Density Estimation and Smoothing

Density Estimation
* Suppose we have a random sample Xi,...,X, from a population with
density f.
» Nonparametric density estimation is useful if we

— want to explore the data without a specific parametric model

— want to assess the fit of a parametric model

— want a compromise between a parametric and a fully non-parametric
approach

* A simple method for estimating f at a point x:

~ no. of X; in [x — h,x + A
Jalx) = 2hn

for some small value of A

e This estimator has bias

~ 1

Bias(f,(x)) = %Ph(x) — f(x)
and variance
Var(7 (o)) = PG 2 i)

4h?n
with
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o If f is continuous at x and f(x) > 0, then as 7 — 0

— the bias tends to zero;

— the variance tends to infinity.

e Choosing a good value of & involves a variance-bias tradeoff.
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Kernel Density Estimation

» The estimator f,(x) can be written as

A= 5 2k (57)
L

1

with

K(u):{l/z if |u| < 1

0 otherwise

e Other kernel functions K can be used; usually

— K is a density function
— K has mean zero

— K has positive, finite variance 612{
Often K is symmetric.

e Common choices of K:

K(u) Range Name

1/2 lu| <1 Uniform, Boxcar

Gaussian
— |u| lu| <1 Triangular

2)2 |u| <1 Biweight

—u?) |u| <1 Epanechnikov

Tierney
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Mean Square Error for Kernel Density Estimators

e The bias and variance of a kernel density estimator are of the form

Bias(f,(x)) = w +O(h")
Var(f,(x)) = LXK (le’;fK) +o (%)

with
R(g) = / g(x)%dx
if h — 0 and nh — o and f is reasonable.

* The pointwise asymptotic mean square error is

JORK) | K ohf"(x)

AMSE(f,(x)) = - .

and the asymptotic mean integrated square error is

R(K) | H*G{R(f")

AMISE(f,,) = s 7

* The resulting asymptotically optimal bandwidths & are

i) = (L0 s

of f" ()
1/5
, _( R(K) > P s
0— 4 " n
oxR(f")
with optimal AMSE and AMISE

AMSEo (7,(x)) = 2 (0 fIR(K)) /1" (x)2 54

AMISEO(]/”;) — 2(GKR(K))4/5R(f//)1/5n—4/5
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Choosing a Bandwidth

* One way to chose a bandwidth is to target a particular family, such as a
Gaussian f:

— The optimal bandwidth for minimizing AMISE when f is Gaussian
and K 1s Gaussian
ho = 1.0590n'/3

— o can be estimated using S or the interquartile range
— The default for density in Ris

0.9 x min($,IQR/1.34)n~!/3
based on a suggestion of Silverman (1986, pp 45-47).

 This can often serve as a reasonable starting point.

e It does not adapt to information in the data that suggests departures from
normality.

« So-called plug-in methods estimate R(f”') to obtain
1/5
h= (—Rg)\) n'/3
OKR(")

e The Sheagler-J ones method uses a differen/t\ bandwidth (and kernel?) to
estimate f and then estimates R(f”) by R(f").

e Specifying bw="SJ" in R’s density uses the Sheather-Jones method.
There are two variants:

— SJ-dpi: direct plug-in
— SJ-ste: solve the equation

The default for bw="SJ" is ste.
» Other approaches based on leave-one-out cross-validation are available.

e Many of these are available as options in R’s density and/or other
density estimation functions available in R packages.

* Variable bandwidth approaches can be based on pilot estimates of the
density produced with simpler fixed bandwidth rules.



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Example: Durations of Eruptions of Old Faithful

e Based on an example in Venables and Ripley (2002).

e Durations, in minutes, of 299 consecutive eruptions of Old Faithful were
recorded.

» The data are available as data set geyser in package MASS.

» Some density estimates are produced by

library (MASS)

data (geyser)

truehist (geyserSduration, nbin=25, col="1ightgrey")

lines (density (geyser$duration))

lines (density (geyser$duration,bw="SJ"), col="red")
lines (density (geyser$duration, bw="SJ-dpi"), col="blue")

1.0

0.8

0.2

0.0

I T T T 1
1 2 3 4 5

geyser$duration

* Animation can be a useful way of understanding the effect of smoothing
parameter choice. See files tkdens.R, shinydens.R,and geyser.R
in
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http://www.stat.uiowa.edu/~1luke/classes/STAT7400-2020/examples/

Also

http:
//www.stat.uiowa.edu/~1luke/classes/STAT7400-2020/examples/smoothex.Rmd


http://www.stat.uiowa.edu/~luke/classes/STAT7400-2020/examples/
http://www.stat.uiowa.edu/~luke/classes/STAT7400-2020/examples/smoothex.Rmd
http://www.stat.uiowa.edu/~luke/classes/STAT7400-2020/examples/smoothex.Rmd
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Issues and Notes

» Kernel methods do not work well at boundaries of bounded regions.

e Transforming to unbounded regions is often a good alternative.
 Variability can be assessed by asymptotic methods or by bootstrapping.
e A crude MCMC bootstrap animation:

g <- geyserSduration

for (i in 1:1000) {
gl[sample (299,1)] <- geyserS$Sduration[sample (299,1)]
plot (density (g, bw="SJ"),ylim=c(0,1.2),x1lim=c(0,6))
Sys.sleep(1/30)

}

» Computation is often done with equally spaced bins and fast Fourier
transforms.

e Methods that adjust bandwidth locally can be used.

» Some of these methods are based on nearest-neighbor fits and local poly-
nomial fits.

* Spline based methods can be used on the log scale; the 1ogspline
package implements one approach.
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Density Estimation in Higher Dimensions

» Kernel density estimation can in principle be used in any number of di-
mensions.

e Usually a d-dimensional kernel K, of the product form

d
:HlKl(u)

1s used.

» The kernel density estimate is then

~

il( (x—x;))

1 1

n)C

T n det

for some matrix H.

 Suppose H = hA where det(A) = 1. The asymptotic mean integrated
square error is of the form

R(K)

AMISE =
nhd

h4
- / (trace(AAT V2 £ (x)))2dx
and therefore the optimal bandwidth and AMISE are of the form

hO _ O(n—l/(d+4))
AMISE = O(n~4/(d+4))
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» Convergence is very slow if d is more than 2 or 3 since most of higher
dimensional space will be empty—this is known as the curse of dimen-
sionality.

» Density estimates in two dimensions can be visualized using perspective
plots, surface plots, image plots, and contour plots.

* Higher dimensional estimates can often only be visualized by condition-
ing, or slicing.

e The kde2d function in package MASS provides two-dimensional kernel
density estimates; an alternative is bkde2D in package KernSmooth.

e The kde3d function in the mi sc3d package provides three-dimensional
kernel density estimates.

10
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Example: Eruptions of Old Faithful

* In addition to duration times, waiting times, in minutes, until the follow-
ing eruption were recorded.

e The duration of an eruption can be used to predict the waiting time until
the next eruption.

* A modified data frame containing the previous duration is constructed by

geyserz2<-data.frame (as.data.frame (geyser[-1,1),
pduration=geyser$duration[-299])

 Estimates of the joint density of previous eruption duration and waiting
time are computed by

kdl <- with(geyser2,

kde2d (pduration,waiting,n=50, lims=c(0.5,6,40,110)))
contour (kdl, col="grey", xlab="Previous Duration", ylab="waiting")
with (geyser2, points (pduration,waiting,col="blue"))
kd2 <- with(geyser2,

kde2d (pduration,waiting, n=50, 1ims=c(0.5,6,40,110),

h=c (width.SJ (pduration) ,width.SJ(waiting))))

contour (kd2, xlab="Previous Duration", ylab="waiting")

Rounding of some durations to 2 and 4 minutes can be seen.

_| 5 _|
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2 8- 2 8-
‘© _| ‘© _
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-4 5 _|
2 - g -
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Previous Duration Previous Duration

11
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Visualizing Density Estimates

Some examples are given in geyser.R and kd3.R in

http://www.stat.uiowa.edu/~luke/classes/STAT7400-2020/examples/
e Animation can be a useful way of understanding the effect of smoothing
parameter choice.
» Bootstrap animation can help in visualizing uncertainty.
 For 2D estimates, options include

— perspective plots
— contour plots

— image plots, with or without contours
 For 3D estimates contour plots are the main option

* Example: Data and contours for mixture of three trivariate normals and
two bandwidths

BW =0.2 BW =0.5

12
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Kernel Smoothing and Local Regression

* A simple non-parametric regression model is
Y =m(x;) + &
with m a smooth mean function.

* A kernel density estimator of the conditional density f(y|x) is

S EK (K () 1EK (50K ()

]/[;\1()’|X) - X—x; -7 X—X;
ALK (57) h YLK (1)
* Assuming K has mean zero, an estimate of the conditional mean is
" > LK (%) vk (5) dy
mn(x) = /yfn(y’x)dy — X—X;
LK (%57)
K (=X .
——Z ( h )yl :Zwi(x)yi

LK (5%)
This i1s the Nadaraya-Watson estimator.

 This estimator can also be viewed as the result of a locally constant fit:
my(x) is the value By that minimizes

Y wi(x) (i — Bo)*
 Higher degree local polynomial estimators estimate m2(x) by minimizing
Y wilx) (i — Bo— Br(x—x;) — -+ = Bplx—x;)P)?

e Odd values of p have advantages, and p = 1, local linear fitting, generally
works well.

* Local cubic fits, p = 3, are also used.

* Problems exist near the boundary; these tend to be worse for higher de-
gree fits.

13
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* Bandwidth can be chosen globally or locally.

* A common local choice uses a fraction of nearest neighbors in the x
direction.

* Automatic choices can use estimates of o and function roughness and
plug in to asymptotic approximate mean square errors.

e Cross-validation can also be used; it often undersmooths.
» Autocorrelation creates an identifiability problem.
e Software available in R includes

— ksmooth for compatibility with S (but much faster).

— locpoly for fitting and dpi 11 for bandwidth selection in package
KernSmooth.

— lowess and loess for nearest neighbor based methods; also try
to robustify.

— supsmu, Friedman’s super smoother, a very fast smoother.

— package locfit on CRAN

All of these are also available for R; some are available as stand-alone
code.

14
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Spline Smoothing

e Given data (x1,y;),...,(x,,y,) with x; € [a,b] one way to fit a smooth
mean function is to choose m to minimize

b
S(m, A) = Y (i — m(x:))* + A / " (u)du

The term A [”m” (u)2du is a roughness penalty.

« Among all twice continuously differentiable functions on [a,b] this is
minimized by a natural cubic spline with knots at the x;. This minimizer
is called a smoothing spline.

» A cubic spline is a function g on an interval [a,b] such that for some
knotst; witha =1y <t; <--- <ty 1=0>b

— on (t;_1,t;) the function g is a cubic polynomial

— at1y,...,t, the function values, first and second derivatives are con-
tinuous.

* A cubic spline is natural if the second and third derivatives are zero at a
and b.

* A natural cubic spline is linear on [a,#;] and [t,,b].
* For a given A the smoothing spline is a linear estimator.
» The set of equations to be solved is large but banded.

e The fitted values 7, (x;, A) can be viewed as
m(x,A) =A(A)y
where A(A) is the smoothing matrix or hat matrix for the linear fit.

e The function smooth. spline implements smoothing splines in R.

15
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Example: Old Faithful Eruptions

e A nonparametric fit of waiting time to previous duration may be useful
in predicting the time of the next eruption.

 The different smoothing methods considered produce the following:

with (geyser2, {
plot (pduration,waiting)
lines (lowess (pduration,waiting), col="red")
lines (supsmu (pduration,waiting), col="blue")
lines (ksmooth (pduration,waiting), col="green")
lines (smooth.spline (pduration,waiting), col="orange")

110
|

o
o O
o
8 00808 o O
o o
> o

waiting

pduration

* An animated version of the smoothing spline (available on line) shows
the effect of varying the smoothing parameter.

16
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Degrees of Freedom of a Linear Smoother

 For a linear regression fit with hat matrix
H=Xxx"x)"'xT
and full rank regressor matrix X

tr(H) = number of fitted parameters = degrees of freedom of fit

* By analogy define the degrees of freedom of a linear smoother as
dfﬁt = tr(A(l))

For the geyser data, the degrees of freedom of a smoothing spline fit with
the default bandwidth selection rule are

> sum(with (geyser2, smooth.spline (pduration,waiting)) S$lev)
[1] 4.169843

> with (geyser2, smooth.spline (pduration,waiting)) $df

[1] 4.169843

* For residual degrees of freedom the definition usually used is

dfres = n— 2tr(A(A)) +tr(A(L)A(A)T)

* Assuming constant error variance, a possible estimate is

52 _ Li— (i, 4))* _ RSS(A)
€T dfes(A)  dfes(R)

* The simpler estimator

,  RSS(A)  RSS(A)
O T W —A))  n—dfy

1s also used.

* To reduce bias it may make sense to use a rougher smooth for variance
estimation than for mean function estimation.

17



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Choosing Smoothing Parameters for Linear Smoothers

e Many smoothing methods are linear for a given value of a smoothing
parameter A.

» Choice of the smoothing parameter A can be based on leave-one-out
cross-validation, i.e. minimizing the cross-validation score

CV(R) = - Y i (1, 2))?

* If the smoother satisfies (at least approximately)

_ LA )iy,
Y i4AR)i)

ms Y (i, 1)

and .
ZA(;L)U =1 foralli
j=1

then the cross-validation score can be computed as

vy (ALY

n

e The generalized cross-validation criterion, or GCV, uses average lever-
age values:

B 1 Yi — Mp(xi, A) ’
GCV(A) = ;Z (1 _n—ltrace(A(l))>

» The original motivation for GCV was computational; with better algo-
rithms this is no longer an issue.

18
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e An alternative motivation for GCV:

— For an orthogonal transformation Q one can consider fitting yp =

QY with Ag(A) = QA(A)QT.

— Coefficient estimates and SS;es are the same for all Q, but the CV
score is not.

— One can choose an orthogonal transformation such that the diagonal
elements of Ap(A) are constant.

— For any such Q we have Ap(1);; =n"'trace(Ap(1)) =n"ltrace(A(1))
* Despite the name, GCV does not generalize CV.

e Both CV and GCV have a tendency to undersmooth.

19



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

 For the geyser data the code

with (geyser2, {
lambda <- seqg(0.5,2,1len=30)
f <- function(s, cv = FALSE)
smooth.spline (pduration,waiting, spar=s, cv=cv) $cv

gcv <— sapply(lambda, f)

cv <- sapply(lambda, £, TRUE)

plot (lambda, gcv, type="1")

lines (lambda, cv, col="blue")

})

extracts and plots GCV and CV values:

41 42

gev

40

39
|

0.5 1.0 15 20

lambda

e Both criteria select a value of A close to 1.

20
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* Other smoothing parameter selection criteria include

— Mallows C),
C, = RSS(1) +262df5 (1)

— Akaike’s information criterion (AIC)
AIC(A) =1og{RSS(A)} +2dfs(A)/n
— Corrected AIC of Hurvich, Simonoff, and Tsai (1998)

2(dfge(A) + 1)
n— dfﬁt(;L) -2

AICc(A) =1og{RSS(A)} +

21
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Spline Representations

 Splines can be written in terms of many different bases,

— B-splines
— truncated power basis

— radial or thin plate basis

Some are more useful numerically, others have interpretational advan-
tages.

* One useful basis for a cubic spline with knots {x7,...,kx} is the radial
basis or thin plate basis

1,X,|X—K1‘3,...,’X—KK‘3

* More generally, a basis for splines of order 2m — 1 is
~1 2m—1 2m—1
Lo, oo, X e—xg [0 o — kg [
form=1,2,3,....

— m = 2 produces cubic splines

— m = 1 produces linear splines

* In terms of this basis a spline is a function of the form
m—1 . K -
fx)=Y Bx/+ Y &lx— 1w~
Jj=0 k=1

e References:

— P.J. Green and B. W. Silverman (1994). Nonparametric Regression
and Generalied Linear Models

— D. Ruppert, M. P. Wand, and R. J. Carroll (2003). Semiparametric
Regression. SemiPar is an R package implementing the methods
of this book.

— G. Wahba (1990). Spline Models for Observational Data.

— S. Wood (2017).  Generalized Additive Models: An Introduction
with R, 2nd Ed.. This is related to the mgcv package.

22
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A generic form for the fitted values is

y=XoB +Xi9.

* Regression splines refers to models with a small number of knots K fit
by ordinary least squares, i.e. by choosing 3,0 to minimize

ly —XoB — Xi 8|

 Penalized spline smoothing fits models with a larger number of knots
subject to a quadratic constraint

§'Ds<cC
for a positive definite D and some C.

e Equivalently, by a Lagrange multiplier argument, the solution minimizes
the penalized least squares criterion

ly —XoB —X,8|>+18TD$
for some A > 0.
e A common form of D is

D= [|i;— ;"]
1<i,j<K

* A variant uses
D= Ql/Z(Ql/Z)T

with
Q= [|K;— ;"""

1<i,j<K
where the principal square root M 1/2 of a matrix M with SVD
M = Udiag(d)V’

1s defined as
M'? = Udiag(Vd)VT

This form ensures that D is at least positive semi-definite.

23
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e Smoothing splines are penalized splines of degree 2m — 1 = 3 with knots
K; = x; and
D =[x — x;[*]
1<i,j<n

and the added natural boundary constraint

X[6=0
 For a natural cubic spline
/ g"(t)%dt = 8'D§

The quadratic form 87 D§ is strictly positive definite on the subspace
defined by X[ 6 = 0.

* Penalized splines can often approximate smoothing splines well using
far fewer knots.

* The detailed placement of knots and their number is usually not critical
as long as there are enough.

e Simple default rules that often work well (Ruppert, Wand, and Carroll
2003):

— knot locations:

Ky = k+1 th sample quantile of unique x;
= K12 ple qu unique Xx;

— number of knots:
K = min <% x number of unique x;, 35)
The SemiPar package actually seems to use the default
K = max (;1 X number of unique x;, 20)
e More sophisticated methods for choosing number and location of knots

are possible but not emphasized in the penalized spline literature at this
point.

24
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A Useful Computational Device

To minimize
1Y —XoB — X16|> + 167 D§

for a given A, suppose B satisties
AD=B"B

and
S

1Y* —X*B*||> = ||Y —XoB — X8| +A87DS

Then

So E and & can be computed by finding the OLS coefficients for the regression
of Y* on X*.

25
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Penalized Splines and Mixed Models

* For strictly positive definite D and a given A minimizing the objective
function

Iy —Xof — X1 8|>+A8"D&

is equivalent to maximizing the log likelihood for the mixed model
Y =XoB+X16+¢
with fixed effects parameters 8 and

€ ~N(0,021)
§ ~N(0,63D7")
A=o0;/0}
with A known.
e Some consequences:
— The penalized spline fit at x is the BLUP for the mixed model with

known mixed effects covariance structure.

— Linear mixed model software can be used to fit penalized spline
models (the R package SemiPar does this).

— The smoothing parameter A can be estimated using ML or REML
estimates of 62 and G(% from the linear mixed model.

— Interval estimation/testing formulations from mixed models can be
used.

 Additional consequences:

— The criterion has a Bayesian interpretation.

— Extension to models containing smoothing and mixed effects are
immediate.

— Extension to generalized linear models can use GLMM methodol-
ogy.

26
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Example: Old Faithful Eruptions

 Using the function spm from SemiPar a penalized spline model can be
fit with

> library (SemiPar)

> attach (geyser2) # needed because of flaws in spm implementation
> summary (spm(waiting =~ f (pduration)))

Summary for non-linear components:

df spar knots
f (pduration) 4.573 2.9 28

Note this includes 1 df for the intercept.

* The plot method for the spm result produces a plot with pointwise error
bars:

> plot (spm(waiting ~ f(pduration)), ylim = range(waiting))
> points (pduration, waiting)

70 80 90 100 110
| | | | |

60
|

| ' ¥ L LI HH} T

3 4 5

pduration
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A fit using mgcv:

> library (mgcv)
> gam.fit <- gam(waiting =~ s (pduration), data = geyser2)
> summary (gam.fit)

Family: gaussian
Link function: identity

Formula:
waiting 7 s (pduration)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 72.2886 0.3594 201.1 <2e-16 *x*

Signif. codes: 0 #*%xx 0.001 =% 0.01 = 0.05 . 0.1 1

Approximate significance of smooth terms:
edf Ref.df F p-value
s (pduration) 3.149 3.987 299.8 <2e-16 xx*x

Signif. codes: 0 x%xx 0.001 % 0.01 = 0.05 . 0.1 1

R-sg. (adj) = 0.801 Deviance explained = 80.3%
GCV = 39.046 Scale est. = 38.503 n = 298

A plot of the smooth component with the mean-adjusted waiting times is pro-
duced by

> plot (gam.fit)
> with (geyser2, points(pduration, waiting - mean(waiting)))

28
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Smoothing with Multiple Predictors

e Many methods have natural generalizations

 All suffer from the curse of dimensionality.

» Generalizations to two or three variables can work reasonably.

* Local polynomial fits can be generalized to p predictors.

e loess is designed to handle multiple predictors, in principle at least.
* Spline methods can be generalized in two ways:

— tensor product splines use all possible products of single variable
spline bases.

— thin plate splines generalize the radial basis representation.

* A thin plate spline of order m in d dimensions is of the form

M K
f(x) =Y Bigi(x)+ Y &r(x— 1K)
=1 k=1

with
() | ue|| >4 for d odd
r =
|u||?"~“1og||u|| for d even

and where the ¢; are a basis for the space of polynomials of total degree
< m— 1 1in d variables. The dimension of this space is

d+m—1
M=
(i)
If d =2,m =2 then M = 3 and a basis is

¢1(x) = 1,02(x) = x1,93(x) = x2

29
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Penalized Thin Plate Splines

* Penalized thin plate splines usually use a penalty with
D— Ql/Z(Ql/Z)T
where

Q = [r(K; — K;)]
1<i,j<K

This corresponds at least approximately to using a squared derivative
penalty.

« Simple knot selection rules are harder for d > 1.
e Some approaches:

— space-filling designs (Nychka and Saltzman, 1998)

— clustering algorithms, such as clara

30
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Multivariate Smoothing Splines

 The bivariate smoothing spline objective of minimizing

Y (vi—g(x:)* +AJ(g)

with

d’g 2 0’%g 2 0’g 2
J(g)—//(a—x%> +2<ax18x2> +<a—x%> dxlde

1s minimized by a thin plate spline with knots at the x; and a constraint
on the § analogous to the natural spline constraint.

 Scaling of variables needs to be addressed
» Thin-plate spline smoothing is closely related to kriging.

* The general smoothing spline uses
D = X1 = [I”(K',' — K'l')]
with the constraint XOT 0=0.

* Challenge: the linear system to be solved for each A value to fit a smooth-
ing spline is large and not sparse.

31
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Thin Plate Regression Splines
* Wood (2017) advocates an approach called thin plate regression splines
that is implemented in the mgcv package.

e The approach uses the spectral decomposition of X
X, =UEU"

with E the diagonal matrix of eigen values, and the columns of U the
corresponding eigen vectors.

» The eigen values are ordered so that |E;;| > |E;;| for i < j.

 The approach replaces X; with a lower rank approximation
Xy = UEU!
using the k largest eigen values in magnitude.

» The implementation uses an iterative algorithm (Lanczos iteration) for
computing the largest k eigenvalues/singular values and vectors.

 The k leading eigenvectors form the basis for the fit.

e The matrix X; does not need to be formed explicitly; it is enough to be
able to compute Xjv for any v.

* k could be increased until the change in estimates is small or a specified
limit is reached.

* Aslong as k is large enough results are not very sensitive to the particular
value of k.

* mgcv by default uses k = 10 x 39~! for a d-dimensional smooth.

32
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 This approach seems to be very effective in practice and avoids the need
to specify a set of knots.

e The main drawback is that the choice of k and its impact on the basis
used are less interpretable.

e With this approach the computational cost is reduced from O(n?) to
O(n%k).

* For large n Wood (2017) recommends using a random sample of n, rows
to reduce the computation cost to O(n?k). (From the help files the ap-
proach in mgcv looks more like O(n X n, X k) to me).

33



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Example: Scallop Catches

* Data records location and size of scallop catches off Long Island.
* A bivariate penalized spline fit is computed by

data(scallop)

attach (scallop)

log.catch <- log(tot.catch + 1)

fit <- spm(log.catch ~ f(longitude, latitude))
summary (fit)

vV V. V V V

Summary for non-linear components:

df spar knots
f(longitude, latitude) 25.12 0.2904 37

* Default knot locations are determined using clara

¢ Knot locations and fit:
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A fit using mgcv would use

> scallop.gam <- gam(log.catch = s(longitude, latitude), data = scallop)
> summary (scallop.gam)

Family: gaussian
Link function: identity

Formula:
log.catch 7 s(longitude, latitude)

Parametric coefficients:
Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 3.4826 0.1096 31.77 <2e-16 *x*

Signif. codes: 0 *%xx 0.001 % 0.01 = 0.05 . 0.1 1

Approximate significance of smooth terms:
edf Ref.df F p-value
s (longitude, latitude) 26.23 28.53 8.823 <2e-16 *x*x*

Signif. codes: 0 x%xx 0.001 % 0.01 = 0.05 . 0.1 1
R-sqg. (adj) = 0.623 Deviance explained = 69%

GCV = 2.1793 Scale est. = 1.7784 n = 148
> plot (scallop.gam)
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Computational Issues
» Algorithms that select the smoothing parameter typically need to com-
pute smooths for many parameter values.
* Smoothing splines require solving an n X n system.

— For a single variable the fitting system can be made tri-diagonal.

— For thin plate splines of two or more variables the equations are not
sparse.

* Penalized splines reduce the computational burden by choosing fewer
knots, but then need to select knot locations.

 Thin plate regression splines (implemented in the mgcv package) use a
rank k approximation for a user-specified k.

* As long as the number of knots or the number of terms & is large enough
results are not very sensitive to the particular value of k.

* Examples are available in

http:
//www.stat.uiowa.edu/~luke/classes/STAT7400-2020/examples/smoothex.Rmd
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