
Simulation

Computer Simulation

Computer simulations are experiments performed on the computer using computer-
generated random numbers.

Simulation is used to

• study the behavior of complex systems such as

– biological systems

– ecosystems

– engineering systems

– computer networks

• compute values of otherwise intractable quantities such as integrals

• maximize or minimize the value of a complicated function

• study the behavior of statistical procedures

• implement novel methods of statistical inference

Simulations need

• uniform random numbers

• non-uniform random numbers

• random vectors, stochastic processes, etc.
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• techniques to design good simulations

• methods to analyze simulation results
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Uniform Random Numbers

The most basic distribution is the uniform distribution on [0,1]

Ideally we would like to be able to obtain a sequence of independent draws
from the uniform distribution on [0,1].

Since we can only use finitely many digits, we can also work with

• A sequence of independent discrete uniform random numbers on {0,1, . . . ,M−
1} or {1,2, . . . ,M} for some large M.

• A sequence of independent random bits with equal probability for 0 and
1.

Some methods are based on physical processes such as

• nuclear decay

http://www.fourmilab.ch/hotbits/

• atmospheric noise

http://www.random.org/

The R package random provides an interface.

• air turbulence over disk drives or thermal noise in a semiconductor (Toshiba
Random Master PCI device)

• event timings in a computer (Linux /dev/random)
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Using /dev/random from R

devRand <- file("/dev/random", open="rb")
U <- function()

(as.double(readBin(devRand, "integer"))+2ˆ31) / 2ˆ32
x <-numeric(1000)
for (i in seq(along=x)) x[i] <- U()
hist(x)
y <- numeric(1000)
for (i in seq(along=x)) y[i] <- U()
plot(x,y)
close(devRand)
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Issues with Physical Generators

They can be very slow.

Not reproducible except by storing all values.

The distribution is usually not exactly uniform; can be off by enough to matter.

Departures from independence may be large enough to matter.

Mechanisms, defects, are hard to study.

They can be improved by combining with other methods.
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Pseudo-Random Numbers

Pseudo-random number generators produce a sequence of numbers that is

• not random

• easily reproducible

• “unpredictable;” “looks random”

• behaves in many respects like a sequence of independent draws from a
(discretized) uniform [0,1] distribution

• fast to produce

Pseudo-random generators come in various qualities

• Simple generators

– easy to implement
– run very fast
– easy to study theoretically
– usually have known, well understood flaws

• More complex

– often based on combining simpler ones
– somewhat slower but still very fast
– sometimes possible to study theoretically, often not
– guaranteed to have flaws; flaws may not be well understood (yet)

• Cryptographic strength

https://www.schneier.com/fortuna.html

– often much slower, more complex
– thought to be of higher quality
– may have legal complications
– weak generators can enable exploits, a recent issue in iOS 7

We use mostly generators in the first two categories.
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General Properties

Most pseudo-random number generators produce a sequence of integers x1,x2, . . .
in the range {0,1, . . . ,M−1} for some M using a recursion of the form

xn = f (xn−1,xn−2, . . . ,xn−k)

Values u1,u2, . . . are then produced by

ui = g(xdi,xdi−1, . . . ,xdi−d+1)

Common choices of M are

• M = 231 or M = 232

• M = 231−1, a Mersenne prime

• M = 2 for bit generators

The value k is the order of the generator

The set of the most recent k values is the state of the generator.

The initial state x1, . . . ,xk is called the seed.

Since there are only finitely many possible states, eventually these generators
will repeat.

The length of a cycle is called the period of a generator.

The maximal possible period is on the order of Mk

Needs change:

• As computers get faster, larger, more complex simulations are run.

• A generator with period 232 used to be good enough.

• A current computer can run through 232 pseudo-random numbers in un-
der one minute.
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• Most generators in current use have periods 264 or more.

• Parallel computation also raises new issues.
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Linear Congruential Generators

A linear congruential generator is of the form

xi = (axi−1 + c) mod M

with 0≤ xi < M.

• a is the multiplier

• c is the increment

• M is the modulus

A multiplicative generator is of the form

xi = axi−1 mod M

with 0 < xi < M.

A linear congruential generator has full period M if and only if three condi-
tions hold:

• gcd(c,M) = 1

• a≡ 1 mod p for each prime factor p of M

• a≡ 1 mod 4 if 4 divides M

A multiplicative generator has period at most M− 1. Full period is achieved
if and only if M is prime and a is a primitive root modulo M, i.e. a 6= 0 and
a(M−1)/p 6≡ 1 mod M for each prime factor p of M−1.
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Examples

Lewis, Goodman, and Miller (“minimal standard” of Park and Miller):

xi = 16807xi−1 mod (231−1) = 75xi−1 mod (231−1)

Reasonable properties, period 231− 2 ≈ 2.15 ∗ 109 is very short for modern
computers.

RANDU:

xi = 65538xi−1 mod 231

Period is only 229 but that is the least of its problems:

ui+2−6ui+1 +9ui = an integer

so (ui,ui+1,ui+2) fall on 15 parallel planes.

Using the randu data set and the rgl package:

library(rgl)
points3d(randu)
par3d(FOV=1) ## removes perspective distortion

With a larger number of points:

seed <- as.double(1)
RANDU <- function() {

seed <<- ((2ˆ16 + 3) * seed) %% (2ˆ31)
seed/(2ˆ31)

}

U <- matrix(replicate(10000 * 3, RANDU()), ncol = 3, byrow = TRUE)
clear3d()
points3d(U)
par3d(FOV=1)

This generator used to be the default generator on IBM 360/370 and DEC
PDP11 machines.
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Some examples are available in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400-2020/examples/sim.Rmd

Lattice Structure

All linear congruential sequences have a lattice structure

Methods are available for computing characteristics, such as maximal distance
between adjacent parallel planes

Values of M and a can be chosen to achieve good lattice structure for c = 0 or
c = 1; other values of c are not particularly useful.
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Shift-Register Generators

Shift-register generators take the form

xi = a1xi−1 +a2xi−2 + · · ·+apxi−p mod 2

for binary constants a1, . . . ,ap.

values in [0,1] are often constructed as

ui =
L

∑
s=1

2−sxti+s = 0.xit+1xit+2 . . .xit+L

for some t and L≤ t. t is the decimation.

The maximal possible period is 2p−1 since all zeros must be excluded.

The maximal period is achieved if and only if the polynomial

zp +a1zp−1 + · · ·+ap−1z+ap

is irreducible over the finite field of size 2.

Theoretical analysis is based on k-distribution: A sequence of M bit integers
with period 2p− 1 is k-distributed if every k-tuple of integers appears 2p−kM

times, except for the zero tuple, which appears one time fewer.

Generators are available that have high periods and good k-distribution prop-
erties.
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Lagged Fibonacci Generators

Lagged Fibonacci generators are of the form

xi = (xi−k ◦ xi− j) mod M

for some binary operator ◦.

Knuth recommends

xi = (xi−100− xi−37) mod 230

• There are some regularities if the full sequence is used; one recommen-
dation is to generate in batches of 1009 and use only the first 100 in each
batch.

• Initialization requires some care.

Combined Generators

Combining several generators may produce a new generator with better prop-
erties.

Combining generators can also fail miserably.

Theoretical properties are often hard to develop.

Wichmann-Hill generator:

xi = 171xi−1 mod 30269
yi = 172yi−1 mod 30307
zi = 170zi−1 mod 30323

and

ui =
( xi

30269
+

yi

30307
+

zi

30232

)
mod 1
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The period is around 1012.

This turns out to be equivalent to a multiplicative generator with modulus

M = 27817185604309

Marsaglia’s Super-Duper used in S-PLUS and others combines a linear con-
gruential and a feedback-shift generator.

Other Generators

Mersenne twister;

Marsaglia multicarry;

Parallel generators:

• SPRNG http://sprng.cs.fsu.edu.

• L’Ecuyer, Simard, Chen, and Kelton

http:
//www.iro.umontreal.ca/˜lecuyer/myftp/streams00/
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Pseudo-Random Number Generators in R

R provides a number of different basic generators:

Wichmann-Hill: Period around 1012

Marsaglia-Multicarry: Period at least 1018

Super-Duper: Period around 1018 for most seeds; similar to S-PLUS

Mersenne-Twister: Period 219937−1≈ 106000; equidistributed in 623 dimen-
sions; current default in R.

Knuth-TAOCP: Version from second edition of The Art of Computer Pro-
gramming, Vol. 2; period around 1038.

Knuth-TAOCP-2002: From third edition; differs in initialization.

L’Ecuyer-CMRG: A combined multiple-recursive generator from L’Ecuyer
(1999). The period is around 2191. This provides the basis for the multi-
ple streams used in package parallel.

user-supplied: Provides a mechanism for installing your own generator; used
for parallel generation by

• rsprng package interface to SPRNG

• rlecuyer package interface to L’Ecuyer, Simard, Chen, and Kel-
ton system

• rstreams package, another interface to L’Ecuyer et al.
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Testing Generators

All generators have flaws; some are known, some are not (yet).

Tests need to look for flaws that are likely to be important in realistic statistical
applications.

Theoretical tests look for

• bad lattice structure

• lack of k-distribution

• other tractable properties

Statistical tests look for simple simulations where pseudo-random number
streams produce results unreasonably far from known answers.

Some batteries of tests:

• DIEHARD http://stat.fsu.edu/pub/diehard/

• DIEHARDER http://www.phy.duke.edu/˜rgb/General/dieharder.
php

• NIST Test Suite http://csrc.nist.gov/groups/ST/toolkit/
rng/

• TestU01 http://www.iro.umontreal.ca/˜lecuyer
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Issues and Recommendations

Good choices of generators change with time and technology:

• Faster computers need longer periods.

• Parallel computers need different methods.

All generators are flawed

• Bad simulation results due to poor random number generators are very
rare; coding errors in simulations are not.

• Testing a generator on a “similar” problem with known answers is a good
idea (and may be useful to make results more accurate).

• Using multiple generators is a good idea; R makes this easy to do.

• Be aware that some generators can produce uniforms equal to 0 or 1 (I
believe R’s will not).

• Avoid methods that are sensitive to low order bits
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Non-Uniform Random Variate Generation

Starting point: Assume we can generate a sequence of independent uniform
[0,1] random variables.

Develop methods that generate general random variables from uniform ones.

Considerations:

• Simplicity, correctness

• Accuracy, numerical issues

• Speed

– Setup

– Generation

General approaches:

• Univariate transformations

• Multivariate transformations

• Mixtures

• Accept/Reject methods
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Inverse CDF Method

Suppose F is a cumulative distribution function (CDF). Define the inverse
CDF as

F−(u) = min{x : F(x)≥ u}

If U ∼ U[0,1] then X = F−(U) has CDF F .

Proof. Since F is right continuous, the minimum is attained. Therefore F(F−(u))≥
u and F−(F(x)) = min{y : F(y)≥ F(x)}. So

{(u,x) : F−(u)≤ x}= {(u,x) : u≤ F(x)}

and thus P(X ≤ x) = P(F−(U)≤ x) = P(U ≤ F(x)) = F(x).
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Example: Unit Exponential Distribution

The unit exponential CDF is

F(x) =

{
1− e−x for x > 0
0 otherwise

with inverse CDF

F−(u) =− log(1−u)

So X =− log(1−U) has an exponential distribution.

Since 1−U ∼ U[0,1], − logU also has a unit exponential distribution.

If the uniform generator can produce 0, then these should be rejected.

Example: Standard Cauchy Distribution

The CDF of the standard Cauchy distribution is

F(x) =
1
2
+

1
π

arctan(x)

with inverse CDF

F−(u) = tan(π(u−1/2))

So X = tan(π(U−1/2)) has a standard Cauchy distribution.

An alternative form is: Let U1,U2 be independent U[0,1] random variables
and set

X =

{
tan(π(U2/2) if U1 ≥ 1/2
− tan(π(U2/2) if U1 < 1/2

• U1 produces a random sign
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• U2 produces the magnitude

• This will preserve fine structure of U2 near zero, if there is any.
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Example: Standard Normal Distribution

The CDF of the standard normal distribution is

Φ(x) =
∫ x

−∞

1√
2π

e−z2/2dz

and the inverse CDF is Φ−1.

Neither Φ nor Φ−1 are available in closed form.

Excellent numerical routines are available for both.

Inversion is currently the default method for generating standard normals in
R.

The inversion approach uses two uniforms to generate one higher-precision
uniform via the code

case INVERSION:
#define BIG 134217728 /* 2ˆ27 */

/* unif_rand() alone is not of high enough precision */
u1 = unif_rand();
u1 = (int)(BIG*u1) + unif_rand();
return qnorm5(u1/BIG, 0.0, 1.0, 1, 0);
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Example: Geometric Distribution

The geometric distribution with PMF f (x) = p(1− p)x for x = 0,1, . . . , has
CDF

F(x) =

{
1− (1− p)bx+1c for x≥ 0
0 for x < 0

where byc is the integer part of y. The inverse CDF is

F−(u) = dlog(1−u)/ log(1− p)e−1
= blog(1−u)/ log(1− p)c except at the jumps

for 0 < u < 1. So X = blog(1−U)/ log(1− p)c has a geometric distribution
with success probability p.

Other possibilities:

X = blog(U)/ log(1− p)c

or

X = b−Y/ log(1− p)c

where Y is a unit exponential random variable.

23
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Example: Truncated Normal Distribution

Suppose X ∼ N(µ,1) and

y∼ X |X > 0.

The CDF of Y is

FY (y) =

{
P(0<X≤y)

P(0<X) for y≥ 0

0 for y < 0
=

{
FX (y)−FX (0)

1−FX (0)
for y≥ 0

0 for y < 0
.

The inverse CDF is

F−1
Y (u) = F−1

X (u(1−FX(0))+FX(0)) = F−1
X (u+(1−u)FX(0)).

An R function corresponding to this definition is

Q1 <- function(p, m) qnorm(p + (1 - p)* pnorm(0, m), m)

This seems to work well for positive µ but not for negative values far from
zero:

Q1(0.5, c(1, 3, 5, 10, -10))

## [1] 1.200174 3.001692 5.000000 10.000000 Inf

The reason is that pnorm(0, -10) is rounded to one.
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A mathematically equivalent formulation of the inverse CDF is

F−1
Y (u) = F−1

X (1− (1−u)(1−FX(0)))

which leads to

Q2 <- function(p, m)
qnorm((1 - p)* pnorm(0, m, lower.tail = FALSE),

m, lower.tail = FALSE)

and

Q2(0.5, c(1, 3, 5, 10, -10))

## [1] 1.20017369 3.00169185 5.00000036 10.00000000
## [5] 0.06841184

25
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Issues

In principle, inversion can be used for any distribution.

Sometimes routines are available for F− but are quite expensive:

system.time(rbeta(1000000, 2.5, 3.5))

## user system elapsed
## 0.114 0.000 0.114

system.time(qbeta(runif(1000000), 2.5, 3.5))

## user system elapsed
## 1.640 0.012 1.653

rbeta is about 20 times faster than inversion.

If F− is not available but F is, then one can solve the equation u = F(x)
numerically for x.

Accuracy of F or F− may be an issue, especially when writing code for a
parametric family that is to work well over a wide parameter range.

Even when inversion is costly,

• the cost of random variate generation may be a small fraction of the total
cost of a simulation

• using inversion creates a simple relation between the variables and the
underlying uniforms that may be useful

26
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Multivariate Transformations

Many distributions can be expressed as the marginal distribution of a function
of several variables.

Box-Muller Method for the Standard Normal Distribution

Suppose X1 and X2 are independent standard normals. The polar coordinates
θ and R are independent,

• θ is uniform on [0,2π)

• R2 is χ2
2 , which is exponential with mean 2

So if U1 and U2 are independent and uniform on [0,1], then

X1 =
√
−2logU1 cos(2πU2)

X2 =
√
−2logU1 sin(2πU2)

are independent standard normals. This is the Box-Muller method.

27
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Polar Method for the Standard Normal Distribution

The trigonometric functions are somewhat slow to compute. Suppose (V1,V2)
is uniform on the unit disk

{(v1,v2) : v2
1 + v2

2 ≤ 1}

Let R2 =V 2
1 +V 2

2 and

X1 =V1

√
−(2logR2)/R2

X2 =V2

√
−(2logR2)/R2

Then X1,X2 are independent standard normals.

This is the polar method of Marsaglia and Bray.
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Generating points uniformly on the unit disk can be done using rejection sam-
pling, or accept/reject sampling:

repeat
generate independent V1,V2 ∼ U(−1,1)

until V 2
1 +V 2

2 ≤ 1
return (V1,V2)

• This independently generates pairs (V1,V2) uniformly on the square (−1,1)×
(−1,1) until the result is inside the unit disk.

• The resulting pair is uniformly distributed on the unit disk.

• The number of pairs that need to be generated is a geometric variable
with success probability

p =
area of disk

area of square
=

π

4

The expected number of generations needed is 1/p = 4/π = 1.2732.

• The number of generations needed is independent of the final pair.
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Polar Method for the Standard Cauchy Distribution

The ratio of two standard normals has a Cauchy distribution.

Suppose two standard normals are generated by the polar method,

X1 =V1

√
−(2logR2)/R2

X2 =V2

√
−(2logR2)/R2

with R2 =V 2
1 +V 2

2 and (V1,V2) uniform on the unit disk.

Then

Y =
X1

X2
=

V1

V2

is the ratio of the two coordinates of the pair that is uniformly distributed on
the unit disk.

This idea leads to a general method, the Ratio-of-Uniforms method.

Student’s t Distribution

Suppose

• Z has a standard normal distribution,

• Y has a χ2
ν distribution,

• Z and Y are independent.

Then

X =
Z√
Y/ν

30
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has a t distribution with ν degrees of freedom.

To use this representation we will need to be able to generate from a χ2
ν distri-

bution, which is a Gamma(ν/2,2) distribution.
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Beta Distribution

Suppose α > 0, β > 0, and

• U ∼ Gamma(α,1)

• V ∼ Gamma(β ,1)

• U,V are independent

Then

X =
U

U +V

has a Beta(α,β ) distribution.

F Distribution

Suppose a > 0, b > 0, and

• U ∼ χ2
a

• V ∼ χ2
b

• U,V are independent

Then

X =
U/a
V/b

has an F distribution with a and b degrees of freedom.

Alternatively, if Y ∼ Beta(a/2,b/2), then

X =
b
a

Y
1−Y

has an F distribution with a and b degrees of freedom.
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Non-Central t Distribution

Suppose

• Z ∼ N(µ,1),

• Y ∼ χ2
ν ,

• Z and Y are independent.

Then

X =
Z√
Y/ν

has non-central t distribution with ν degrees of freedom and non-centrality
parameter µ .

33



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Non-Central Chi-Square, and F Distributions

Suppose

• Z1, . . . ,Zk are independent

• Zi ∼ N(µi,1)

Then

Y = Z2
1 + · · ·+Z2

k

has a non-central chi-square distribution with k degrees of freedom and non-
centrality parameter

δ = µ
2
1 + · · ·+µ

2
k

An alternative characterization: if Z̃1, . . . , Z̃k are independent standard normals
then

Y = (Z̃1 +
√

δ )2 + Z̃2
2 · · ·+ Z̃2

k = (Z̃1 +
√

δ )2 +
k

∑
i=2

Z̃2
i

has a non-central chi-square distribution with k degrees of freedom and non-
centrality parameter δ .

The non-central F is of the form

X =
U/a
V/b

where U , V are independent, U is a non-central χ2
a and V is a central χ2

b
random variable.
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Bernoulli and Binomial Distributions

Suppose p ∈ [0,1], U ∼ U[0,1], and

X =

{
1 if U ≤ p
0 otherwise

Then X bas a Bernoulli(p) distribution.

If Y1, . . . ,Yn are independent Bernoulli(p) random variables, then

X = Y1 + · · ·+Yn

has a Binomial(n, p) distribution.

For small n this is an effective way to generate binomials.
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Mixtures and Conditioning

Many distributions can be expressed using a hierarchical structure:

X |Y ∼ fX |Y (x|y)
Y ∼ fY (y)

The marginal distribution of X is called a mixture distribution. We can gener-
ate X by

Generate Y from fY (y).
Generate X |Y = y from fX |Y (x,y).

Student’s t Distribution

Another way to think of the tν distribution is:

X |Y ∼ N(0,ν/Y )

Y ∼ χ
2
ν

The t distribution is a scale mixture of normals.

Other choices of the distribution of Y lead to other distributions for X .
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Negative Binomial Distribution

The negative binomial distribution with PMF

f (x) =
(

x+ r−1
r−1

)
pr(1− p)x

for x = 0,1,2, . . . , can be written as a gamma mixture of Poissons: if

X |Y ∼ Poisson(Y )
Y ∼ Gamma(r,(1− p)/p)

then X ∼ Negative Binomial(r, p).

[The notation Gamma(α,β ) means that β is the scale parameter.]

This representation makes sense even when r is not an integer.

Non-Central Chi-Square

The density of the non-central χ2
ν distribution with non-centrality parameter δ

is

f (x) = e−δ/2
∞

∑
i=0

(δ/2)i

i!
fν+2i(x)

where fk(x) central χ2
k density. This is a Poisson-weighted average of χ2

densities, so if

X |Y ∼ χ
2
ν+2Y

Y ∼ Poisson(δ/2)

then X has a non-central χ2
ν distribution with non-centrality parameter δ .
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Composition Method

Suppose we want to sample from the density

f (x) =


x/2 0≤ x < 1
1/2 1≤ x < 2
3/2− x/2 2≤ x≤ 3
0 otherwise

We can write f as the mixture

f (x) =
1
4

f1(x)+
1
2

f2(x)+
1
4

f3(x)

with

f1(x) = 2x 0≤ x < 1
f2(x) = 1 1≤ x < 2
f3(x) = 6−2x 2≤ x≤ 3

and fi(x) = 0 for other values of x.

Generating from the fi is straight forward. So we can sample from f using:

Generate I from {1,2,3} with probabilities 1/4,1/2,1/4.
Generate X from fI(x) by inversion.

This approach can be used in conjunction with other methods.

One example: The polar method requires sampling uniformly from the unit
disk. This can be done by

• encloseing the unit disk in a regular hexagon

• using composition to sample uniformly from the hexagon until the result
is in the unit disk.

38



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Alias Method

Suppose f (x) is a probability mass function on {1,2, . . . ,k}. Then f (x) can
be written as

f (x) =
k

∑
i=1

1
k

fi(x)

where

fi(x) =


qi x = i
1−qi x = ai

0 otherwise

for some qi ∈ [0,1] and some ai ∈ {1,2, . . . ,k}.

Once values for qi and ai have been found, generation is easy:

Generate I uniform on {1, . . . ,k}
Generate U uniform on [0,1]
if U ≤ qI

return I
else

return aI
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The setup process used to compute the qi and ai is called leveling the his-
togram:

This is Walker’s alias method.

A complete description is in Ripley (1987, Alg 3.13B).

The alias method is an example of trading off a setup cost for fast generation.

The alias method is used by the sample function for unequal probability
sampling with replacement when there are enough reasonably probable val-
ues.

https://svn.r-project.org/R/trunk/src/main/random.c
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Accept/Reject Methods

Sampling Uniformly from the Area Under a Density

Suppose h is a function such that

• h(x)≥ 0 for all x

•
∫

h(x)dx < ∞.

Let

Gh = {(x,y) : 0 < y≤ h(x)}

The area of Gh is

|Gh|=
∫

h(x)dx < ∞
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Suppose (X ,Y ) is uniformly distributed on Gh. Then

• The conditional distribution of Y |X = x is uniform on (0,h(x)).

• The marginal distribution of X has density fX(x) = h(x)/
∫

h(y)dy:

fX(x) =
∫ h(x)

0

1
|Gh|

dy =
h(x)∫
h(y)dy
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Rejection Sampling Using an Envelope Density

Suppose g is a density and M > 0 is a real number such that

h(x)≤Mg(x) for all x

or, equivalently,

sup
h(x)
g(x)

≤M for all x
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Normal Density with Cauchy Envelope

Mg(x) is an envelope for h(x).
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Suppose

• we want to sample from a density proportional to h

• we can find a density g and a constant M such that

– Mg(x) is an envelope for h(x)

– it is easy to sample from g

Then

• we can sample X from g and Y |X = x from U(0,Mg(x)) to get a pair
(X ,Y ) uniformly distributed on GMg

• we can repeat until the pair (X ,Y ) satisfies Y ≤ h(X)

• the resulting pair (X ,Y ) is uniformly distributed on Gh

• so the marginal density of the resulting X is fX(x) = h(x)/
∫

h(y)dy.

• the number of draws from the uniform distribution on GMg needed until
we obtain a pair in Gh is independent of the final pair

• the number of draws has a geometric distribution with success probabil-
ity

p =
|Gh|
|GMg|

=

∫
h(y)dy

M
∫

g(y)dy
=

∫
h(y)dy

M

since g is a probability density. p is the acceptance probability.

• the expected number of draws needed is

E[number of draws] =
1
p
=

M
∫

g(y)dy∫
h(y)dy

=
M∫

h(y)dy

• if h is also a proper density, then p = 1/M and

E[number of draws] =
1
p
= M
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The Basic Algorithm

The rejection, or accept/reject, sampling algorithm:

repeat
generate independent X ∼ g and U ∼ U[0,1]

until UMg(X)≤ h(X)
return X

Alternate forms of the test:

U ≤ h(X)

Mg(X)

log(U)≤ log(h(X))− log(M)− log(g(X))

Care may be needed to ensure numerical stability.

Example: Normal Distribution with Cauchy Envelope

Suppose

• h(x) = 1√
2π

e−x2/2 is the standard normal density

• g(x) = 1
π(1+x2)

is the standard Cauchy density

Then

h(x)
g(x)

=

√
π

2
(1+ x2)e−x2/2 ≤

√
π

2
(1+12)e−12/2 =

√
2πe−1 = 1.520347

The resulting accept/reject algorithm is

repeat
generate independent standard Cauchy X and U ∼ U[0,1]

until U ≤ e1/2

2 (1+X2)e−X2/2

return X
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Squeezing

Performance can be improved by squeezing:

• Accept if point is inside the triangle:
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Normal Density with Cauchy Envelope and Squeezing

• Squeezing can speed up generation.

• Squeezing will complicate the code (making errors more likely).
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Rejection Sampling for Discrete Distributions

For simplicity, just consider integer valued random variables.

• If h and g are probability mass functions on the integers and h(x)/g(x) is
bounded, then the same algorithm can be used.

• If p is a probability mass function on the integers then

h(x) = p(bxc)

is a probability density.

If X has density h, then Y = bXc has PMF p.
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Example: Poisson Distribution with Cauchy Envelope

Suppose

• p is the PMF of a Poisson distribution with mean 5

• g is the Cauchy density with location 5 and scale 3.

• h(x) = p(bxc)

Then, by careful analysis or graphical examination, h(x)≤ 2g(x) for all x.
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Poisson PMF with Cauchy Envelope
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Comments

The Cauchy density is often a useful envelope.

More efficient choices are often possible.

Location and scale need to be chosen appropriately.

If the target distribution is non-negative, a truncated Cauchy can be used.

Careful analysis is needed to produce generators for a parametric family (e.g.
all Poisson distributions).

Graphical examination can be very helpful in guiding the analysis.

Carefully tuned envelopes combined with squeezing can produce very effi-
cient samplers.

Errors in tuning and squeezing will produce garbage.
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Ratio-of-Uniforms Method

Basic Method

Introduced by Kinderman and Monahan (1977).

Suppose

• h(x)≥ 0 for all x

•
∫

h(x)dx < ∞

Let (V,U) be uniform on

Ch = {(v,u) : 0 < u≤
√

h(v/u)}

Then X =V/U has density f (x) = h(x)/
∫

h(y)dy.
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For h(x) = e−x2/2 the region Ch looks like

−0.5 0.0 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

v

u

• The region is bounded.

• The region is convex.
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Properties

The region Ch is convex if h is log concave.

The region Ch is bounded if h(x) and x2h(x) are bounded.

Let

u∗ = max
x

√
h(x)

v∗− = min
x

x
√

h(x)

v∗+ = max
x

x
√

h(x)

Then Ch is contained in the rectangle [v∗−,v
∗
+]× [0,u∗].

The simple Ratio-of-Uniforms algorithm based on rejection sampling from
the enclosing rectangle is

repeat
generate U ∼ U[0,u∗]
generate V ∼ U[v∗−,v

∗
+]

until U2 ≤ h(V/U)
return X =V/U

If h = e−x2/2 then

u∗ = 1

v∗− =−
√

2e−1

v∗+ =
√

2e−1

and the expected number of draws is

area of rectangle
area of Ch

=
u∗(v∗+− v∗−)

1
2
∫

h(x)dx
=

2
√

2e−1√
π/2

= 1.368793

Various squeezing methods are possible.

Other approaches to sampling from Ch are also possible.
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Relation to Rejection Sampling

Ratio of Uniforms with rejection sampling from the enclosing rectangle is
equivalent to ordinary rejection sampling using an envelope density

g(x) ∝


(

v∗−
x

)2
if x < v∗−/u∗

(u∗)2 if v∗−/u∗ ≤ x≤ v∗+/u∗(
v∗+
x

)2
if x > v∗+/u∗

This is sometimes called a table mountain density
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Generalizations

A more general form of the basic result: For any µ and any r > 0 let

Ch,µ,r = {(v,u) : 0 < u≤ h(v/ur +µ)1/(r+1)}

If (U,V ) is uniform on Ch,µ,r, then X =V/U r+µ has density f (x)= h(x)/
∫

h(y)dy.

• µ and r can be chosen to minimize the rejection probability.

• r = 1 seems adequate for most purposes.

• Choosing µ equal to the mode of h can help.

• For the Gamma distribution with α = 30,
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Adaptive Rejection Sampling

First introduced by Gilks and Wild (1992).

Convexity

A set C is convex if λx+(1−λ )y ∈C for all x,y ∈C and λ ∈ [0,1].

C can be a subset or R, or Rn, or any other set where the convex combination

λx+(1−λ )y

makes sense.

A real-valued function f on a convex set C is convex if

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y)

x,y ∈C and λ ∈ [0,1].

f (x) is concave if − f (x) is convex, i.e. if

f (λx+(1−λ )y)≥ λ f (x)+(1−λ ) f (y)

x,y ∈C and λ ∈ [0,1].

A concave function is always below its tangent.
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Log Concave Densities

A density f is log concave if log f is a concave function

Many densities are log concave:

• normal densities

• Gamma(α,β ) with α ≥ 1

• Beta(α,β ) with α ≥ 1 and β ≥ 1.

Some are not but may be related to ones that are: The t densities are not, but
if

X |Y = y∼ N(0,1/y)
Y ∼ Gamma(α,β )

then

• the marginal distribution of X is t for suitable choice of β

• and the joint distribution of X and Y has density

f (x,y) ∝
√

ye−
y
2 x2

yα−1e−y/β = yα−1/2e−y(β+x2/2)

which is log concave for α ≥ 1/2
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Tangent Approach

Suppose

• f is log concave

• f has an interior mode

Need log density, derivative at two points, one each side of the mode

• piece-wise linear envelope of log density

• piece-wise exponential envelope of density

• if first point is not accepted, can use to make better envelope
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Secant Approach
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• Need three points to start

• Do not need derivatives

• Get larger rejection rates

• Both approaches need numerical care
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Notes and Comments

Many methods depend on properties of a particular distribution.

Inversion is one general method that can often be used.

Other general-purpose methods are

• rejection sampling

• adaptive rejection sampling

• ratio-of-uniforms

Some references:

• Devroye, L. (1986). Non-Uniform Random Variate Generation, Springer-
Verlag, New York.

• Gentle, J. E. (2003). Random Number Generation and Monte Carlo
Methods, Springer-Verlag, New York.

• Hörmann, W., Leydold, J., and Derflinger, G. (2004).
Automatic Nonuniform Random Variate Generation, Springer-Verlag, New
York.

A Recent Publication:

• Karney, C.F.F. (2016). “Sampling Exactly from the Normal Distribu-
tion.” ACM Transactions on Mathematical Software 42 (1).
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Random Variate Generators in R

Generators for most standard distributions are available

• rnorm: normal

• rgamma: gamma

• rt: t

• rpois: Poisson

• etc.

Most use standard algorithms from the literature.

Source code is in src/nmath/ in the source tree,

https://svn.r-project.org/R/trunk

The normal generator can be configured by RNGkind. Options are

• Kinderman-Ramage

• Buggy Kinderman-Ramage (available for reproducing results)

• Ahrens-Dieter

• Box-Muller

• Inversion (the current default)

• user-supplied
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Generating Random Vectors and Matrices

Sometimes generating random vectors can be reduced to a series of univariate
generations.

One approach is conditioning:

f (x,y,z) = fZ|X ,Y (z|x,y) fY |X(y|x) fX(x)

So we can generate

• X from fX(x)

• Y |X = x from fY |X(y|x)

• Z|X = x,Y = y from fZ|X ,Y (z|x,y)

One example: (X1,X2,X3)∼Multinomial(n, p1, p2, p3) Then

X1 ∼ Binomial(n, p1)

X2|X1 = x1 ∼ Binomial(n− x1, p2/(p2 + p3))

X3|X1 = x1,X2 = x2 = n− x1− x2

Another example: X ,Y bivariate normal (µX ,µY ,σ
2
X ,σ

2
Y ,ρ). Then

X ∼ N(µX ,σ
2
X)

Y |X = x∼ N
(

µY +ρ
σY

σX
(x−µX),σ

2
Y (1−ρ

2)

)

For some distributions special methods are available.

Some general methods extend to multiple dimensions.
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Multivariate Normal Distribution

Marginal and conditional distributions are normal; conditioning can be used
in general.

Alternative: use linear transformations.

Suppose Z1, . . . ,Zd are independent standard normals, µ1, . . .µd are constants,
and A is a constant d×d matrix. Let

Z =

Z1
...

Zd

 µ =

µ1
...

µd


and set

X = µ +AZ

Then X is multivariate normal with mean vector µ and covariance matrix AAT ,

X ∼MVNd(µ,AAT )

To generate X ∼MVNd(µ,Σ), we can

• find a matrix A such that AAT = Σ

• generate elements of Z as independent standard normals

• compute X = µ +AZ

The Cholesky factorization is one way to choose A.

If we are given Σ−1, then we can

• decompose Σ−1 = LLT

• solve LTY = Z

• compute X = µ +Y
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Spherically Symmetric Distributions

A joint distribution is called spherically symmetric (about the origin) if it has
a density of the form

f (x) = g(xT x) = g(x2
1 + · · ·+ x2

d).

If the distribution of X is spherically symmetric then

R =
√

XT X
Y = X/R

are independent,

• Y is uniformly distributed on the surface of the unit sphere.

• R has density proportional to g(r)rd−1 for r > 0.

We can generate X ∼ f by

• generating Z ∼MVNd(0, I) and setting Y = Z/
√

ZT Z

• generating R from the density proportional to g(r)rd−1 by univariate
methods.

Elliptically Contoured Distributions

A density f is elliptically contoured if

f (x) =
1√

detΣ
g((x−µ)T

Σ
−1(x−µ))

for some vector µ and symmetric positive definite matrix Σ.

Suppose Y has spherically symmetric density g(yT y) and AAT = Σ. Then
X = µ +AY has density f .
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Wishart Distribution

Suppose X1, . . .Xn are independent and Xi ∼MVNd(µi,Σ). Let

W =
n

∑
i=1

XiXT
i

Then W has a non-central Wishart distribution W(n,Σ,∆) where ∆ = ∑ µiµ
T
i .

If Xi ∼MVNd(µ,Σ) and

S =
1

n−1

n

∑
i=1

(Xi−X)(Xi−X)T

is the sample covariance matrix, then (n−1)S∼W(n−1,Σ,0).

Suppose µi = 0, Σ = AAT , and Xi = AZi with Zi ∼MVNd(0, I). Then W =
AVAT with

V =
n

∑
i=1

ZiZT
i

Bartlett decomposition: In the Cholesky factorization of V

• all elements are independent

• the elements below the diagonal are standard normal

• the square of the i-th diagonal element is χ2
n+1−i

If ∆ 6= 0 let ∆ = BBT be its Cholesky factorization, let bi be the columns of B
and let Z1, . . . ,Zn be independent MVNd(0, I) random vectors. Then for n≥ d

W =
d

∑
i=1

(bi +AZi)(bi +AZi)
T +

n

∑
i=d+1

AZiZT
i AT ∼W(n,Σ,∆)
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Rejection Sampling

Rejection sampling can in principle be used in any dimensions

A general envelope that is sometimes useful is based on generating X as

X = b+AZ/Y

where

• Z and Y are independent

• Z ∼MVNd(0, I)

• Y 2 ∼ Gamma(α,1/α), a scalar

• b is a vector of constants

• A is a matrix of constants

This is a kind of multivariate t random vector.

This often works in modest dimensions.

Specially tailored envelopes can sometimes be used in higher dimensions.

Without special tailoring, rejection rates tend to be too high to be useful.
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Ratio of Uniforms

The ratio-of-uniforms method also works in Rd: Suppose

• h(x)≥ 0 for all x

•
∫

h(x)dx < ∞

Let

Ch = {(v,u) : v ∈ Rd,0 < u≤ d+1
√

h(v/u+µ)}

for some µ . If (V,U) is uniform on Ch, then X =V/U +µ has density f (x) =
h(x)/

∫
h(y)dy.

If h(x) and ‖x‖d+1h(x) are bounded, then Ch is bounded.

If h(x) is log concave then Ch is convex.

Rejection sampling from a bounding hyper rectangle works in modest dimen-
sions.

It will not work for dimensions larger than 8 or so:

• The shape of Ch is vaguely spherical.

• The volume of the unit sphere in d dimensions is

Vd =
πd/2

Γ(d/2+1)

• The ratio of this volume to the volume of the enclosing hyper cube, 2d

tends to zero very fast:
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Order Statistics

The order statistics for a random sample X1, . . . ,Xn from F are the ordered
values

X(1) ≤ X(2) ≤ ·· · ≤ X(n)

• We can simulate them by ordering the sample.

• Faster O(n) algorithms are available for individual order statistics, such
as the median.

If U(1)≤ ·· · ≤U(n) are the order statistics of a random sample from the U[0,1]
distribution, then

X(1) = F−(U(1))
...

X(n) = F−(U(n))

are the order statistics of a random sample from F .

For a sample of size n the marginal distribution of U(k) is

U(k) ∼ Beta(k,n− k+1).

Suppose k < `.

• Then U(k)/U(`) is independent of U(`), . . . ,U(n)

• U(k)/U(`) has a Beta(k, `− k) distribution.

We can use this to generate any subset or all order statistics.

Let V1, . . . ,Vn+1 be independent exponential random variables with the same
mean and let
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Wk =
V1 + · · ·+Vk

V1 + · · ·+Vn+1

Then W1, . . . ,Wn has the same joint distribution as U(1), . . . ,U(n).
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Homogeneous Poisson Process

For a homogeneous Poisson process with rate λ

• The number of points N(A) in a set A is Poisson with mean λ |A|.

• If A and B are disjoint then N(A) and N(B) are independent.

Conditional on N(A) = n, the n points are uniformly distributed on A.

We can generate a Poisson process on [0, t] by generating exponential variables
T1,T2, . . . with rate λ and computing

Sk = T1 + · · ·+Tk

until Sk > t. The values S1, . . . ,Sk−1 are the points in the Poisson process
realization.

70



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Inhomogeneous Poisson Processes

For an inhomogeneous Poisson process with rate λ (x)

• The number of points N(A) in a set A is Poisson with mean
∫

A λ (x)dx.

• If A and B are disjoint then N(A) and N(B) are independent.

Conditional on N(A) = n, the n points in A are a random sample from a distri-
bution with density λ (x)/

∫
A λ (y)dy.

To generate an inhomogeneous Poisson process on [0, t] we can

• let Λ(s) =
∫ s

0 λ (x)dx

• generate arrival times S1, . . . ,SN for a homogeneous Poisson process with
rate one on [0,Λ(t)]

• Compute arrival times of the inhomogeneous process as

Λ
−1(S1), . . . ,Λ

−1(SN).

If λ (x)≤M for all x, then we can generate an inhomogeneous Poisson process
with rate λ (x) by thinning:

• generate a homogeneous Poisson process with rate M to obtain points
X1, . . . ,XN .

• independently delete each point Xi with probability 1−λ (Xi)/M.

The remaining points form a realization of an inhomogeneous Poisson process
with rate λ (x).

If N1 and N2 are independent inhomogeneous Poisson processes with rates
λ1(x) and λ2(x), then their superposition N1 +N2 is an inhomogeneous Pois-
son process with rate λ1(x)+λ2(x).
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Other Processes

Many other processes can be simulated from their definitions

• Cox processes (doubly stochastic Poisson process)

• Poisson cluster processes

• ARMA, ARIMA processes

• GARCH processes

Continuous time processes, such as Brownian motion and diffusions, require
discretization of time.

Other processes may require Markov chain methods

• Ising models

• Strauss process

• interacting particle systems
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Variance Reduction

Most simulations involve estimating integrals or expectations:

θ =
∫

h(x) f (x)dx mean

θ =
∫

1{X∈A} f (x)dx probability

θ =
∫
(h(x)−E[h(X)])2 f (x)dx variance

...

The crude simulation, or crude Monte Carlo, or naı̈ve Monte Carlo, approach:

• Sample X1, . . . ,XN independently from f

• Estimate θ by θ̂N = 1
N ∑h(Xi).

If σ2 = Var(h(X)), then Var(θ̂N) =
σ2

N .

To reduce the error we can

• increase N: requires CPU time and clock time; diminishing returns.

• try to reduce σ2: requires thinking time, programming effort.

Methods that reduce σ2 are called

• tricks

• swindles

• Monte Carlo methods
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Control Variates

Suppose we have a random variable Y with mean θ and a correlated random
variable W with known mean E[W ]. Then for any constant b

Ỹ = Y −b(W −E[W ])

has mean θ .

• W is called a control variate.

• Choosing b = 1 often works well if the correlation is positive and θ and
E[W ] are close.

• The value of b that minimizes the variance of Ỹ is Cov(Y,W )/Var(W ).

• We can use a guess or a pilot study to estimate b.

• We can also estimate b from the same data used to compute Y and W .

• This is related to the regression estimator in sampling.
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Example

Suppose we want to estimate the expected value of the sample median T for a
sample of size 10 from a Gamma(3,1) population.

Crude estimate:

Y =
1
N ∑Ti

Using the sample mean as a control variate with b = 1:

Ŷ =
1
N ∑(Ti−X i)+E[X i] =

1
N ∑(Ti−X i)+α

x <- matrix(rgamma(10000, 3), ncol = 10)
md <- apply(x, 1, median)
mn <- apply(x, 1, mean)
mean(md)

## [1] 2.733514

mean(md - mn) + 3

## [1] 2.732754

sd(md)

## [1] 0.648206

sd(md-mn)

## [1] 0.3623467

The standard deviation is cut roughly in half.

The optimal b seems close to 1.
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Control Variates and Probability Estimates

Suppose T is a test statistic and we want to estimate θ = P(T ≤ t).

Crude Monte Carlo:

θ̂ =
#{Ti ≤ t}

N

Suppose S is “similar” to T and P(S≤ t) is known. Use

θ̂ =
#{Ti ≤ t}−#{Si ≤ t}

N
+P(S≤ t) =

1
N ∑Yi +P(S≤ t)

with Yi = 1{Ti≤t}−1{Si≤t}.

If S mimics T , then Yi is usually zero.

Could use this to calibrate

T =
median

interquartile range

for normal data using the t statistic.
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Importance Sampling

Suppose we want to estimate

θ =
∫

h(x) f (x)dx

for some density f and some function h.

Crude Mote Carlo samples X1, . . . ,XN from f and uses

θ̂ =
1
N ∑h(Xi)

If the region where h is large has small probability under f then this can be
inefficient.

Alternative: Sample X1, . . .Xn from g that puts more probability near the “im-
portant” values of x and compute

θ̃ =
1
N ∑h(Xi)

f (Xi)

g(Xi)

Then, if g(x)> 0 when h(x) f (x) 6= 0,

E[θ̃ ] =
∫

h(x)
f (x)
g(x)

g(x)dx =
∫

h(x) f (x)dx = θ

and

Var(θ̃)=
1
N

∫ (
h(x)

f (x)
g(x)
−θ

)2

g(x)dx=
1
N

(∫ (
h(x)

f (x)
g(x)

)2

g(x)dx−θ
2

)

The variance is minimized by g(x) ∝ |h(x) f (x)|
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Importance Weights

Importance sampling is related to stratified and weighted sampling in sam-
pling theory.

The function w(x) = f (x)/g(x) is called the weight function.

Alternative estimator:

θ
∗ =

∑h(Xi)w(Xi)

∑w(Xi)

This is useful if f or g or both are unnormalized densities.

Importance sampling can be useful for computing expectations with respect
to posterior distributions in Bayesian analyses.

Importance sampling can work very well if the weight function is bounded.

Importance sampling can work very poorly if the weight function is unbounded—
it is easy to end up with infinite variances.
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Computing Tail Probabilities

Suppose θ = P(X ∈ R) for some region R.

Suppose we can find g such that f (x)/g(x)< 1 on R. Then

θ̃ =
1
N ∑1R(Xi)

f (Xi)

g(Xi)

and

Var(θ̃) =
1
N

(∫
R

(
f (x)
g(x)

)2

g(x)dx−θ
2

)

=
1
N

(∫
R

f (x)
g(x)

f (x)dx−θ
2
)

<
1
N

(∫
R

f (x)dx−θ
2
)

=
1
N
(θ −θ

2) = Var(θ̂)

For computing P(X > 2) where X has a standard Cauchy distribution we can
use a shifted distribution:

y <- rcauchy(10000,3)
tt <- ifelse(y > 2, 1, 0) * dcauchy(y) / dcauchy(y,3)
mean(tt)

## [1] 0.1458272

sd(tt)

## [1] 0.1591278

The asymptotic standard deviation for crude Monte Carlo is approximately
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sqrt(mean(tt) * (1 - mean(tt)))

## [1] 0.3529329

A tilted density g(x) ∝ f (x)eβx can also be useful.
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Antithetic Variates

Suppose S and T are two unbiased estimators of θ with the same variance σ2

and correlation ρ , and compute

V =
1
2
(S+T )

Then

Var(V ) =
σ2

4
(2+2ρ) =

σ2

2
(1+ρ)

Choosing ρ < 0 reduces variance.

Such negatively correlated pairs are called antithetic variates.

Suppose we can choose between generating independent T1, . . . ,TN

θ̂ =
1
N

N

∑
i=1

Ti

or independent pairs (S1,T1), . . . ,(SN/2,TN/2) and computing

θ̃ =
1
N

N/2

∑
i=1

(Si +Ti)

If ρ < 0, then Var(θ̃)< Var(θ̂).

If T = f (U), U ∼U[0,1], and f is monotone, then S = f (1−U) is negatively
correlated with T and has the same marginal distribution.

If inversion is used to generate variates, computing T from U1, . . . and S from
1−U1, . . . often works.

Some uniform generators provide an option in the seed to switch between
returning Ui and 1−Ui.
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Example

For estimating the expected value of the median for samples of size 10 from
the Gamma(3,1) distribution:

u <- matrix(runif(5000), ncol = 10)
x1 <- qgamma(u, 3)
x2 <- qgamma(1 - u, 3)
md1 <- apply(x1, 1, median)
md2 <- apply(x2, 1, median)
sqrt(2) * sd((md1 + md2) / 2)

## [1] 0.1132178

Control variates helps further a bit but need b = 0.2 or so.

mn1 <- apply(x1, 1, mean)
mn2 <- apply(x2, 1, mean)
sqrt(2) * sd((md1 + md2 - 0.2 * (mn1 + mn2)) / 2)

## [1] 0.1026839
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Latin Hypercube Sampling

Suppose we want to compute

θ = E[ f (U1, . . . ,Ud)]

with (U1, . . . ,Ud) uniform on [0,1]d.

For each i

• independently choose permutation πi of {1, . . . ,N}

• generate U ( j)
i uniformly on [πi( j)/N,(πi( j)+1)/N].

For d = 2 and N = 10:
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This is a random Latin square design.

In many cases this reduces variance compared to unrestricted random sam-
pling (Stein, 1987; Avramidis and Wilson, 1995; Owen, 1992, 1998)
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Common Variates and Blocking

Suppose we want to estimate θ = E[S]−E[T ]

One approach is to chose independent samples T1, . . . ,TN and S1, . . . ,SM and
compute

θ̂ =
1
M

M

∑
i=1

Si−
1
N

N

∑
i=1

Ti

Suppose S = S(X) and T = T (X) for some X . Instead of generating indepen-
dent X values for S and T we may be able to

• use the common X values to generate pairs (S1,T1), . . . ,(SN,TN)

• compute

θ̃ =
1
N

N

∑
i=1

(Si−Ti)

This use of paired comparisons is a form of blocking.

This idea extends to comparisons among more than two statistics.

In simulations, we can often do this by using the same random variates to
generate Si and Ti. This is called using common variates.

This is easiest to do if we are using inversion; this, and the ability to use
antithetic variates, are two strong arguments in favor of inversion.

Using common variates may be harder when rejection-based methods are in-
volved.

In importance sampling, using

θ
∗ =

∑h(Xi)w(Xi)

∑w(Xi)

can be viewed as a paired comparison; for some forms of h is can have lower
variance than the estimator that does not normalize by the sum of the weights.
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Conditioning or Rao-Blackwellization

Suppose we want to estimate θ = E[X ]

If X ,W are jointly distributed, then

θ = E[X ] = E[E[X |W ]]

and

Var(X) = E[Var(X |W )]+Var(E[X |W ])≥ Var(E[X |W ])

Suppose we can compute E[X |W ]. Then we can

• generate W1, . . . ,WN

• compute

θ̃ =
1
N ∑E[X |Wi]

This is often useful in Gibbs sampling.

Variance reduction is not guaranteed if W1, . . . ,WN are not independent.

Conditioning is particularly useful for density estimation: If we can compute
fX |W (x|w) and generate W1, . . . ,WN , then

f̂X(x) =
1
N ∑ fX |W (x|Wi)

is much more accurate than, say, a kernel density estimate based on a sample
X1, . . . ,XN .

Example

Suppose we want to estimate θ = P(X > t) where X = Z/W with Z,W inde-
pendent, Z ∼ N(0,1) and W > 0. Then
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P(X > t|W = w) = P(Z > tw) = 1−Φ(tw)

So we can estimate θ by generating W1, . . . ,WN and computing

θ̃ =
1
N ∑(1−Φ(tWi))
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Independence Decomposition

Suppose X1, . . . ,Xn is a random sample from a N(0,1) distribution and

X̃ = median(X1, . . . ,Xn)

We want to estimate θ = Var(X̃) = E[X̃2].

Crude Monte Carlo estimate: generate independent medians X̃1, . . . , X̂N and
compute

θ̂ =
1
N ∑ X̃2

i

Alternative: Write

X̃ = (X̃−X)+X

(X̃−X) and X are independent, for example by Basu’s theorem. So

E[X̃2|X ] = X2
+E[(X̃−X)2]

and

θ =
1
n
+E[(X̃−X)2]

So we can estimate θ by generating pairs (X̃i,X i) and computing

θ̃ =
1
n
+

1
N ∑(X̃i−X i)

2

Generating these pairs may be more costly than generating medians alone.
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Example

Estimates:

x <- matrix(rnorm(10000), ncol = 10)
mn <- apply(x, 1, mean)
md <- apply(x, 1, median)
mean(mdˆ2)

## [1] 0.1456334

1 / 10 + mean((md - mn)ˆ2)

## [1] 0.1398346

Asymptotic standard errors:

sd(mdˆ2)

## [1] 0.2061202

sd((md - mn)ˆ2)

## [1] 0.06141623
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Princeton Robustness Study

D. F. Andrews, P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W.
Tukey, Robustness of Location Estimates, Princeton University Press, 1972.

Suppose X1, . . . ,Xn are a random sample from a symmetric density

f (x−m).

We want an estimator T (X1, . . . ,Xn) of m that is

• accurate

• robust (works well for a wide range of f ’s)

Study considers many estimators, various different distributions.

All estimators are unbiased and affine equivariant, i.e.

E[T ] = m
T (aX1 +b, . . . ,aXn +b) = aT (X1, . . . ,Xn)+b

for any constants a,b. We can thus take m = 0 without loss of generality.
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Distributions Used in the Study

Distributions considered were all of the form

X = Z/V

with Z ∼ N(0,1), V > 0, and Z,V independent.

Some examples:

• V ≡ 1 gives X ∼ N(0,1).

• Contaminated normal:

V =

{
c with probability α

1 with probability 1−α

• Double exponential: V ∼ fV (v) = v−3e−v−2/2

• Cauchy: V = |Y | with Y ∼ N(0,1).

• tν : V ∼
√

χ2
ν/ν .

The conditional distribution X |V = v is N(0,1/v2).

Study generates Xi as Zi/Vi.

Write Xi = X̂ + ŜCi with

X̂ =
∑XiV 2

i

∑V 2
i

Ŝ2 =
1

n−1 ∑(Xi− X̂)2V 2
i

Then

T (X) = X̂ + ŜT (C)

Can show that X̂ , Ŝ,C are conditionally independent given V .
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Estimating Variances

Suppose we want to estimate θ = Var(T ) = E[T 2]. Then

θ = E[(X̂ + ŜT (C))2]

= E[X̂2 +2ŜX̂T (C)+ Ŝ2T (C)2]

= E[E[X̂2 +2ŜX̂T (C)+ Ŝ2T (C)2|V ]]

and

E[X̂2|V ] =
1

∑V 2
i

E[X̂ |V ] = 0

E[Ŝ2|V ] = 1

So

θ = E
[

1
∑V 2

i

]
+E[T (C)2]

Strategy:

• Compute E[T (C)2] by crude Monte Carlo

• Compute E
[

1
∑V 2

i

]
the same way or analytically.

Exact calculations:

• If Vi ∼
√

χ2
ν/ν , then

E
[

1
∑V 2

i

]
= E

[
ν

χ2
nν

]
=

ν

nν−2

• Contaminated normal:

E
[

1
∑V 2

i

]
=

n

∑
r=0

(
n
r

)
α

r(1−α)n−r 1
n− r+ rc
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Comparing Variances

If T1 and T2 are two estimators, then

Var(T1)−Var(T2) = E[T1(C)2]−E[T2(C)2]

We can reduce variances further by using common variates.
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Estimating Tail Probabilities

Suppose we want to estimate

θ = P(T (X)> t)

= P(X̂ + ŜT (C)> t)

= E

[
P

(√
∑V 2

i
t− X̂

Ŝ
<
√

∑V 2
i T (C)

∣∣∣∣∣V,C
)]

= E
[

Ft,n−1

(√
∑V 2

i T (C)

)]

where Ft,n−1 is the CDF of a non-central t distribution (t is not the usual non-
centrality parameter).

This CDF can be evaluated numerically, so we can estimate θ by

θ̂N =
1
N

N

∑
k=1

Ft,n−1

(
T (C(k))

√
∑V (k)

i
2
)

An alternative is to condition on V,C, Ŝ and use the conditional normal distri-
bution of X̂ .
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