
Optimization

Preliminaries

Many statistical problems involve minimizing (or maximizing) a function f :
X → R, i.e. finding

x∗ = argmin
x∈X

f (x)

• Maximizing f (x) is equivalent to mimimizing − f (x).

• The domain X can be

– a finite set — combinatorial optimization

– a continuous, usually connected, subset of Rn

• The function can be

– continuous

– twice continuously differentiable

– unrestricted

• The function can

– have a single local minimum that is also a global minimum

– have one or more local minima but no global minimum

– have many local minima and a global minimum
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• Algorithms can be designed to

– find a local minimum from some specified starting point

– find the global minimum

• The objective can be

– to find a global minimum

– to find a local minimum

– to improve on an initial guess

• Very good software is available for many problems

– general purpose optimizers will often do well

– occasionally it is useful to write your own, usually to exploit special
structure

– understanding general strategies is useful even when using canned
software

• Optimization problems often require some tuning

– proper scaling is often critical
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One-Dimensional Optimization

Given an initial point x(k) and a direction d we can define

x(t) = x(k)+ td

and set
x(k+1) = x(k)+ t∗d

where
t∗ = argmint f (x(t))

with t ∈ R restricted to satisfy x(t) ∈X .

• This is often called a line search.

• Many one-dimensional optimization methods are available.

• Many are based on finding a root of the derivative.

• Newton’s method approximates f (x(t)) by a quadratic.

• Once the function f has been minimized in the direction d a new direc-
tion can be tried.

• It is usually not necessary to find the minimizer t∗ exactly — a few steps
in an iterative algorithm are often sufficient.

• R provides

– optimize for minimizing a function over an interval

– uniroot for finding the root of a function in an interval
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Choosing Search Directions

Several methods are available for choosing search directions:

• Cyclic descent, or coordinate descent: if x = (x1, . . . ,xn) then minimize
first with respect to x1, then x2, and so on through xn, and repeat until
convergence

– This method is also called non-liner Gauss-Seidel iteration or back-
fitting. It is similar in spirit to Gibbs sampling.

– This may take more iterations than other methods, but often the in-
dividual steps are very fast.

– A recent paper and the associated sparsenet package takes ad-
vantage of this for fitting sparse linear models.

• Steepest descent: Take d =−∇ f (x(k)).

– Steepest descent can be slow to converge due to zig-zagging.

– It can work well for problems with nearly circular contours.

– Preconditioning to improve the shape of the contours can help.

• Conjugate gradient: Start with the steepest descent direction and then
choose directions conjugate to a strictly positive definite matrix A, often
a Hessian matrix.

– This can reduce the zig-zagging.

– It needs to be restarted at least every n steps.

– Unless the objective function f is quadratic a new matrix A is typi-
cally computed at each restart.

Most of these methods will be linearly convergent: under suitable regularity
conditions and if x(0) is close enough to a local minimizer x∗ then

lim
k→∞

‖x(k+1)− x∗‖
‖x(k)− x∗‖

= a

with 0 < a < 1; a is the rate of convergence. A method for which a = 0 is said
to converge super-linearly.
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Newton’s Method

Newton’s method approximates f by the quadratic

f (k)(x) = f (x(k))+∇ f (x(k))(x− x(k))+
1
2
(x− x(k))T

∇
2 f (x(k))(x− x(k))

and computes x(k+1) to minimize the quadratic approximation f (k):

x(k+1) = x(k)−
(

∇
2 f (x(k))

)−1
∇ f (x(k))

• Convergence can be very fast: if

– f is twice continuously differentiable near a local minimizer x∗

– ∇2 f (x∗) is strictly positive definite

– x(0) is sufficiently close to x∗

then

lim
k→∞

‖x(k+1)− x∗‖
‖x(k)− x∗‖2

= a

with 0 < a < ∞. This is called quadratic convergence.
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• If these conditions fail then Newton’s method may not converge, even
for a convex unimodal function.

• If the new value x(k+1) does not improve f then one can use a line search
in the direction of the Newton step.

• Newton’s method requires first and second derivatives:

– Numerical derivatives can be used.

– Computing the derivatives can be very expensive if n is large.

• Many implementations

– modify the second derivative matrix if it is not strictly positive defi-
nite.

– switch to an alternate method, such as steepest descent, if the New-
ton direction does not produce sufficient improvement

• Computation of the Newton step is usually done using a Cholesky fac-
torization of the Hessian.

• A modified factorization is often used if the Hessian is not numerically
strictly positive definite.

• If θ̃ is a consistent estimate of θ and θ̂ is computed as a single Newton
step from θ̃ , then, under mild regularity conditions, θ̂ will have the same
asymptotic normal distribution as the MLE.
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Quasi-Newton Methods

Quasi-Newton methods compute the next step as

x(k+1) = x(k)−B−1
k ∇ f (x(k))

where Bk is an approximation to the Hessian matrix ∇2 f (x(k)).

• Bk+1 is usually chosen so that

∇ f (x(k+1)) = ∇ f (x(k))+Bk+1(x(k+1)− x(k))

• For n= 1 this leads to the secant method; for n> 1 this is under-determined.

• For n > 1 various strategies for low rank updating of B are available;
often these are based on successive gradient values.

• The inverse can be updated using the Sherman-Morrison-Woodbury for-
mula: If A is invertible then

(A+uvT )−1 = A−1− A−1uvT A−1

1+ vT A−1u

as long as the denominator is not zero.

• Commonly used methods include

– Davidon-Fletcher-Powell (DFP)

– Broyden-Fletcher-Goldfarb-Shanno (BFGS)

• Methods generally ensure that

– Bk is symmetric

– Bk is strictly positive definite

• Convergence of Quasi-Newton methods is generally super-linear but not
quadratic.
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Fisher Scoring

Maximum likelihood estimates can be computed by minimizing the negative
log likelihood

f (θ) =− logL(θ)

• The Hessian matrix ∇2 f (θ (k)) is the observed information matrix at θ (k).

• Sometimes the expected information matrix I(θ (k)) is easy to compute.

• The Fisher scoring method uses a Newton step with the observed infor-
mation matrix replaced by the expected information matrix:

θ
(k+1) = θ

(k)+ I(θ (k))−1
∇ logL(θ (k))
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Example: Logistic Regression

Suppose yi ∼ Binomial(mi,πi) with

πi =
exp(xT

i β )

1+ exp(xT
i β )

The negative log likelihood, up to additive constants, is

f (β ) =−∑(yixT
i β −mi log(1+ exp(xT

i β ))

with gradient

∇ f (β ) =−∑

(
yixi−mi

exp(xT
i β )

1+ exp(xT
i β )

xi

)
=−∑(yixi−miπixi)

=−∑(yi−miπi)xi

and Hessian
∇

2 f (β ) = ∑miπi(1−πi)xixT
i

The Hessian is non-stochastic, so Fisher scoring and Newton’s method are
identical and produce the update

β
(k+1) = β

(k)+
(
∑miπ

(k)
i (1−π

(k)
i )xixT

i

)−1(
∑(yi−miπ

(k)
i )xi

)
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If X is the matrix with rows xT
i , W (k) is the diagonal matrix with diagonal

elements
W (k)

ii = miπ
(k)
i (1−π

(k)
i )

and V (k) is the vector with elements

V (k)
i =

yi−miπ
(k)
i

Wii

then this update can be written as

β
(k+1) = β

(k)+(XTW (k)X)−1XTW (k)V (k)

Thus the change in β is the result of fitting the linear model V (k) ∼ X by
weighted least squares with weights W (k).

• This type of algorithm is called an iteratively reweighted least squares
(IRWLS) algorithm.

• Similar results hold for all generalized linear models.

• In these models Fisher scoring and Newton’s method are identical when
the canonical link function is chosen which makes the natural parameter
linear in β .
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Gauss-Newton Method

Suppose
Yi ∼ N(η(xi,θ),σ

2).

For example, η(x,θ) might be of the form

η(x,θ) = θ0 +θ1e−θ2x.

Then the MLE minimizes

f (θ) =
n

∑
i=1

(yi−η(xi,θ))
2.

We can approximate η near a current guess θ (k) by the Taylor series expansion

ηk(xi,θ)≈ η(xi,θ
(k))+∇θ η(xi,θ

(k))(θ −θ
(k))

This leads to the approximate objective function

fk(θ)≈
n

∑
i=1

(yi−ηk(xi,θ))
2

=
n

∑
i=1

(yi−η(xi,θ
(k))−∇θ η(xi,θ

(k))(θ −θ
(k)))2

This is the sum of squared deviations for a linear regression model, so is min-
imized by

θ
(k+1) = θ

(k)+(JT
k Jk)

−1JT
k (y−η(x,θ (k)))

where Jk = ∇θ η(x,θ(k)) is the Jacobian matrix of the mean function.

• The Gauss-Newton algorithm works well for problems with small resid-
uals, where it is close to Newton’s method.

• Like Newton’s method it can suffer from taking too large a step.

• Backtracking or line search can be used to address this.

• An alternative is the Levenberg-Marquardt algorithm that uses

θ
(k+1) = θ

(k)+(JT
k Jk +λ I)−1JT

k (y−η(x,θ (k)))

for some damping parameter λ . Various strategies for choosing λ are
available.

The R function nls uses these approaches.
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Termination and Scaling

Optimization algorithms generally use three criteria for terminating the search:

• relative change in x

• relative or absolute change in the function values and/or derivatives

• number of iterations

How well these work often depends on problem scaling

• Implementations often allow specification of scaling factors for parame-
ters.

• Some also allow scaling of the objective function.

Dennis and Schnabel (1983) recommend

• a relative gradient criterion

max
1≤i≤n

∣∣∣∣∇ f (x)i max{|xi|, typxi}
max{| f (x)|, typ f}

∣∣∣∣≤ εgrad

where typxi and typ f are typical magnitudes of xi and f .

• a relative change in x criterion

max
1≤i≤n

|∆xi|
max{|xi|, typxi}

≤ εstep

Practical use of optimization algorithms often involves

• trying different starting strategies

• adjusting scaling after preliminary runs

• other reparameterizations to improve conditioning of the problem
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Nelder-Mead Simplex Method

This is not related to the simplex method for linear programming!

• The method uses only function values and is fairly robust but can we
quite slow and need repeated restarts. It can work reasonably even if the
objective function is not differentiable.

• The method uses function values at a set of n+ 1 affinely independent
points in n dimensions, which form a simplex.

• Affine independence means that the points x1, . . . ,xn+1 are such that x1−
xn+1, . . . ,xn− xn+1 are linearly independent.

• The method goes through a series of reflection, expansion, contraction ,
and reduction steps to transform the simplex until the function values do
not change much or the simplex becomes very small.
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One version of the algorithm, adapted from Wikipedia:

1. Order the vertices according to their function values,

f (x1)≤ f (x2)≤ ·· · ≤ f (xn+1)

2. Calculate x0 =
1
n ∑

n
i=1 xi, the center of the face opposite the worst point

xn+1.

3. Reflection: compute the reflected point

xr = x0 +α(x0− xn+1)

for some α ≥ 1, e.g. α = 1. If f (x1) ≤ f (xr) < f (xn), i.e. xr is better
than the second worst point xn but not better than the best point x1, then
replace the worst point xn+1 by xr and go to Step 1.

4. Expansion: If f (xr)< f (x1), i.e. xr is the best point so far, then compute
the expanded point

xe = x0 + γ(x0− xn+1)

for some γ > α , e.g. γ = 2. If f (xe)< f (xr) then replace xn+1 by xe and
go to Step 1. Otherwise replace xn+1 with xr and go to Step 1.

5. Contraction: If we reach this step then we know that f (xr) ≥ f (xn).
Compute the contracted point

xc = x0 +ρ(x0− xn+1)

for some ρ < 0, e.g. ρ = −1/2. If f (xc) < f (xn+1) replace xn+1 by xc
and go to Step 1. Otherwise go to Step 6.

6. Reduction: For i = 2, . . . ,n+1 set

xi = x1 +σ(xi− x1)

for some σ < 1, e.g. σ = 1/2.

The Wikipedia page shows some examples as animations.
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Simulated Annealing

• Simulated annealing is motivated by an analogy to slowly cooling metals
in order to reach the minimum energy state.

• It is a stochastic global optimization method.

• It can be very slow but can be effective for difficult problems with many
local minima.

• For any value T > 0 the function

fT (x) = e f (x)/T

has minima at the same locations as f (x).

• Increasing the temperature parameter T flattens fT ; decreasing T sharp-
ens the local minima.

• Suppose we have a current estimate of the minimizer, x(k) and a mecha-
nism for randomly generating a proposal y for the next estimate.

• A step in the simulated annealing algorithm given a current estimate x(k):

– Generate a proposal y for the next estimate.

– If f (y)≤ f (x(k)) then accept y and set x(k+1) = y.

– If f (y) > f (x(k)) then with probability fT (x(k))/ fT (y) accept y and
set x(k+1) = y.

– Otherwise, reject y and set x(k+1) = x(k).

– Adjust the temperature according to a cooling schedule and repeat.

• Occasionally accepting steps that increase the objective function allows
escape from local minima.
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• A common way to generate y is as a multivariate normal vector centered
at x(k).

• A common choice of cooling schedule is of the form T = 1/ log(k).

• The standard deviations of the normal proposals may be tied to the cur-
rent temperature setting.

• Under certain conditions this approach can be shown to converge to a
global minimizer with probability one.

• Using other forms of proposals this approach can also be used for dis-
crete optimization problems.
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EM and MCEM Algorithms

Suppose we have a problem where complete data X ,Z has likelihood

Lc(θ |x,z) = f (x,z|θ)

but we only observe incomplete data X with likelihood

L(θ |x) = g(x|θ) =
∫

f (x,z|θ)dz

• Often the complete data likelihood is much simpler than the incomplete
data one.

• The conditional density of the unobserved data given the observed data
is

k(z|x,θ) = f (x,z|θ)
g(x|θ)

• Define, taking expectations with respect to k(z|x,φ),

Q(θ |φ ,x) = Eφ [log f (x,z|θ)|x]
H(θ |φ ,x) = Eφ [logk(z|x,θ)|x]

• The EM algorithm consists of starting with an initial estimate θ̂ (0) and
repeating two steps until convergence:

– E(xpectation)-Step: Construct Q(θ |θ̂ (i))

– M(aximization)-Step: Compute θ̂ (i+1) = argmaxθ Q(θ |θ̂ (i))
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• This algorithm was introduced by Dempster, Laird and Rubin (1977); it
unified many special case algorithms in the literature.

• The EM algorithm increases the log likelihood at every step; this helps
to ensure a very stable algorithm.

• The EM algorithm is typically linearly convergent.

• Acceleration methods may be useful. Givens and Hoeting describe some;
others are available in the literature.

• If Q(θ |φ ,x) cannot be constructed in closed form, it can often be com-
puted by Monte Carlo methods; this is the MCEM algorithm of Wei and
Tanner (1990).

• In many cases MCMC methods will have to be used in the MCEM algo-
rithm.
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Example: Normal Mixture Models

Suppose X1, . . . ,Xn are independent and identically distributed with density

f (x|θ) =
M

∑
j=1

p j f (x|µ j,σ
2
j )

with p1, . . . , pM ≥ 0, ∑ p j = 1, and f (x|µ,σ2) is a Normal(µ,σ2) density. M
is assumed known.

We can think of Xi as generated in two stages:

• First a category J is selected from {1, . . . ,M}with probabilities p1, . . . , pM.

• Then, given J = j, a normal random variable is generated from f (x|µ j,σ
2
j ).

We can represent the unobserved category using indicator variables

Zi j =

{
1 if Ji = j
0 otherwise.

The complete data log likelihood is

logL(θ |x,z) =
n

∑
i=1

M

∑
j=1

zi j

[
log p j− logσ j−

1
2

(
xi−µ j

σ j

)2
]

19



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

The Expectation step produces

Q(θ |θ̂ (k)) =
n

∑
i=1

M

∑
j=1

p̂(k)i j

[
log p j− logσ j−

1
2

(
xi−µ j

σ j

)2
]

with

p̂(k)i j = E[Zi j|X = x,θ (k)] =
p̂(k)j f

(
xi

∣∣∣µ̂(k)
j , σ̂

(k)2
j

)
∑

M
`=1 p̂(k)` f

(
xi

∣∣∣µ̂(k)
` , σ̂

(k)2
`

)
The Maximization step then produces

µ̂
(k+1)
j =

∑
n
i=1 p̂(k)i j xi

∑
n
i=1 p̂(k)i j

σ̂
(k+1)2
j =

∑
n
i=1 p̂(k)i j (xi− µ̂

(k+1)
j )2

∑
n
i=1 p̂(k)i j

p̂(k+1)
j =

1
n

n

∑
i=1

p̂(k)i j
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A simple R function to implement a single EM step might be written as

EMmix1 <- function(x, theta) {
mu <- theta$mu
sigma <- theta$sigma
p <- theta$p
M <- length(mu)

## E step
Ez <- outer(x, 1 : M,

function(x, i)
p[i] * dnorm(x, mu[i], sigma[i]))

Ez <- sweep(Ez, 1, rowSums(Ez), "/")
colSums.Ez <- colSums(Ez)

## M step
xp <- sweep(Ez, 1, x, "*")
mu.new <- colSums(xp) / colSums.Ez

sqRes <- outer(x, mu.new, function(x, m) (x - m)ˆ2)
sigma.new <- sqrt(colSums(Ez * sqRes) / colSums.Ez)

p.new <- colSums.Ez / sum(colSums.Ez)

## pack up result
list(mu = mu.new, sigma = sigma.new, p = p.new)

}
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Some notes:

• Reasonable starting values are important.

• We want a local maximum near a good starting value, not a global max-
imum.

• Code to examine the log likelihood for a simplified example:

http://www.stat.uiowa.edu/˜luke/classes/STAT7400-2020/examples/mixll.R

• Some recent papers:

– Tobias Ryden (2008). EM versus Markov chain Monte Carlo for
estimation of hidden Markov models: a computational perspective,
Bayesian Analysis 3 (4), 659–688.

– A. Berlinet and C. Roland (2009). Parabolic acceleration of the EM
algorithm. Statistics and Computing 19 (1), 35–48.

– Chen, Lin S., Prentice, Ross L., and Wang, Pei (2014). A penalized
EM algorithm incorporating missing data mechanism for Gaussian
parameter estimation, Biometrics 70 (2), 312–322.

22

http://www.stat.uiowa.edu/~luke/classes/STAT7400-2020/examples/mixll.R


Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Theoretical Properties of the EM Algorithm

• The conditional density of the unobserved data given the observed data
is

k(z|x,θ) = f (x,z|θ)
g(x|θ)

• Define, taking expectations with respect to k(z|x,φ),

Q(θ |φ ,x) = Eφ [log f (x,z|θ)|x]
H(θ |φ ,x) = Eφ [logk(z|x,θ)|x]

• For any φ

logL(θ |x) = Q(θ |φ ,x)−H(θ |φ ,x)

since for any z

logL(θ |x) = logg(x|θ)
= log f (x,z|θ)− log f (x,z|θ)+ logg(x|θ)

= log f (x,z|θ)− log
f (x,z|θ)
g(x|θ)

= log f (x,z|θ)− logk(z|x,θ)

and therefore, taking taking expectations with respect to k(z|x,φ),

logL(θ |x) = Eφ [log f (x,z|θ)]−Eφ [logk(z|x,θ)]
= Q(θ |φ ,x)−H(θ |φ ,x)
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• Furthermore, for all θ

H(θ |φ)≤ H(φ |φ)

since, by Jensen’s inequality,

H(θ |φ)−H(φ |φ) = Eφ [logk(z|θ ,x)]−Eφ [logk(z|φ ,x)]

= Eφ

[
log

k(z|θ ,x)
k(z|x,φ)

]
≤ logEφ

[
k(z|θ ,x)
k(z|x,φ)

]
= log

∫ k(z|θ ,x)
k(z|x,φ)

k(z|x,φ)dz

= log
∫

k(z|xθ)dz = 0.

• This implies that for any θ and φ

logL(θ |x)≥ Q(θ |φ ,x)−H(φ |φ ,x)

with equality when θ = φ , and therefore

– if θ̂ maximizes L(θ |x) then θ̂ maximizes Q(θ |θ̂ ,x) with respect to
θ :

Q(θ |θ̂ ,x)−H(θ̂ |θ̂ ,x)≤ logL(θ |x)
≤ logL(θ̂ |x) = Q(θ̂ |θ̂ ,x)−H(θ̂ |θ̂ ,x)

– if θ̂(φ) maximizes Q(θ |φ ,x) for a given φ then logL(φ |x)≤ logL(θ̂(φ)|x):

logL(φ |x) = Q(φ |φ ,x)−H(φ |φ ,x)
≤ Q(θ̂(φ)|φ ,x)−H(φ |φ ,x)
≤ Q(θ̂(φ)|φ ,x)−H(θ̂(φ)|φ ,x)
= logL(θ̂(φ)|x)
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MM Algorithms

The EM algorithm can be viewed as a special case of an MM algorithm.

• MM stands for

– Minimization and Majorization, or

– Maximization and Minorization.

• Suppose the objective is to maximize a function f (θ).

• The assumption is that a surrogate function g(θ |φ) is available such that

f (θ)≥ g(θ |φ)

for all θ ,φ , with equality when θ = φ .

• The function g is said to minorize the function f .

• The MM algorithm starts with an initial guess θ̂ (0) and then computes

θ̂
(i+1) = argmaxθ g(θ |θ̂ (i))

25
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• As in the EM algorithm,

– if θ̂ maximizes f (θ) then θ̂ maximizes g(θ |θ̂)
– if θ̂(φ) maximizes g(θ |φ) then

f (φ)≤ f (θ̂(φ)).

• The objective function values will increase, and under reasonable condi-
tions the algorithm will converge to a local maxizer.

• Full maximization of g is not needed as long as sufficient progress is
made (single Newton steps are often sufficient).

• The art in designing an MM algorithm is finding a surrogate minorizing
function g that

– produces an efficient algorithm

– is easy to maximize

• In p-dimensional problems it is often possible to choose minorizing func-
tions of the form

g(θ |φ) =
p

∑
j=1

g j(θ j|φ)

so that g can be maximized by separate one-dimensional maximizations
of the g j.
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Example: Bradley Terry Model

• In the Bradley Terry competition model each team has a strength θi and

P(i beats j) =
θi

θi +θ j

with θ1 = 1 for identifiability.

• Assuming independent games in which yi j is the number of times i beats
j the log likelihood is

logL(θ) = ∑
i, j

yi j (log(θi)− log(θi +θ j))

• Since the logarithm is concave, for any x and y

− logy≥− logx− y− x
x

and therefore for any θ and φ

logL(θ)≥∑
i, j

yi j

(
log(θi)− log(φi +φ j)−

θi +θ j−φi−φ j

φi +φ j

)
= g(θ |φ)
= ∑

i
gi(θi|φ)

with
gi(θi|φ) = ∑

j
yi j logθi−∑

j
(yi j + y ji)

θi−φi

φi +φ j
.

• The parameters are separated in g, and the one-dimensional maximizers
can be easily computed as

θ̂i(φ) =
∑ j yi j

∑ j(yi j + y ji)/(φi +φ j)

Some References on MM algorithms:

• Hunter DR and Lange K (2004), A Tutorial on MM Algorithms, The
American Statistician, 58: 30-37.

• Lange, K (2004). Optimization, Springer-Verlag, New York.
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Constrained Optimization

• Equality constraints arise, for example, in

– restricted maximum likelihood estimation needed for the null hy-
pothesis in likelihood ratio tests

– estimating probabilities that sum to one

• Inequality constraints arise in estimating

– probabilities or rates that are constrained to be non-negative

– monotone functions or monotone sets of parameters

– convex functions

• Box constraints are the simplest and the most common.

• Linear inequality constraints also occur frequently.

• Inequality constraints are often handled by converting a constrained prob-
lem to an unconstrained one:

– Minimizing f (x) subject to gi(x) ≥ 0 for i = 1, . . . ,M is equivalent
to minimizing

F(x) =

{
f (x) if gi(x)≥ 0 for i = 1, . . . ,M
∞ otherwise.

– This objective function is not continuous.

• Sometimes a complicated unconstrained problem can be changed to sim-
pler constrained one.
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Example: L1 Regression

The L1 regression estimator is defined by the minimization problem

b̂ = argmin
b

∑ |yi− xT
i b|

This unconstrained optimization problem with a non-differentiable objective
function can be reformulated as a constrained linear programming problem:

For a vector z = (z1, . . . ,zn)
T let [z]+ denote the vector of positive parts of z,

i.e.
([z]+)i = max(zi,0)

and let

b+ = [b]+
b− = [−b]+

u = [y−Xb]+
v = [Xb− y]+

Then the L1 estimator satisfies

b̂ = argmin
b

1T u+1T v

subject to the constraints

y = Xb+−Xb−+u− v
u≥ 0,v≥ 0,b+ ≥ 0,b− ≥ 0
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• This linear programming problem can be solved by the standard simplex
algorithm.

• A specialized simplex algorithm taking advantage of structure in the
constraint matrix allows larger data sets to be handled (Barrodale and
Roberts, 1974).

• Interior point methods can also be used and are effective for large n and
moderate p.

• An alternative approach called smoothing is based on approximating the
absolute value function by a twice continuously differentiable function
and can be effective for moderate n and large p.

• Chen and Wei (2005) provide an overview in the context of the more
general quantile regression problem.

– Quantile regression uses a loss function of the form

ρτ(y) = y
(
τ−1{y<0}

)
= τ[y]++(1− τ)[−y]+.

for 0 < τ < 1.

– For τ = 1
2 this is ρ1

2
(y) = 1

2 |y|.

• Reformulation as a constrained optimization problem is also sometimes
used for LASSO and SVM computations.
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Some Approaches and Algorithms

• If the optimum is in the interior of the feasible region then using standard
methods on F may work, especially if these use backtracking if they
encounter infinite values.

• For interior optima transormations to an unbounded feasible region may
help.

• Standard algorithms can often be modified to handle box constraints.

• Other constraints are often handled using barrier methods that approxi-
mate F by a smooth function

Fγ(x) =

{
f (x)− γ ∑

M
i=1 loggi(x) if g(x)≥ 0

∞ otherwise

for some γ > 0. The algorithm starts with a feasible solution, minimizes
Fγ for a given γ , reduces γ , and repeats until convergence.

• Barrier methods are also called path-following algorithms.

• Path-following algorithms are useful in other settings where a harder
problem can be approached through a sequence of easier problems.

• Path-following algorithms usually start the search for the next γ at the so-
lution for the previous γ; this is sometimes called a warm start approach.

• The intermediate results for positive γ are in the interior of the feasible
region, hence this is an interior point method

• More sophisticated interior point methods are available in particular for
convex optimization problems.
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An Adaptive Barrier Algorithm

Consider the problem of minimizing f (x) subject to the linear inequality con-
straints

gi(x) = bT
i x− ci ≥ 0

for i = 1, . . . ,M. For an interior point x(k) of the feasible region define the
surrogate function

R(x|x(k)) = f (x)−µ

M

∑
i=1

[
gi(x(k)) log(gi(x))−bT

i x
]

for some µ > 0. As a function of x the barrier function

f (x)−R(x|x(k)) = µ

M

∑
i=1

[
gi(x(k)) log(gi(x))−bT

i x
]

is concave and maximized at x = x(k). Thus if

x(k+1) = argmin
x

R(x|x(k))

then

f (x(k+1)) = R(x(k+1)|x(k))+ f (x(k+1))−R(x(k+1)|x(k))
≤ R(x(k)|x(k))+ f (x(k+1))−R(x(k+1)|x(k))
≤ R(x(k)|x(k))+ f (x(k))−R(x(k)|x(k))
= f (x(k))

• The values of the objective function are non-increasing.

• This has strong similarities to an EM algorithm argument.

• The coefficient of a logarithmic barrier term decreases to zero if x(k)

approaches the boundary.

• If f is convex and has a unique minimizer x∗ then x(k) converges to x∗.

• This algorithm was introduced in K. Lange (1994).

32



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Optimization in R

Several optimization functions are available in the standard R distribution:

• optim implements a range of methods:

– Nelder-Mead simplex

– Quasi-Newton with the BFGS update

– A modified Quasi-Newton BFGS algorithm that allows box con-
straints

– A conjugate gradient algorithm

– A version of simulated annealing.

Some notes:

– A variety of iteration control options are available.

– Analytical derivatives can be supplied to methods that use them.

– Hessian matrices at the optimum can be requested.

• nlminb provides an interface to the FORTRAN PORT library devel-
oped at Bell Labs. Box constraints are supported.

• nlm implements a modified Newton algorithm as described in Dennis
and Schnabel (1983).

• constrOptim implements the adaptive barrier method of Lange (1994)
using optim for the optimizations within iterations.

The Optimization Task View on CRAN describes a number of other methods
available in contributed packages.

Simple examples illustrating optim and constrOptim are available at

http://www.stat.uiowa.edu/˜luke/classes/STAT7400-2020/examples/optimpath.R
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