display of Quantitative Information.
 - Michael Friendly (2008), "The Golden Age of Statistical Graphics," Statistical Science 8(4), 502-535
 - Michael Friendly's Historical Milestones on http://www.datavis.
 ca/
 - A Wikipedia entry

Graphics Software

- Most statistical systems provide software for producing static graphics
- Statistical static graphics software typically provides
 - a variety of standard plots with reasonable default configurations for
 - * bin widths
 - * axis scaling
 - * aspect ratio
 - ability to customize plot attributes
 - ability to add information to plots
 - * legends
 - * additional points, lines
 - * superimposed plots
 - ability to produce new kinds of plots

Some software is more flexible than others.

- Dynamic graphical software should provide similar flexibility but often does not.
- Non-statistical graph or chart software often emphasizes "chart junk" over content
 - results may look pretty
 - but content is hard to extract
 - graphics in newspapers and magazines and advertising
 - Some newspapers and magazines usually have very good information graphics
 - * New York Times
 - * Economist
 - * Guardian
 - * LA Times

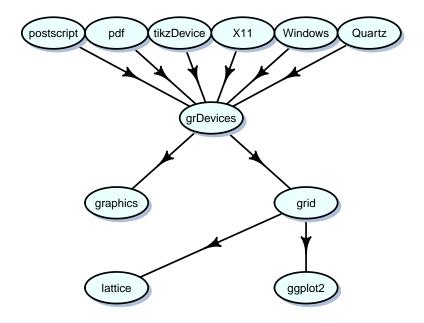
- Chart drawing packages can be used to produce good statistical graphs but they may not make it easy.
- They may be useful for editing graphics produced by statistical software. NY Times graphics creators often
 - create initial graphs in R
 - enhance in Adobe Illustrator

Graphics in R and S-PLUS

- Graphics in R almost exclusively static.
- S-PLUS has some minimal dynamic graphics
- R can work with ggobi
- Dynamic graphics packages available for R include
 - rgl for 3D rendering and viewing
 - iplots Java-based dynamic graphics
 - a number of others in various stages of development
- Three mostly static graphics systems are widely used in R:
 - standard graphics (graphics base package)
 - lattice graphics (trellis in S-PLUS) (a standard recommended package)
 - ggplot graphics (available as ggplot2 from CRAN)

Minimal interaction is possible via the locator command

- Lattice is more structured, designed for managing multiple related graphs
- ggplot represents a different approach based on Wilkinson's *Grammar* of *Graphics*.


Some References

- Deepayan Sarkar (2008), Lattice: *Multivariate Data Visualization with R*, Springer; has a supporting web page.
- Hadley Wickham (2009), ggplot: Elegant Graphics for Data Analysis, Springer; has a supporting wep page.
- Paul Murrell (2011), *R Graphics*, 2nd ed., CRC Press; has a supporting web page.
- Josef Fruehwald's introduction to ggplot.
- Vincent Zoonekynd's Statistics with R web book; Chapter 3 and Chapter 4 are on graphics.
- Winston Chang (2013), *R Graphics Cookbook*, O'Reilly Media.
- The Graphics task view lists R packages related to graphics.

Some Courses

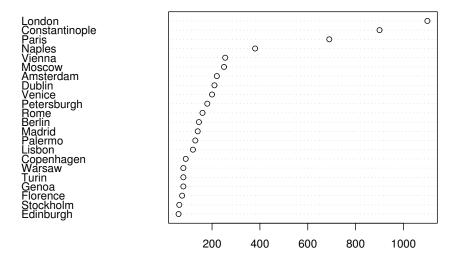
- Graphics lecture in Thomas Lumley's introductory computing for biostatistics course.
- Ross Ihaka's graduate course on computational data analysis and graphics.
- Ross Ihaka's undergraduate course on information visualization.
- Deborah Nolan's undergraduate course *Concepts in Computing with Data*.
- Hadley Wickham's Data Visualization course

A View of R Graphics

Graphics Examples

- Code for Examples in the remainder of this section is available on line
- Many examples will be from W. S. Cleveland (1993), *Visualizing Data* and N. S. Robbins (2004), *Creating More Effective Graphs*.

Plots for Single Numeric Variables

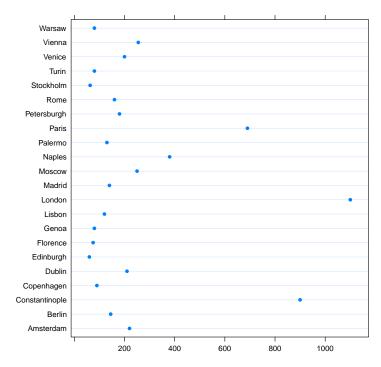

Dot Plots

This uses Playfair's city population data available in the data from Cleveland's *Visualizing Data* book:

```
Playfair <-
read.table("http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/Playfair")</pre>
```

- Useful for modest amounts of data
- Particularly useful for named values.
- Different sorting orders can be useful.
- Standard graphics:

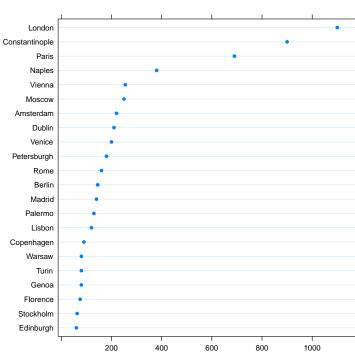
```
dotchart(structure(Playfair[,1],names=rownames(Playfair)))
title("Populations (thousands) of European Cities, ca. 1800")
```



Populations (thousands) of European Cities, ca. 1800

Tierney

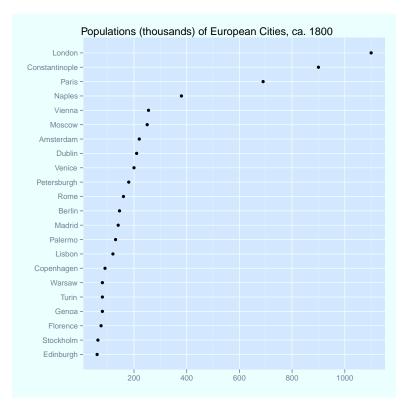
Computer Intensive Statistics STAT:7400, Spring 2020

• Lattice uses dotplot.


```
library(lattice)
dotplot(rownames(Playfair) ~ Playfair[,1],
            main = "Populations (thousands) of European Cities, ca. 1800",
            xlab = "")
```


Populations (thousands) of European Cities, ca. 1800

To prevent sorting on names need to convert names to an ordered factor.


```
dotplot(reorder(rownames(Playfair), Playfair[,1]) ~ Playfair[,1],
            main = "Populations (thousands) of European Cities, ca. 1800",
            xlab = "")
```


Populations (thousands) of European Cities, ca. 1800

• ggplot graphics

```
library(ggplot2)
qplot(Playfair[,1], reorder(rownames(Playfair), Playfair[,1]),
        main = "Populations (thousands) of European Cities, ca. 1800",
        xlab = "", ylab = "")
```


More Plots for Single Numeric Variables

Bar Charts

An alternative to a dot chart is a bar chart.

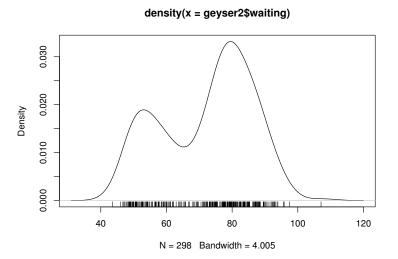
- These are more commonly used for categorical data
- They use more "ink" for the same amount of data
- Standard graphics provide barplot:

```
barplot(Playfair[,1], names = rownames(Playfair), horiz=TRUE)
```

This doesn't seem to handle the names very well.

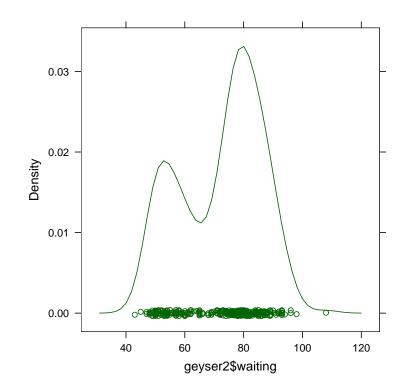
• Lattice graphics use barchart:

```
barchart(reorder(rownames(Playfair), Playfair[,1]) ~ Playfair[,1],
            main = "Populations (thousands) of European Cities, ca. 1800",
            xlab = "")
```


• ggplot graphics:

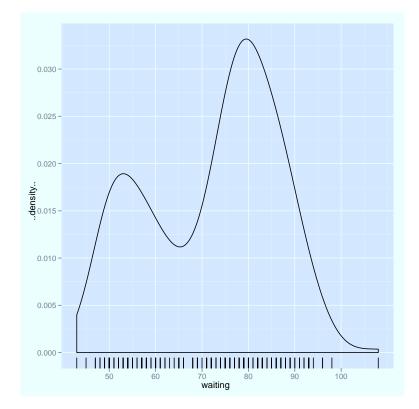
Density Plots

A data set on eruptions of the Old Faithful geyser in Yellowstone:


• Standard graphics:

```
plot(density(geyser2$waiting))
rug(jitter(geyser2$waiting, amount = 1))
```


• Lattice graphics:


densityplot(geyser2\$waiting)

Tierney

• ggplot2 graphics:

qplot(waiting,data=geyser2,geom="density") + geom_rug()


```
Tierney
```

Quantile Plots

• Standard graphics

```
data(precip)
qqnorm(precip, ylab = "Precipitation [in/yr] for 70 US cities")
```

• Lattice graphics

```
qqmath(~precip, ylab = "Precipitation [in/yr] for 70 US cities")
```

• ggplot graphics

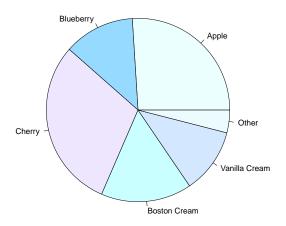
```
qplot(sample = precip, stat="qq")
```

Other Plots

Other options include

- Histograms
- Box plots
- Strip plots; use jittering for larger data sets

Plots for Single Categorical Variables


- Categorical data are usually summarized as a contingency table, e.g. using the table function.
- A little artificial data set:

```
pie.sales <- c(0.26, 0.125, 0.3, 0.16, 0.115, 0.04)
names(pie.sales) <- c("Apple", "Blueberry", "Cherry",
                          "Boston Cream", "Vanilla Cream",
                         "Other")</pre>
```

Pie Charts

• Standard graphics provides the pie function:

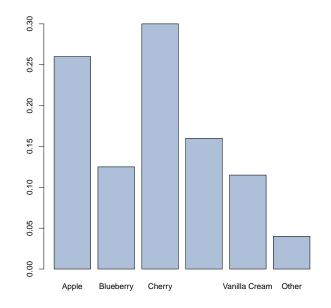
```
pie(pie.sales)
```


- Lattice does not provide a pie chart, but the Lattice book shows how to define one.
- ggplot can create pie charts as stacked bar charts in polar coordinates:

Computer Intensive Statistics STAT:7400, Spring 2020

Tierney

```
qplot(x = "", y = pie.sales, fill = names(pie.sales)) +
    geom_bar(width = 1, stat = "identity") + coord_polar(th


df <- data.frame(sales = as.numeric(pie.sales), pies = name
ggplot(df, aes(x = "", y = sales, fill = pies)) +
    geom_bar(width = 1, stat = "identity") +
    coord_polar(theta = "y")</pre>
```

This could use some cleaning up of labels.

Bar Charts

• Standard graphics:

barplot(pie.sales)

- One label is skipped to avoid over-printing

- vertical or rotated text might help.
- Lattice:

barchart(pie.sales)

• ggplot:

```
qplot(x = names(pie.sales), y = pie.sales,
    geom = "bar", stat = "identity")
```

This orders the categories alphabetically.

Plotting Two Numeric Variables

Scatter Plots

- The most important form of plot.
- Not as easy to use as one might think.
- Ability to extract information can depend on aspect ratio.
- Research suggests aspect ratio should be chosen to center absolute slopes of important line segments around 45 degrees.
- A simple example: river flow measurements.

```
river <-
   scan("http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples
plot(river)
xyplot(river~seq_along(river),panel=function(x,y,...) {
   panel.xyplot(x,y,...)
   panel.loess(x,y,...)})
plot(river,asp=4)
plot(river)
lines(seq_along(river),river)
plot(river, type = "b")</pre>
```

• Some more Lattice variations

```
xyplot(river seq_along(river), type=c("p","r"))
xyplot(river seq_along(river), type=c("p","smooth"))
```

• Some ggplot variations

```
qplot(seq_along(river), river)
qplot(seq_along(river), river) + geom_line()
qplot(seq_along(river), river) + geom_line() + stat_smooth(
```

• There is not always a single best aspect ratio.

```
data(co2)
plot(co2)
title("Monthly average CO2 concentrations (ppm) at Mauna Loa Observator
```

Handling Larger Data Sets

An artificial data set:

```
x <- rnorm(10000)
y <- rnorm(10000) + x * (x + 1) / 4
plot(x,y)</pre>
```

- Overplotting makes the plot less useful.
- Reducing the size of the plotting symbol can help:

plot(x,y, pch=".")

• Another option is to use translucent colors with *alpha blending*:

plot(x, y, col = rgb(0, 0, 1, 0.1, max=1))

• Hexagonal binning can also be useful:

```
plot(hexbin(x,y))  # standard graphics
hexbinplot(y ~ x)  # lattice
qplot(x, y, geom = "hex") # ggplot
```

Plotting a Numeric and a Categorical Variable

Strip Charts

• Strip charts can be useful for modest size data sets.

```
stripchart(yield ~ site, data = barley, met) # standard
stripplot(yield ~ site, data = barley) # Lattice
qplot(site, yield, data = barley) # ggplot
```

• *Jittering* can help reduce overplotting.

```
stripchart(yield ~ site, data = barley, method="jitter")
stripplot(yield ~ site, data = barley, jitter.data = TRUE)
qplot(site, yield, data = barley, position = position_jitter(w = 0.1))
```

Box Plots

Box plots are useful for larger data sets:

Density Plots

- One approach is to show multiple densities in a single plot.
- We would want
 - a separate density for each site
 - different colors for the sites
 - a legend linking site names to colors
 - all densities to fit in the plot
- This can be done with standard graphics but is tedious:

```
with(barley, plot(density(yield[site == "Waseca"])))
with(barley, lines(density(yield[site == "Crookston"]), col = "re
# ...
```

• Lattice makes this easy using the group argument:

```
densityplot(~yield, group = site, data = barley)
```

A legend can be added with auto.key=TRUE:

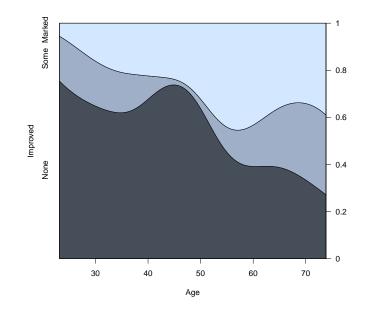
```
densityplot(~yield, group = site, data = barley, auto.key=T
```

• ggplot also makes this easy by mapping the site to the col aesthetic.

qplot(yield, data = barley, geom="density", col = site)

- Another approach is to plot each density in a separate plot.
- To allow comparisons these plots should use common axes.
- This is a key feature of Lattice/Trellis graphics:

densityplot(~yield | site, data = barley)


• ggplot supports this as *faceting*:

```
qplot(yield, data = barley, geom="density") + facet_wrap(~ site)
```

Categorical Response Variable

Conditional density plots estimate the conditional probabilities of the response categories given the continuous predictor:

```
library(vcd)
data("Arthritis")
cd_plot(Improved ~ Age, data = Arthritis)
```


Tierney

Plotting Two Categorical Variables

Bar Charts

• Standard graphics:

```
tab <- prop.table(xtabs(~Treatment + Improved, data = Arthr
barplot(t(tab))
barplot(t(tab),beside=TRUE)
```

• Lattice:

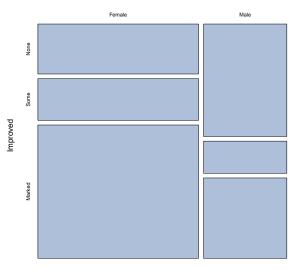
```
barchart(tab, auto.key = TRUE)
barchart(tab, stack = FALSE, auto.key = TRUE)
```

Lattice seems to also require using a frequency table.

• ggplot:

Plotting Two Categorical Variables

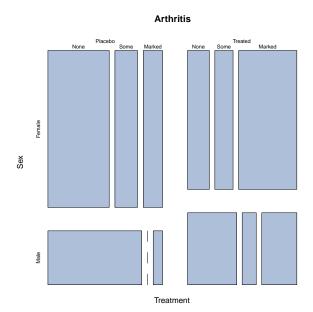
Spine Plots


Spine plots are a variant of stacked bar charts where the relative widths of the bars correspond to the relative frequencies of the categories.

Tierney

Mosaic Plots

Mosaic plots for two variables are similar to spine plots:


subset(Arthritis, Treatment == "Treated")

Sex

Tierney

Mosaic plots extend to three or more variables:

mosaicplot(~ Treatment + Sex + Improved, data = Arthritis)
mosaic(~ Treatment + Sex + Improved, data = Arthritis)

Three or More Variables

- Paper and screens are two-dimensional; viewing more than two dimensions requires some trickery
- For three continuous variables we can use intuition about space together with
 - motion
 - perspective
 - shading and lighting
 - stereo
- For categorical variables we can use forms of conditioning
- Some of these ideas carry over to higher dimensions
- For most viewers intuition does not go beyond three dimensions

Some Examples

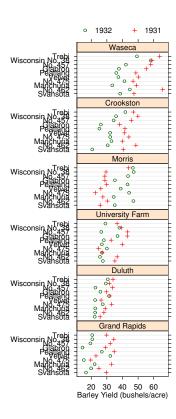
Soil Resistivity

• Soil resistivity measurements taken on a tract of land.

```
library(lattice)
soilfile <-
    "http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/soil"
soil <- read.table(soilfile)
p <- cloud(resistivity ~ easting * northing, pch = ".", data = soil)
s <- xyplot(northing ~ easting, pch = ".", aspect = 2.44, data = soil)
print(s, split = c(1, 1, 2, 1), more = TRUE)
print(p, split = c(2, 1, 2, 1))</pre>
```

• A loess surface fitted to soil resistivity measurements.

• A level/image plot is made with


• An interactive 3D rendered version of the surface:

• Partially transparent rendered surface with raw data:

Tierney

Barley Yields

- Yields of different barley varieties were recorded at several experimental stations in Minnesota in 1931 and 1932
- A dotplot can group on one factor and condition on others:

- Cleveland suggests that years for Morris may have been switched.
- A recent article offers another view.

NOx Emissions from Ethanol-Burning Engine

- An experiment examined the relation between nitrous oxide concentration in emissions NOx and
 - compression ratio C
 - equivalence ratio E (richness of air/fuel mixture)
- A scatterplot matrix shows the results

```
data(ethanol)
pairs(ethanol)
splom(ethanol)
```

• Conditioning plots (coplots) can help:

```
with(ethanol, xyplot(NOx ~ E | C))
with(ethanol, {
    Equivalence.Ratio <- equal.count(E, number = 9, overlap = 0.25)
    xyplot(NOx ~ C | Equivalence.Ratio,
        panel = function(x, y) {
            panel.xyplot(x, y)
            panel.loess(x, y, span = 1)
        },
        aspect = 2.5,
        layout = c(5, 2),
        xlab = "Compression Ratio",
        ylab = "NOx (micrograms/J)")
})</pre>
```

Three or More Variables

Earth Quakes

- Some measurements on earthquakes recorded near Fiji since 1964
- A scatterplot matrix shows all pairwise distributions:

```
data(quakes)
splom(quakes)
```

• The locations can be related to geographic map data:

```
library(maps)
map("world2",c("Fiji","Tonga","New Zealand"))
with(quakes,points(long,lat,col="red"))
```

• Color can be used to encode depth or magnitude

- Color scale choice has many issues; see www.colorbrewer.org
- Conditioning plots can also be used to explore depth:

with(quakes, xyplot(lat ~long|equal.count(depth)))

• Perspective plots are useful in principle but getting the right view can be hard

```
with(quakes,cloud(-depth~long*lat))
library(scatterplot3d)
with(quakes,scatterplot3d(long,lat,-depth))
```

• Interaction with rgl can make this easier:

Other 3D Options

- Stereograms, stereoscopy.
- Anaglyph 3D using red/cyan glasses.
- Polarized 3D.

Design Notes

- Standard graphics
 - provides a number of basic plots
 - modify plots by drawing explicit elements
- Lattice graphics
 - create an expression that describes the plot
 - basic arguments specify layout vie group and conditioning arguments
 - drawing is done by a panel function
 - modify plots by defining new panel functions (usually)
- ggplot and Grammar of Graphics
 - create an expression that describes the plot
 - aesthetic elements are associated with specific variables
 - modify plots by adding layers to the specification

Dynamic Graphs

- Some interaction modes:
 - identification/querying of points
 - conditioning by selection and highlighting
 - manual rotation
 - programmatic rotation
- Some systems with dynamic graphics support:
 - S-PLUS, JMP, SAS Insight, ...
 - ggobi, http://www.ggobi.org
 - Xmdv, http://davis.wpi.edu/~xmdv/
 - Various, http://stats.math.uni-augsburg.de/software/
 - xlispstat

Color Issues

Some Issues

- different types of scales, palettes:
 - qualitative
 - sequential
 - diverging
- colors should ideally work in a range of situations
 - CRT display
 - LCD display
 - projection
 - color print
 - gray scale print
 - for color blind viewers
- obvious choices like simple interpolation in RGB space do not work well

Some References

- Harrower, M. A. and Brewer, C. M. (2003). ColorBrewer.org: An online tool for selecting color schemes for maps. *The Cartographic Journal*, 40, 27–37. Available on line. The RColopBrewer package provides an R interface.
- Ihaka, R. (2003). Colour for presentation graphics," in K. Hornik, F. Leisch, and A. Zeileis (eds.), *Proceedings of the 3rd International Workshop on Distributed Statistical Computing*, Vienna, Austria. Available on line. See also the R package colorspace.
- Lumley, T. (2006). Color coding and color blindness in statistical graphics. *ASA Statistical Computing & Graphics Newsletter*, 17(2), 4–7. Avaivable on line.

- Zeileis, A., Meyer, D. and Hornik, K. (2007). Residual-based shadings for visualizing (conditional) independence. *Journal of Computational and Graphical Statistics*, 16(3), 507–525. See also the R package *vcd*.
- Zeileis, A., Murrell, P. and Hornik, K. (2009). Escaping RGBland: Selecting colors for statistical graphics, *Computational Statistics & Data Analysis*, 53(9), 3259-3270 Available on line.

Perception Issues

• A classic paper:

William S. Cleveland and Robert McGill (1984), "Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods," *Journal of the American Statistical Association* 79, 531–554.

- The paper shows that accuracy of judgements decreases down this scale:
 - position along a common scale
 - position along non-aligned scales
 - length, direction, angle,
 - area
 - shading, color saturation
- A simple example:

```
x <- seq(0, 2*pi, len = 100)
y <- sin(x)
d <- 0.2 - sin(x+pi/2) * 0.1
plot(x,y,type="l", ylim = c(-1,1.2))
lines(x, y + d, col = "red")
lines(x, d, col = "blue", lty = 2)
```

Tierney

- Bubble plots
 - An example from Bloomberg.
 - An improved version of the lower row:

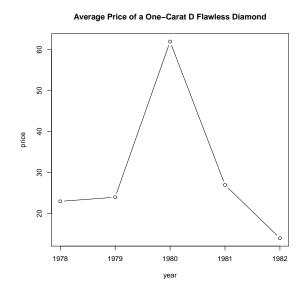
```
library(ggplot2)
 bankName <- c("Credit Suisse", "Goldman Sachs", "Santander",</pre>
                "Citygroup", "JP Morgan", "HSBC")
 before <- c(75, 100, 116, 255, 165, 215)
  after <- c(27, 35, 64, 19, 85, 92)
 d <- data.frame(cap = c(before, after),</pre>
                  year = factor(rep(c(2007, 2009), each=6)),
                  bank = rep(reorder(bankName, 1:6), 2))
  ggplot(d, aes(x = year, y = bank, size = cap, col = year)) +
      geom_point() +
      scale_size_area(max_size = 20) +
      scale color discrete(quide="none")
- A bar chart:
 ggplot(d, aes(x = bank, y = cap, fill = year)) +
      geom_bar(stat = "identity", position = "dodge") + coord_flip()
- Some dot plots:
  qplot(cap, bank, col = year, data = d)
  qplot(cap, bank, col = year, data = d) + geom_point(size = 4)
  do <- transform(d, bank = reorder(bank, rep(cap[1:6],2)))</pre>
  qplot(cap, bank, col = year, data = do) +
      geom_point(size = 4)
  qplot(cap, bank, col = year, data = do) +
      geom_point(size = 4) + theme_bw()
  library(ggthemes)
  qplot(cap, bank, col = year, data = do) +
      geom_point(size = 4) + theme_economist()
  qplot(cap, bank, col = year, data = do) +
      geom_point(size = 4) + theme_wsj()
```

- Our perception can also play tricks, leading to optical illusions.
 - Some examples, some created in R.
 - Some implications for circle and bubble charts.
 - The sine illusion.

Some References

- Cleveland, W. S. (1994), The Elements of Graphing Data, Hobart Press.
- Cleveland, W. S. (1993), Visualizing Data, Hobart Press.
- Robbins, Naomi S. (2004), *Creating More Effective Graphs*, Wiley; Effective Graphs blog.
- Tufte, Edward (2001), *The Visual Display of Quantitative Information*, 2nd Edition, Graphics Press.
- Wilkinson, Leland (2005), The Grammar of Graphics, 2nd Edition, Springer.
- Bertin, Jaques (2010), Semiology of Graphics: Diagrams, Networks, Maps, ESRI Press.
- Cairo, Alberto (2012), *The Functional Art: An introduction to information graphics and visualization*, New Riders; The Functional Art blog.
- Few, Stephen (2012), *Show Me the Numbers: Designing Tables and Graphs to Enlighten*, 2nd Edition, Analytics Press; Perceptual Edge blog.

Some Web and Related Technologies


- Google Maps and Earth
 - Mapping earthquakes.
 - Baltimore homicides.
 - Mapping twitter trends.
- SVG/JavaSctipt examples
 - SVG device driver.
 - JavaScript D3 and some R experiments:
 - * Contour plots
 - * rCharts
- Grammar of Graphics for interactive plots
 - animint package
 - ggvis package; source on github
- Flash, Gapminder, and Google Charts
 - Gapminder: http://www.gapminder.org/
 - An example showing wealth and health of nations over time.
 - Popularized in a video by Hans Rosling.
 - Google Chart Tools: https://developers.google.com/ chart/
 - googleVis package.
- Plotly
 - A blog post about an R interface.
- Gif animations
 - Bird migration patterns
- Embedding animations and interactive views in PDF files

- Supplemental material to JCGS editorial. (This seems not to be complete; another example is available from my web site.)
- Animations in R
 - animation package; has a supporting web site.
 - A simple example is available at the class web site.
 - Rstudio's shiny package.
- Tableau software
 - Tableau Public.

Further References

- Colin Ware (2004), Information Visualization, Second Edition: Perception for Design, Morgan Kaufmann.
- Steele, Julie and Iliinsky, Noah (Editors) (2010), *Beautiful Visualization:* Looking at Data through the Eyes of Experts.
- Tufte, Edward (2001), *The Visual Display of Quantitative Information*, 2nd Edition, Graphics Press.
- Tufte, Edward (1990), Envisioning Information, Graphics Press.
- Cairo, Alberto (2012), *The Functional Art: An introduction to information graphics and visualization*, New Riders.
- Gelman, Andrew and Unwin, Antony (2013), "Infovis and Statistical Graphics: Different Goals, Different Looks," *JCGS*; links to discussions and rejoinder; slides for a related talk.
- Stephen Few (2011), The Chartjunk Debate A Close Examination of Recent Findings.
- An article in The Guardian.
- Robert Kosara's Eagereyes blog.
- Data Journalism Awards for 2012.
- The Information is Beautiful Awards.

A classic example:

An alternate representation.

Some More References and Links

- Kaiser Fung's Numbers Rule Your World and Junk Charts blogs.
- Nathan Yao's FlowingData blog.
- JSS Special Volume on Spatial Statistics, February 2015.
- An unemployment visualization from the Wall Street Journal.
- A WebGL example from rgl

Some Data Technologies

- Data is key to all statistical analyses.
- Data comes in various forms:
 - text files
 - data bases
 - spreadsheets
 - special binary formats
 - embedded in web pages
 - special web formats (XML, JSON, ...)
- Data often need to be cleaned.
- Data sets often need to be reformatted or merged or partitioned.
- Some useful R tools:
 - read.table, read.csv, and read.delim functions.
 - merge function for merging columns of two tables based on common keys (data base join operation).
 - The reshape function and the melt and cast functions from the reshape or reshape2 packages for conversion between long and wide formats.

- tapply and the plyr and dplyr packages for
 - * partitioning data into groups
 - * applying statistical operations to the groups
 - * assembling the results
- The XML package for reading XML and HTML files.
- The scrapeR and rvest packages.
- Web Technologies Task View.
- Regular expressions for extracting data from text.
- Some references:
 - Paul Murrell (2009), *Introduction to Data Technologies*, CRC Press; available online at the supporting website,
 - Phil Spector (2008), *Data Manipulation with R*, Springer; available through Springer Link.
 - Deborah Nolan and Duncan Temple Lang (2014), XML and Web Technologies for Data Sciences with R, Springer.

Example: Finding the Current Temperature

- A number of web sites provide weather information.
- Some provide web pages intended to be read by humans:
 - Weather Underground.
 - Weather Channel
 - National Weather Service.
- Others provide a web service intended to be accessed by programs:
 - Open Weather Map API.
 - A similar service from Google was shut down in 2012.
 - National Weather Service SOAP API.
 - National Weather Service REST API.
- Historical data is also available, for example from Weather Underground.
- You computer of smart phone uses services like these to display current weather.
- The R package RWeather provides access to a number of weather APIs.

• Open Weather Map provides an API for returning weather information in XML format using a URL of the form

```
http://api.openweathermap.org/data/2.5/weather?q=Iowa+
City,IA&mode=xml&appid=44db6a862fba0b067b1930da0d769e98
```

```
or
```

```
http:
//api.openweathermap.org/data/2.5/weather?lat=41.66&lon=
-91.53&mode=xml&appid=44db6a862fba0b067b1930da0d769e98
```

• Here is a simple function to obtain the current temperature for from Open Weather Map based on latitude and longitude:

```
library(xml2)
findTempOWM <- function(lat, lon) {
    base <- "http://api.openweathermap.org/data/2.5/weather"
    key <- "44db6a862fba0b067b1930da0d769e98"
    url <- sprintf("%s?lat=%f&lon=%f&mode=xml&units=Imperial&appid=%s",
        base, lat, lon, key)
    page <- read_xml(url)
    as.numeric(xml_text(xml_find_one(page, "//temperature/@value")))
}</pre>
```

• For Iowa City you would use

findTempOWM(41.7, -91.5)

- This function should be robust since the format of the response is documented and should not change.
- Using commercial web services should be done with care as there are typically limitations and license terms to be considered.
- They may also come and go: Google's API was shut down in 2012.

Example: Creating a Temperature Map

• The National Weather Service provides a site that produces forecasts in a web page for a URL like this:

• This function uses the National Weather Service site to find the current temperature:

- This will need to be revised whenever the format of the page changes, as happened sometime in 2012.
- Murrell's *Data Technologies* book discusses XML, XPATH queries, regular expressions, and how to work with these in R.
- Some other resources for regular expressions:
 - Wikipedia
 - Regular-Expressions.info

• A small selection of Iowa cities

```
places <- c("Ames", "Burlington", "Cedar Rapids", "Clinton",
                                 "Council Bluffs", "Des Moines", "Dubuque", "Fort Dodge",
                                "Iowa City", "Keokuk", "Marshalltown", "Mason City",
                               "Newton", "Ottumwa", "Sioux City", "Waterloo")
```

• We can find their current temperatures with

• To show these on a map we need their locations. We can optain a file of geocoded cities and read it into R:

• Form the temperature data into a data frame and use merge to merge in the locations from the cities data frame (a JOIN operation in data base terminology):

• Now use the map function from the maps package along with the text function to show the results:

```
library(maps)
map("state", "iowa")
with(temploc, text(Lon, Lat, Temp, col = "blue"))
```

• To add contours we can use interp from the akima package and the contour function:

```
library(akima)
map("state", "iowa")
surface <- with(temploc, interp(Lon, Lat, Temp, linear = FALSE))
contour(surface, add = TRUE)
with(temploc, text(Lon, Lat, Temp, col = "blue"))</pre>
```

• A version using ggmap:

• Add contour lines:

```
s <- expand.grid(Lon = surface$x, Lat = surface$y)
s$Temp <- as.vector(surface$z)
s <- s[! is.na(s$Temp),]
p + geom_contour(aes(x = Lon, y = Lat, z = Temp), data = s)</pre>
```

Example: 2008 Presidential Election Results

- The New York Times website provides extensive material on the 2008 elections. County by county vote totels and percentages are available, including results for Iowa
- This example shows how to recreate the *choropleth map* shown on the Iowa retults web page.
- The table of results can be extracted using the XML package with

```
library(XML)
url <- "http://elections.nytimes.com/2008/results/states/president/iowa.html"
tab <- readHTMLTable(url, stringsAsFactors = FALSE)[[1]]</pre>
```

Alternatively, using packages xml2 and rvest,

```
library(xml2)
library(rvest)
tab <- html_table(read_html(url))[[1]]</pre>
```

These results can be formed into a usable data frame with

head(iowa)

• We need to match the county data to the county regions. The region names are

```
library(maps)
cnames <- map("county", "iowa", namesonly = TRUE, plot = FALSE)
head(cnames)</pre>
```

• Compare them to the names in the table:

```
which( ! paste("iowa", tolower(iowa$county), sep = ",") == cnames)
cnames[71]
iowa$county[71]
```

- There is one polygon for each county and they are in alphabetical order, so no elaborate matching is needed.
- An example on the maps help page shows how matching on FIPS codes can be done if needed.
- Next, choose cutoffs for the percentage differences and assign codes:

```
cuts <- c(-100, -15, -10, -5, 0, 5, 10, 15, 100)
buckets <- with(iowa, as.numeric(cut(ObamaPCT - McCainPCT, cuts)))
```

• Create a diverging color palette and assign the colors:

• Create the map:

```
map("county", "iowa", col = colors, fill = TRUE)
```

• Versions with no county lines and with the county lines in white:

map("county", "iowa", col = colors, fill = TRUE, lty = 0, resolution=0)
map("county", "iowa", col = "white", add = TRUE)

• A better pallette:

- Some counties have many more total votes than others.
- *Cartograms* are one way to attempt to adjust for this; these have been used to show 2008 and 2012 presidential election results.
- *Tile Grid Maps* are another variation currently in use.
- The New York Times also provides data for 2012 but it seems more difficult to scrape.
- Politoco.com provides results for 2012 that are easier to scrape; the Iowa results are available at

```
http:
//www.politico.com/2012-election/results/president/iowa/
```

ITBS Results for Iowa City Elementary Schools

- The Iowa City Press-Citizen provides data from ITBS results for Iowa City shools.
- Code to read these data is available.
- This code arranges the Standard and Percentile results into a single data frame with additional columns for Test and School.
- CSV files for the Percentile and Standard results for the elementary schools (except Regina) are also available.
- Read in the Standard results:

```
url <- paste("http://www.stat.uiowa.edu/~luke/classes/STAT7400",
                                "examples/ITBS/ICPC-ITBS-Standard.csv", sep = "/")
Standard <- read.csv(url, stringsAsFactors = FALSE, row.names = 1)
names(Standard) <- sub("X", "", names(Standard))
head(Standard)
```

- These data are in *wide* format. To use Lattice or ggplot to examine these data we need to convert to *long* format.
- This can be done with the reshape function or the function melt in the reshape2 package:

• Some Lattice plots:

```
library(lattice)
xyplot(Score ~ Grade | Year, group = Test, type = "l", data = mS,
            auto.key = TRUE)
xyplot(Score ~ Grade | Year, group = Test, type = "l", data = mS,
            subset = School == "Lincoln", auto.key = TRUE)
xyplot(Score ~ Grade | Year, group = Test, type = "l", data = mS,
            subset = Test %in% c("SocialScience", "Composite"),
            auto.key = TRUE)
```

Studying the Web

- Many popular web sites provide information about their use.
- This kind of information is now being actively mined for all sorts of purposes.
- Twitter provides an API for collecting information about "tweets."
 - The R package twitteR provides an interface to this API.
 - A simple introduction (deprecated but may still be useful).
 - One example of its use involves mining twitter for airline consumer sentiment.
 - Another example is using twitter activity to detect earthquakes.
- Facebook is another popular framework that provides some programmatic access to its information.
 - The R package Rfacebook is available.
 - One blog post shows how to access the data.
 - Another provides a simple illustration.
- Google provides access to a number of services, including
 - Google Maps
 - Google Earth
 - Google Visualization
 - Google Correlate
 - Google Trends

R packages to connect to some of these and others are available.

- Some other data sites:
 - Iowa Government Data
 - New York Times Data
 - Guardian Data
- Nice summary of a paper on deceptive visualizations.