
Markov Chain Monte Carlo

Simulation with Dependent Observations

Suppose we want to compute

θ = E[h(X)] =
∫

h(x) f (x)dx

Crude Monte Carlo: generate X1, . . . ,XN that are

• independent;

• identically distributed from f .

and compute θ̂ = 1
N ∑h(Xi).

Then

• θ̂ → θ by the law of large numbers;

• θ̂ ∼ AN(θ ,σ2/N) by the central limit theorem;

• σ2 can be estimated using the sample standard deviation.

Sometimes generating independently from f is not possible or too costly.

Importance sampling: generate independently from g and reweight.

Alternative: generate dependent samples in a way that
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• preserves the law of large numbers;

• has a central limit theorem if possible.

Variance estimation will be more complicated.
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A Simple Example

Suppose X ,Y are bivariate normal with mean zero, variance 1, and correlation
ρ ,

(X ,Y )∼ BVN(0,1,0,1,ρ).

Then

Y |X = x∼ N(ρx,1−ρ
2)

X |Y = y∼ N(ρy,1−ρ
2).

Suppose we start with some initial values X0,Y0 and generate

X1 ∼ N(ρY0,1−ρ
2)

Y1 ∼ N(ρX1,1−ρ
2)

(X0 is not used), and continue for i = 1, . . . ,N−1

Xi+1 ∼ N(ρYi,1−ρ
2)

Yi+1 ∼ N(ρXi+1,1−ρ
2)

For ρ = 0.75 and Y0 = 0:

r <- 0.75
x <- numeric(10000)
y <- numeric(10000)
x[1] <- rnorm(1, 0, sqrt(1 - rˆ2))
y[1] <- rnorm(1, r * x[1], sqrt(1 - rˆ2))
for (i in 1:(length(x) - 1)) {

x[i+1] <- rnorm(1, r * y[i], sqrt(1 - rˆ2))
y[i+1] <- rnorm(1, r * x[i + 1], sqrt(1 - rˆ2))

}
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The sequence of pairs (Xi,Yi) form a continuous state space Markov chain.

Suppose (X0,Y0)∼ BVN(0,1,0,1,ρ). Then

• (X1,Y0)∼ BVN(0,1,0,1,ρ);

• (X1,Y1)∼ BVN(0,1,0,1,ρ);

• (X2,Y1)∼ BVN(0,1,0,1,ρ);

• . . .

So BVN(0,1,0,1,ρ) is a stationary distribution or invariant distribution of
the Markov chain.

BVN(0,1,0,1,ρ) is also the equilibrium distribution of the chain, i.e. for any
starting distribution the joint distribution of (Xn,Yn) converges to the BVN(0,1,0,1,ρ)
distribution.

For this example, X1,X2, . . . is an AR(1) process

Xi = ρ
2Xi−1 + εi

with the εi independent and N(0,1−ρ4).

Standard time series results show that the equilibrium distribution of this chain
is N(0,1).

If

XN =
1
N

N

∑
i=1

Xi

then

Var(XN)≈
1
N

1−ρ4

(1−ρ2)2 =
1
N

1+ρ2

1−ρ2
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Markov Chain Monte Carlo

The objective is to compute

θ = E[h(X)] =
∫

h(x) f (x)dx

Basic idea:

• Construct a Markov chain with invariant distribution f .

• Make sure the chain has f as its equilibrium distribution.

• Pick a starting value X0.

• Generate X1, . . . ,XN and compute

θ̂ =
1
N ∑h(Xi)

• Possibly repeat independently several times, maybe with different start-
ing values.

Some issues:

• How to construct a Markov chain with a particular invariant distribution.

• How to estimate the variance of θ̂ .

• What value of N to use.

• Should an initial portion be discarded; if so, how much?

6
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Some MCMC Examples

Markov chain Monte Carlo (MCMC) is used for a wide range of problems and
applications:

• generating spatial processes;

• sampling from equilibrium distributions in physical chemistry;

• computing likelihoods in missing data problems;

• computing posterior distributions in Bayesian inference;

• optimization, e.g. simulated annealing;

• . . .
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Strauss Process

The Strauss process is a model for random point patterns with some regularity.

A set of n points is distributed on a region D with finite area or volume.

The process has two parameters, c ∈ [0,1] and r > 0. The joint density of the
points is

f (x1, . . . ,xn) ∝ cnumber of pairs within r of each other

For c = 0 the density is zero if any two points are withing r of each other.

Simulating independent draws from f is possible in principle but very ineffi-
cient.

A Markov chain algorithm:

• Start with n points X1, . . . ,Xn with f (X1, . . . ,Xn)> 0.

• Choose an index i at random, remove point Xi, and replace it with a draw
from

f (x|x1, . . . ,xi−1,xi+1, . . . ,xn) ∝ cnumber of remaining n−1 points within r of x

• This can be sampled reasonably efficiently by rejection sampling.

• Repeat for a reasonable number of steps.

Strauss in package spatial implements this algorithm. [Caution: it
used to be easy to hang R because the C code would go into an infinite loop
for some parameters. More recent versions may have modified C code that
checks for interrupts.]

The algorithm is due to Ripley (1979); Ripley’s algorithm applies to a general
multivariate density.

library(spatial)
ppregion()
s_0.2 <- Strauss(20, r = 0.2)
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s_0 <- Strauss(20, r = 0)
par(mfrow = c(1, 2))
plot(s_0.2); title("r = 0.2")
plot(s_0); title("Uniform")
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Markov Random Fields

A Markov random field is a spatial process in which

• each index i has a set of neighbor indices Ni;

• Xi and {Xk : k 6= i and k 6∈ Ni} are conditionally independent given {X j :
j ∈ Ni}.

In a binary random field the values of Xi are binary.

Random fields are used as models in

• spatial statistics;

• image processing;

• . . .

A simple model for an n×n image with c colors:

f (x) ∝ exp{β × (number of adjacent pixel pairs with the same color)}

This is called a Potts model

For a pixel i, the conditional PMF of the pixel color Xi given the other pixel
colors, is

f (xi|rest) ∝ exp{β × (number of neighbors with color xi}

par(mfrow = c(1, 2))
image(v0)
title("Random")
image(v)
title(expression(paste("Eight Neighbors, ", beta == 0.35, ", ", N == 100)))
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Simple Image Reconstruction

Suppose a binary image is contaminated with noise.

The noise process is assumed to act independently on the pixels.

Each pixel is left unchanged with probability p and flipped to the opposite
color with probability 1− p.

The likelihood for the observed image Yi is

f (y|x) ∝ pm(1− p)n2−m

with m the number of pixels with yi = xi.

A Markov random field is used as the prior distribution of the true image.

The posterior distribution of the true image is

f (x|y) ∝ pm(1− p)n2−meβw

with w the number of adjacent pixel pairs in the true image x with the same
color.

The posterior distribution is also a Markov random field, and

f (xi|y,x j for j 6= i) ∝ pmi(1− p)1−mieβwi

with mi = 1 if xi = yi and mi = 0 otherwise, and wi the number of neighbors
with color xi.

Images drawn from the posterior distribution can be averaged to form a pos-
terior mean.

The posterior mean can be rounded to a binary image.

Many other variations are possible.
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Another example using β = 0.5 and β = 0.35 and N = 100 will be shown in
class.

This is a simple version of the ideas in Geman, S. and Geman D, (1984)
Stochastic relaxation, Gibbs distributions and the Bayesian restoration of im-
ages, IEEE Transactions on Pattern Analysis and Machine Intelligence 6,
721–741.

The posterior distributions are related to Gibbs distributions in physics.

Geman and Geman call the Markov chain algorithm Gibbs sampling.
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Code for the Image Sampler

simImg <- function (m, img, N, beta, p) {
colors <- 1:2
inboff <- c(-1, -1, -1, 0, 0, 1, 1, 1)
jnboff <- c(-1, 0, 1, -1, 1, -1, 0, 1)
for (k in 1:N) {

for (i in 1:nrow(m)) {
for (j in 1:ncol(m)) {

w <- double(length(colors))
inb <- i + inboff
jnb <- j + jnboff
omit <- inb == 0 | inb == nrow(m) + 1 |

jnb == 0 | jnb == ncol(m) + 1
inb <- inb[!omit]
jnb <- jnb[!omit]
for (ii in 1:length(inb)) {

kk <- m[inb[ii], jnb[ii]]
w[kk] <- w[kk] + 1

}
if (is.null(img)) lik <- 1
else lik <- ifelse(img[i,j]==colors, p, 1-p)
prob <- lik * exp(beta * w)
m[i, j] <- sample(colors, 1, TRUE, prob = prob)

}
}

}
m

}
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Profiling to Improve Performance

Rprof can be used to turn on profiling.

During profiling a stack trace is written to a file, Rprof.out by default, 50
times per second.

summaryRprof produces a summary of the results.

Rprof();system.time(simImg(m,img,100,.35,.7));Rprof(NULL)

## user system elapsed
## 8.305 0.009 8.316

s <- summaryRprof()
head(s$by.self)

## self.time self.pct total.time total.pct
## "simImg" 5.00 60.10 8.30 99.76
## "ifelse" 1.32 15.87 1.66 19.95
## "sample.int" 0.94 11.30 0.94 11.30
## "which" 0.28 3.37 0.28 3.37
## "sample" 0.24 2.88 1.26 15.14
## "double" 0.24 2.88 0.26 3.12
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Replacing ifelse in

else lik <- ifelse(img[i,j]==colors, p, 1-p)

with

else if (img[i, j] == 1) lik <- c(p, 1-p)
else lik <- c(1 - p, p)

speeds things up somewhat:

Rprof();system.time(simImg1(m,img,100,.35,.7));Rprof(NULL)

## user system elapsed
## 8.304 0.007 8.326

s1 <- summaryRprof()
head(s1$by.self)

## self.time self.pct total.time total.pct
## "simImg1" 6.52 77.99 8.32 99.52
## "sample.int" 1.20 14.35 1.22 14.59
## "sample" 0.34 4.07 1.58 18.90
## "c" 0.08 0.96 0.08 0.96
## "double" 0.06 0.72 0.08 0.96
## "length" 0.06 0.72 0.06 0.72

## [1] FALSE

Starting profiling with

Rprof(line.profiling = TRUE)

will enable source profiling if our funciton is defined in a file and sourced.

Using the package proftools with

16
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library(proftools)
pd <- readProfileData()
annotateSource(pd)

produces

: simImg1 <-
: function (m, img, N, beta, p)
: {
: colors <- 1:2
: inboff <- c(-1, -1, -1, 0, 0, 1, 1, 1)
: jnboff <- c(-1, 0, 1, -1, 1, -1, 0, 1)
: for (k in 1:N) {
: for (i in 1:nrow(m)) {

0.56% : for (j in 1:ncol(m)) {
34.27% : w <- double(length(colors))
0.56% : inb <- i + inboff
0.84% : jnb <- j + jnboff
9.27% : omit <- inb == 0 | inb == nrow(m) + 1 | jnb ==

: 0 | jnb == ncol(m) + 1
2.25% : inb <- inb[!omit]
1.40% : jnb <- jnb[!omit]
2.53% : for (ii in 1:length(inb)) {
4.49% : kk <- m[inb[ii], jnb[ii]]
1.97% : w[kk] <- w[kk] + 1

: }
3.65% : if (is.null(img))

: lik <- 1
: else if (img[i, j] == 1)
: lik <- c(p, 1 - p)
: else lik <- c(1 - p, p)

1.69% : prob <- lik * exp(beta * w)
36.52% : m[i, j] <- sample(colors, 1, TRUE, prob = prob)

: }
: }
: }
: m
: }

17
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This suggests one more useful change: move the loop-invariant computations
nrow(m)+1 and ncol(m)+1 out of the loop:

simImg2 <- function (m, img, N, beta, p) {
colors <- 1:2
inboff <- c(-1, -1, -1, 0, 0, 1, 1, 1)
jnboff <- c(-1, 0, 1, -1, 1, -1, 0, 1)
nrp1 <- nrow(m) + 1
ncp1 <- ncol(m) + 1
for (k in 1:N) {

for (i in 1:nrow(m)) {
for (j in 1:ncol(m)) {

w <- double(length(colors))
inb <- i + inboff
jnb <- j + jnboff
omit <- inb == 0 | inb == nrp1 |

jnb == 0 | jnb == ncp1
inb <- inb[!omit]
jnb <- jnb[!omit]
for (ii in 1:length(inb)) {

kk <- m[inb[ii], jnb[ii]]
w[kk] <- w[kk] + 1

}
if (is.null(img))
lik <- 1

else if (img[i, j] == 1)
lik <- c(p, 1 - p)

else lik <- c(1 - p, p)
prob <- lik * exp(beta * w)
m[i, j] <- sample(colors, 1, TRUE, prob = prob)

}
}

}
m

}

This helps as well:

system.time(simImg2(m,img,100,.35,.7))

## user system elapsed
## 3.094 0.000 3.100

18
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Exploiting Conditional Independence

We are trying to sample a joint distribution of a collection of random variables

Xi, i ∈ C

Sometimes it is possible to divide the index set C into k groups

C1,C2, . . . ,Ck

such that for each j the indices Xi, i ∈ C j are conditionally independent given
the other values {Xi, i 6∈ C j}.

For a 4-neighbor lattice we can use two groups,
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with C1 = red and C2 = white

For an 8-neighbor lattice four groups are needed.

Each group can be updated as a group, either

• using vectorized arithmetic, or

• using parallel computation

20
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A vectorized implementation based on this approach:

nn <- function(m, c) {
nr <- nrow(m)
nc <- ncol(m)
nn <- matrix(0, nr, nc)
nn[1:(nr)-1,] <- nn[1:(nr)-1,] + (m[2:nr,] == c)
nn[2:nr,] <- nn[2:nr,] + (m[1:(nr-1),] == c)
nn[,1:(nc)-1] <- nn[,1:(nc)-1] + (m[,2:nc] == c)
nn[,2:nc] <- nn[,2:nc] + (m[,1:(nc-1)] == c)
nn

}

simGroup <- function(m, l2, l1, beta, which) {
pp2 <- l2 * exp(beta * nn(m, 2))
pp1 <- l1 * exp(beta * nn(m, 1))
pp <- pp2 / (pp2 + pp1)
ifelse(runif(sum(which)) < pp[which], 2, 1)

}

simImgV <- function(m, img, N, beta, p) {
white <- outer(1:nrow(m), 1:ncol(m), FUN=`+`) %% 2 == 1
black <- ! white
if (is.null(img)) {

l2 <- 1
l1 <- 1

}
else {

l2 <- ifelse(img == 2, p, 1 - p)
l1 <- ifelse(img == 1, p, 1 - p)

}
for (i in 1:N) {

m[white] <- simGroup(m, l2, l1, beta, white)
m[black] <- simGroup(m, l2, l1, beta, black)

}
m

}

The results:

system.time(simImgV(m, img, 100, .35, .7))

## user system elapsed
## 0.138 0.012 0.150
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More MCMC Examples

Monte Carlo Maximum Likelihood

Suppose we have an exponential family likelihood

h(x|θ) = c(θ)eθx−ν(x) = c(θ)h̃(x|θ)

In many problems c(θ) is not available in closed form:

• Strauss process with θ = logc.

• MRF image model with θ = β .

Geyer and Thompson (1992) write

log
h(x|θ)
h(x|η)

= log
h̃(x|θ)
h̃(x|η)

− logEη

[
h̃(X |θ)
h̃(X |η)

]
This follows from the fact that

c(θ)
c(η)

=
1

c(η)
∫

h̃(x|θ)dx
=

(∫ h̃(x|θ)
h̃(x|η)

c(η)h̃(x|η)dx
)−1

=

(
Eη

[
h̃(X |θ)
h̃(X |η)

])−1

Using a sample x1, . . . ,xN from h(x|η) this can be approximated by

log
h(x|θ)
h(x|η)

≈ log
h̃(x|θ)
h̃(x|η)

− log
1
N

N

∑
i=1

h̃(xi|θ)
h̃(xi|η)

The sample x1, . . . ,xN from h(x|η) usually needs to be generated using MCMC
methods.
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Data Augmentation

Suppose we have a problem where data Y,Z have joint density f (y,z|θ) but
we only observe z.

Suppose we have a prior density f (θ).

The joint density of Y,Z,θ is then

f (y,z,θ) = f (y,z|θ) f (θ)

and the joint posterior density of θ ,y given z is

f (θ ,y|z) = f (y,z|θ) f (θ)
f (z)

∝ f (y,z|θ) f (θ)

Suppose it is easy to sample from the conditional distribution of

• the missing data y, given θ and the observed data z

• the parameter θ given the complete data y,z.

Then we can start with θ (0) and for each i = 1,2, . . .

• draw y(i) from f (y|θ (i−1),z)

• draw θ (i) from f (θ |y(i),z).

This is the data augmentation algorithm of Tanner and Wong (1987)

The result is a Markov chain with stationary distribution f (θ ,y|z)

If we discard the y values then we have a (dependent) sample from the marginal
posterior density f (θ |z).

In this alternating setting, the marginal sequence θ (i) is a realization of a
Markov chain with invariant distribution f (θ |z).
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Probit Model for Pesticide Effectiveness

Batches of 20 tobacco budworms were subjected to different doses of a pesti-
cide and the number killed was recorded.

Dose 1 2 4 8 16 32
Died 1 4 9 13 18 20

A probit model assumes that binary responses Zi depend on covariate values
xi though the relationship

Zi ∼ Bernoulli(Φ(α +β (xi− x)))

A direct likelihood or Bayesian analysis is possible.

An alternative is to assume that there are latent variables Yi with

Yi ∼ N(α +β (xi− x),1)

Zi =

{
1 if Yi ≥ 0
0 if Yi < 0

For this example assume a flat, improper, prior density.
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The full data posterior distribution is

f (α,β |y) ∝ exp
{
−n

2
(α− y)2− ∑(xi− x)2

2
(β − β̂ )2

}
with

β̂ =
∑(xi− x)yi

∑(xi− x)2

So α , β are independent given y and x, and

α|y,z∼ N(y,1/n)

β |y,z∼ N(β̂ ,1/∑(xi− x)2)

Given z, α , and β the Yi are conditionally independent, and

Yi|z,α,β ∼

{
N(α +β (xi− x)2,1) conditioned to be positive if zi = 1
N(α +β (xi− x)2,1) conditioned to be negative if zi = 0

The inverse CDF’s are

F−(u|zi,µi) =

{
µi +Φ−1(Φ(−µi)+u(1−Φ(−µi))) if zi = 1
µi +Φ−1(uΦ(−µi)) if zi = 0

with µi = α +β (xi− x).
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A plot of the proportion killed against dose is curved, but a plot against the
logarithm is straight in the middle. So use x = log2(dose).
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dose <- c(1, 2, 4, 8, 16, 32)
died <- c(1, 4, 9, 13, 18, 20)
x <- log2(dose)

We need to generate data for individual cases:

xx <- rep(x - mean(x), each = 20)
z <- unlist(lapply(died,

function(x) c(rep(1, x), rep(0, 20 - x))))

We need functions to generate from the conditional distributions:

genAlpha <- function(y)
rnorm(1, mean(y), 1 / sqrt(length(y)))

genBeta <- function(y, xx, sxx2)
rnorm(1, sum(xx * y) / sxx2, 1 / sqrt(sxx2))

genY <- function(z, mu) {
p <- pnorm(-mu)
u <- runif(length(z))
mu + qnorm(ifelse(z == 1, p + u * (1 - p), u * p))

}
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A function to produce a sample of parameter values by data augmentation is
then defined by

da <- function(z, alpha, beta, xx, N) {
val <- matrix(0, nrow = N, ncol = 2)
colnames(val) <- c("alpha", "beta")
sxx2 <- sum(xxˆ2)
for (i in 1 : N) {

y <- genY(z, alpha + beta * xx)
alpha <- genAlpha(y)
beta <- genBeta(y, xx, sxx2)
val[i,1] <- alpha
val[i,2] <- beta

}
val

}

Initial values are

alpha0 <- qnorm(mean(z))
beta0 <- 0

A run of 10000:

v <- da(z, alpha0, beta0, xx, 10000)
apply(v,2,mean)

## alpha beta
## 0.2037978 0.7552922

apply(v,2,sd)

## alpha beta
## 0.1504361 0.1141509
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Some diagnostics:
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Using a simple AR(1) model,

SD(α)≈ SD(α|z)√
N

√
1+ρα

1−ρα

=
0.1504361

100

√
1+0.65
1−0.65

= 0.0032663

SD(β )≈ SD(β |z)√
N

√
1+ρβ

1−ρβ

=
0.1141509

100

√
1+0.8
1−0.8

= 0.0034245

Approxiamte effective sample sizes:
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ESS(α)≈ N
(

1−ρα

1+ρα

)
= 10000

(
1−0.65
1+0.65

)
= 2121.212

ESS(β )≈ N
(

1−ρβ

1+ρβ

)
= 10000

(
1−0.8
1+0.8

)
= 1111.111
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Practical Bayesian Inference

In Bayesian inference we have

• a prior density or PMF f (θ)

• a data density or PMF, or likelihood, f (x|θ)

We compute the posterior density or PMF as

f (θ |x) = f (x|θ) f (θ)
f (x)

∝ f (x|θ) f (θ)

At this point, in principle, we are done.

In practice, if θ = (θ1, . . . ,θp) then we want to compute things like

• the posterior means E[θi|x] and variances Var(θi|x)

• the marginal posterior densities f (θi|x)

• posterior probabilities, such as P(θ1 > θ2|x)

These are all integration problems.

For a few limited likelihood/prior combinations we can compute these inte-
grals analytically.

For most reasonable likelihood/prior combinations analytic computation is
impossible.
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Numerical Integration

For p = 1

• we can plot the posterior density

• we can compute means and probabilities by numerical integration

General one dimensional numerical integration methods like

• the trapezoidal rule

• Simpson’s rule

• adaptive methods (as in integrate in R)

often use N ≈ 100 function evaluations.

If p = 2 we can

• plot the joint posterior density

• compute marginal posterior densities by one dimensional numerical in-
tegrations and plot them

• compute means and probabilities by iterated one dimensional numerical
integration

In general, iterated numerical integration requires N p function evaluations.

If a one dimensional f looks like

f (x)≈ ( low degree polynomial)× (normal density)

then Gaussian quadrature (Monahan, p. 268–271; Givens and Hoeting, Sec-
tion 5.3) may work with N = 3 or N = 4.

• This approach is used in Naylor and Smith (1984).

• Getting the location and scale of the Gaussian right is critical.

• Even 3p gets very large very fast.
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Large Sample Approximations

If the sample size n is large,

θ̂ = mode of joint posterior density f (θ |x)
H =−∇

2
θ log f (θ̂ |x)

= Hessian (matrix of second partial derivatives) of − log f at θ̂

then under often reasonable conditions

f (θ |x)≈MVNp(θ̂ ,H−1)

The relative error in the density approximation is generally of order O(n−1/2)
near the mode.

More accurate second order approximations based on Laplace’s method are
also sometimes available.

To approximate the marginal posterior density of θ1, compute

θ̂2(θ1) = argmaxθ2
f (θ1,θ2|x)

H(θ1) =−∇
2
θ2

log f (θ1, θ̂2(θ1)|x)

Then

f̂ (θ1|x) ∝
√

detH(θ1) f (θ1, θ̂2(θ1)|x)

approximates f (θ1|x) with a relative error near the mode of order O(n−3/2).

The component f (θ1, θ̂2(θ1)|x) is analogous to the profile likelihood.

The term
√

detH(θ1) adjusts for differences in spread in the parameter being
maximized out.
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Monte Carlo Methods

Early Monte Carlo approaches used importance sampling.

• Usually some form of multivariate t is used to get heavy tails and bounded
weights.

• Guaranteeing bounded weights in high dimensions is very hard.

• Even bounded weights may have too much variation to behave well.

Gelfand and Smith (1989) showed that many joint posterior distributions have
simple full conditional distributions

f (θi|x,θ1, . . . ,θi−1,θi+1, . . . ,θp)

These can be sampled using a Markov chain, called a Gibbs sampler.
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The systematic scan Gibbs sampler starts with some initial values θ
(0)
1 , . . . ,θ

(0)
p

and then for each k generates

θ
(k+1)
1 ∼ f (θ1|x,θ2 = θ

(k)
2 , . . . ,θp = θ

(k)
p )

...

θ
(k+1)
i ∼ f (θi|x,θ1 = θ

(k+1)
1 , . . . ,θi−1 = θ

(k+1)
i−1 ,θi+1 = θ

(k)
i+1, . . . ,θp = θ

(k)
p )

...

θ
(k+1)
p ∼ f (θp|x,θ1 = θ

(k+1)
1 , . . . ,θp−1 = θ

(k+1)
p−1 )

The random scan Gibbs sampler picks an index i = 1, . . . , p at random and
updates that component from its full conditional distribution.

Many other variations are possible.

All generate a Markov chain θ (0),θ (1),θ (2), . . . , with invariant distribution
f (θ |x).
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Example: Pump Failure Data

Numbers of failures and times of observation for 10 pumps in a nuclear power
plant:

Pump 1 2 3 4 5 6 7 8 9 10
Failures 5 1 5 14 3 19 1 1 4 22

Time 94.32 15.72 62.88 125.76 5.24 31.44 1.05 1.05 2.10 10.48
Times are in 1000’s of hours.

Suppose the failures follow Poisson processes with rates λi for pump i; so the
number of failures on pump i is Xi ∼ Poisson(λiti).

The rates λi are drawn from a Gamma(α,1/β ) distribution.

Assume α = 1.8

Assume β ∼ Gamma(γ,1/δ ) with γ = 0.01 and δ = 1.

The joint posterior distribution of λ1, . . . ,λ10,β is

f (λ1, . . . ,λ10,β |t1, . . . , t10,x1, . . . ,x10) ∝

(
10

∏
i=1

(λiti)xie−λitiλ α−1
i β

αe−βλi

)
β

γ−1e−δβ

∝

(
10

∏
i=1

λ
xi+α−1
i e−λi(ti+β )

)
β

10α+γ−1e−δβ

∝

(
10

∏
i=1

λ
xi+α−1
i e−λiti

)
β

10α+γ−1e−(δ+∑
10
i=1 λi)β

Full conditionals:

λi|β , ti,xi ∼ Gamma(xi +α,(ti +β )−1)

β |λi, ti,xi ∼ Gamma(10α + γ,(δ +∑λi)
−1)
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It is also possible to integrate out the λi analytically to get

f (β |ti,xi) ∝

(
10

∏
i=1

(ti +β )xi+α

)−1

β
10α+γ−1e−δβ

This can be simulated by rejection or RU sampling; the λi can then be sampled
conditionally given β .

Suppose α is also unknown and given an exponential prior distribution with
mean one.

The joint posterior distribution is then

f (λ1, . . . ,λ10,β ,α|ti,xi) ∝

(
10

∏
i=1

λ
xi+α−1
i e−λi(ti+β )

)
β

10α+γ−1e−δβ e−α

Γ(α)10

The full conditional density for α is

f (α|β ,λi, ti,xi) ∝

(
β 10e−1

∏
10
i=1 λi

)α

Γ(α)10

This is not a standard density

This density is log-concave and can be sampled by adaptive rejection sam-
pling.

Another option is to use the Metropolis-Hastings algorithm.
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Metropolis-Hasting Algorithm

Introduced in N, Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller (1953), “Equations for state space calculations by fast
computing machines,” Journal of Chemical Physics.

Extended in Hastings (1970), “Monte Carlo sampling methods using Markov
chains and their applications,” Biometrika.

Suppose we want to sample from a density f .

We need a family of proposal distributions Q(x,dy) with densities q(x,y).

Suppose a Markov chain with stationary distribution f is currently at X (i) = x.
Then

• Generate a proposal Y for the new location by drawing from the density
q(x,y).

• Accept the proposal with probability

α(x,y) = min
{

f (y)q(y,x)
f (x)q(x,y)

,1
}

and set X (i+1) = Y .

• Otherwise, reject the proposal and remain at x, i.e. set X (i+1) = x.

The resulting transition densities satisfy the detailed balance equations for
x 6= y and initial distribution f :

f (x)q(x,y)α(x,y) = f (y)q(y,x)α(y,x)

The chain is therefore reversible and has invariant distribution f .
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Symmetric Proposals

Suppose q(x,y) = q(y,x). Then

α(x,y) = min
{

f (y)
f (x)

,1
}

So:

• If f (y)≥ f (x) then the proposal is accepted.

• If f (y)< f (x) then the proposal is accepted with probability

α(x,y) =
f (y)
f (x)

< 1

Symmetric proposals are often used in the simulated annealing optimization
method.

Symmetric random walk proposals with q(x,y) = g(y− x) where g is a sym-
metric density are often used.

Metropolis et al. (1953) considered only the symmetric proposal case.

Hastings (1970) introduced the more general approach allowing for non-symmetric
proposals.
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Independence Proposals

Suppose q(x,y) = g(y), independent of x. Then

α(x,y) = min
{

f (y)g(x)
f (x)g(y)

,1
}
= min

{
w(y)
w(x)

,1
}

with w(x) = f (x)/g(x).

This is related to importance sampling:

• If a proposal y satisfies w(y)≥ w(x) then the proposal is accepted.

• If w(y)< w(x) then the proposal may be rejected.

• If the weight w(x) at the current location is very large, meaning g(x) is
very small compared to f (x), then the chain will remain at x for many
steps to compensate.
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Metropolized Rejection Sampling

Suppose h(x) is a possible envelope for f with
∫

h(x)dx < ∞.

Suppose we sample

• Y from h

• U uniformly on [0,h(Y )]

until U < f (Y ).

Then the resulting Y has density

g(y) ∝ min(h(x), f (x))

Using g as a proposal distribution, the Metropolis acceptance probability is

α(x,y) = min
{

f (y)min(h(x), f (x))
f (x)min(h(y), f (y))

,1
}

= min
{

min(h(x)/ f (x),1)
min(h(y)/ f (y),1)

,1
}

=


1 if f (x)≤ h(x)
h(x)/ f (x) if f (x)> h(x) and f (y)≤ h(y)

min
{

f (y)h(x)
f (x)h(y) ,1

}
otherwise

= min
{

h(x)
f (x)

,1
}

min
{

max
{

f (y)
h(y)

,1
}
,max

{
f (x)
h(x)

,1
}}

≥min
{

h(x)
f (x)

,1
}

If h is in fact an envelope for f , then α(x,y) ≡ 1 and the algorithm produces
independent draws from f .

If h is not an envelope, then the algorithm occasionally rejects proposals when
the chain is at points x where the envelope fails to hold.
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The dependence can be very mild if the failure is mild; it can be very strong if
the failure is significant.
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Metropolis-Within-Gibbs

Suppose f (x) = f (x1, . . . ,xp)

The Metropolis-Hastings algorithm can be used on the entire vector x.

The Metropolis-Hastings algorithm can also be applied to one component of
a vector using the full conditional density

f (xi|x1, . . . ,xi−1,xi+1, . . . ,xp)

as the target density.

This approach is sometimes called Metropolis-within-Gibbs.

This is a misnomer: this is what Metropolis et al. (1953) did to sample from
the equilibrium distribution of n gas molecules.
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Example: Pump Failure Data

Suppose α has an exponential prior distribution with mean 1.

The full conditional density for α is

f (α|β ,λi, ti,xi) ∝

(
β 10e−1

∏
10
i=1 λi

)α

Γ(α)10

To use a random walk proposal it is useful to make the support of the distribu-
tion be the whole real line.

The full conditional density of logα is

f (logα|β ,λi, ti,xi) ∝

(
β 10e−1

∏
10
i=1 λi

)α
α

Γ(α)10

Using a normal random walk proposal requires choosing a standard deviation;
0.7 seems to work reasonably well.

We can use a single Metropolis step or several.
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Gibbs Sampler in R for Pump Data

The data:

fail <- c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22)
time <- c(94.32, 15.72, 62.88, 125.76, 5.24,

31.44, 1.05, 1.05, 2.10, 10.48)

Hyper-parameters for the prior distribution:

alpha <- 1.8
gamma <- 0.01
delta <- 1

Generator for the full conditional for λi, i = 1, . . . ,10:

genLambda <- function(alpha, beta)
rgamma(10, fail + alpha, rate = time + beta)

Generator for the full conditional for β :

genBeta <- function(alpha, lambda)
rgamma(1, 10 * alpha + gamma, rate = delta + sum(lambda))

Metropolis-Hastings sampler for the full conditional for α (for K = 0 the value
of α is unchanged):

genAlpha <- function(alpha, beta, lambda, K, d) {
b <- (10 * log(beta) + sum(log(lambda)) - 1)
for (j in seq_len(K)) {

newAlpha <- exp(rnorm(1, log(alpha), d))
logDensRatio <-

((newAlpha - alpha) * b +
log(newAlpha) - log(alpha) +
10 * (lgamma(alpha) - lgamma(newAlpha)))

if (is.finite(logDensRatio) &&
log(runif(1)) < logDensRatio)
alpha <- newAlpha

}
alpha

}
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Driver for running the sampler:

pump <- function(alpha, beta, N, d = 1, K = 1) {
v <- matrix(0, ncol=12, nrow=N)
for (i in 1:N) {

lambda <- genLambda(alpha, beta)
beta <- genBeta(alpha, lambda)
alpha <- genAlpha(alpha, beta, lambda, K, d)
v[i,1:10] <- lambda
v[i,11] <- beta
v[i,12] <- alpha

}
v

}

Run the sampler:

v0 <- pump(alpha, beta = 1, 10000, K = 0)
v1 <- pump(alpha, beta = 1, 10000, K = 1)
v10 <- pump(alpha, beta = 1, 10000, K = 10)

Marginal densities for β and joint marginal densities for α and β :

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

β

de
ns

ity

α = 1.8
α unknown

●● ●● ●●●

●

●● ●●● ●●●●

●●
●●●●

●

●●● ●
●● ●●● ●

●●

●

●●

●
●●●

●

●●● ●●● ●● ●●

●● ●●●●● ● ●●●●●
● ●

●

●●●

●●● ●●● ●● ●●●

●●●●●● ●

●●●
●●●●●●●● ●●

● ●●●●● ●

●

●●●●
●● ●●● ●

●●

● ●●●●●

●
●●

●●●●●● ●●● ●

●● ●

● ●●●

● ●●●●

●●●
●

●●● ●●●● ●●● ● ●

●● ●● ●●●● ●●●●●●●●● ● ●●●●●●

● ●●
● ●

●●●

●

●● ●●
●

●●●●●●●●
●●●● ●●

●●●●● ●

● ●●

● ●

●●●●● ●●●
● ●

●●

● ●

●● ●●

●

●●●
● ●● ●●

●

●●
●● ●●●● ●●
●

●●●● ●●

● ●●●●

●● ●

● ●●

●
●● ●●● ● ●●

●●●●●●●●●
●●

●●
●

●
●●

●●● ● ●

● ●●●●● ●

●

●●●

●

● ● ●●●●●●●●

●●●
●●●● ●

●●

●● ●
● ●

● ●

●●●●●●●
●● ●

●

●●● ●●● ●

●●●●●●
●
●●
●●
●
●●●

●●●●●●●● ●

●●●●

● ●● ●●

●●

● ●

● ●
●● ●●

●● ● ●●●● ●

●●●●●● ●● ●●●

● ●●
●●

●
●●●● ●● ●●●●

●●
●●●●●● ●

●

● ●

● ●●●

●●●●●

● ●●●●● ● ●●●

●

●●●●
●● ●
●●●

●●● ●● ●●●●
● ●

●● ●●● ●●●●●

●● ●●
●●●

●●● ●

●●●●● ●●●

● ●●●● ● ●●●●● ●

●

●●●
●

●●● ●

●●●

●● ●● ●●● ●●●●● ●
●● ●●

●●● ●●●●●● ●● ●● ●●●● ●● ●● ●
●●

●
● ●

● ●●●●●● ●●●●
● ●●●

●

●●

●● ●
●

●● ●●●

● ●●●● ●
● ●

●●

●●●●

● ●●

●●● ●●● ●● ●●●●
●●

●

●●●●●●
●●

●

●●●●●
●● ●● ●● ●●●●●

●●●● ●● ●●

● ●

●●●●

●

●

●●●

●
●●●

● ●

●● ● ●

●●●●
●●● ●●

●
●● ●● ●●

● ●

●
●

● ●●● ●●
●●● ● ●●●●

●●

●●

●●

●● ●

●●●
●

●

●●●●●● ●●●●●● ● ●●●

● ●●● ●

●●● ●●

●●●●●●

●●

● ●

●●●
●●●●●●●● ● ●●● ●●●●●●●●●● ●●●● ●● ●●● ●●

●

● ●●
●●

●

●

●● ●●● ●●●● ●●●●●●●● ●●●●●

●

●● ●●●

●●●● ●

●

●● ●●

●●●

●

●●●● ●●●
●

●●●●●●●●
●●

● ●●●●● ●●●

● ●● ●

●●

●

●●●● ●
●● ●●

● ● ● ●●

●●
●●

●●● ●● ●●●●
● ●●

● ●
●●●●●

●●●

●●

● ● ●●●●

●●
●●●

●●

● ●● ●●●

●

●●●● ●

● ●

●●●

●●● ●●
●

●

●

●● ●●

●

●●●
●●●●●●●●

●

●●
●●

●●●
●

●

●

● ●●● ●

● ●

● ●●●●

●●●●●●●
●

●●●

●● ●●●●

●●●● ●

●

● ●●●●

●

●●●●● ●● ●

●●●

● ●

●●●

●●● ●●● ●●●●

●

●
●●

● ●
●●

●● ●●

●●

●●●●
●● ●

●●● ●

●
● ● ●● ●●

●

●
●

●●

●●●
●●●

● ●●

●● ● ●
●● ●●

●●
●●●●●

●

●●
●●● ●●● ●●●●● ●● ●

●
● ●●●●● ●●

● ●

●●
●●●●●

●● ●●●●
● ●●

●●

● ●●

●● ●●

● ● ●●●
●●

●

●

● ●

●●●●●●● ●●●●●●●●

●● ●●● ●

●●●

●● ●

●●● ●● ●
●●●

●●

●●●●●●●●

●

●●●●●●●●●
●●●●

● ●●● ● ●● ●

●●●● ●● ●●
●●●

● ●●

●●●● ●●●●

● ●●●

● ●●

● ●
●● ● ●●●●●● ● ●●● ●●●● ●

●

●●●● ● ●
●●

●●●

●
● ●●● ●●● ●●●

●●●●●●●

●
●

●●●●●

●
●

●●●●● ●

●
●●● ●●●

●● ●

● ●●●

● ●
●

●●●

●●●
●●●

● ●●●●● ●●

●

●

● ●●

●
● ●

●●●

●● ●● ●●●●
●

●●●● ●●

●●
● ●●●●●●●●● ●

●
●

●
●● ●

●● ● ●●● ●

●●●●●●

●

●●

●

●

●

●
● ●●●● ●● ●●

●●●●●

●●

●

● ●●●

●

●● ●● ●●●●

● ●

●

●

● ●

●● ●●●●

● ●●●

●●●●●● ●
●

●● ●●●●●● ●

●●● ● ● ●●

●●●

●●●●●●
●

●●● ●● ●●● ●●●●

●● ●●
●●

●

●●●● ●●●●● ● ●●●
●● ●●●

●●●●

● ●● ●●●●

●

●● ●
●●

●●●●●● ●

● ●●

●●

● ●●●● ●

●●● ● ●●
●

●●●● ●●

●●●

●● ●●●

● ●●● ●●●●● ●●● ●● ●

●●●● ●●●●
●●●●● ●●

●●●
●●● ●

●
●● ●●

●

● ●●●●●●●●●

●●● ●
●●

●●● ●●●●

●

●● ● ●

● ●●●●
●●

●● ●● ●

●●

●●

●●

● ●● ● ●●●●

●●●● ●●
●● ●● ●●●

● ●
● ●

●● ●
●

●●
●

●

●●

●● ●● ●●●

●

●●
●●●●●

●

●●● ●●●●

● ●
●●

● ●●● ●

● ●●

● ●● ●●●

●●●●

●
●

● ●●● ●

●●●
●●●

●●● ●●●●

● ●●

●●

● ●●

●
●

● ●●●●●● ●● ●●
●●

●● ●
●

●●● ● ●●

●● ●●

●
●

●●●● ●●●

● ●●●●●● ●
●● ●● ●● ●

● ●

●●● ● ●

●●● ●● ●●

●
● ●

●●●

● ●●●

●

●● ●
●●
● ●

●●

●●●
●

●

●●●●
● ●●

●● ●●●● ●

● ●

● ●●● ●●●●●●

●

●●● ●● ●●●● ●●●●● ●●

●●●

●
●●

● ● ●●●●

● ●

●
●●● ●● ●●●●●

● ●● ●●

●●●

●● ●●●●●

●●● ●● ●●●●
●

●● ●●●

●●
●● ●

●

●● ●●● ●● ●

●●●

●●●● ●●● ●

● ●●

●● ●
●

● ●●●●
●●●

● ●●●●●●● ● ●

● ●●
● ●●● ●

●● ●● ●●●● ● ●●

●● ●●
●●

● ●●●

●●● ●●

●

● ● ●●●

●●
●●●●● ●●

●●●

●●

●

●●
● ●●●●●

●●●●● ●●●●

●

●● ●

●
●

●● ●●

●
●
●

●●

●●● ●●●

●

●●●

●●●● ●● ●●

●●
●
●●●●

●●●●
●●●

●

●

●

●●●●●●●●
● ●●
●●●
●●●●●●

●●●●

●

●●●●●

●● ●
●●●

● ●

●
●● ●●

●● ●● ●●● ●

●● ●
● ●●●● ●

●
●

●

●

●●●

●●
●●●● ●

● ●

●

● ●

● ●●● ●●●
●●●

●● ●●●● ●●

●
●

●●● ●

●●

●●
●●● ●

●

●●● ● ●●●

● ●●

● ●●●
●●

●● ●● ●●

●●
●● ●

●●

●

● ●

●●●● ●● ●●● ●●●

● ● ●●
●● ●●●

●●●

● ●●

●
●

●●●

●

●● ●●●●
●
●

●●●●●●● ●●●●●● ●

● ●●

●

●●●● ●

●●●● ●

●● ● ●●

●●

●● ●●

●●

●

●

●●●●

●●

● ●

● ● ●●●●

●

●
●

● ●

●●●●● ●●●●●

●●

● ●●
●●

● ●●●●

●●●● ● ●●

●●●●● ●● ●

●●●
●●● ●●

●●● ●●●
●

●

●●● ●●●● ●●●●●●●●

● ●●●●●●●

●●● ●●

●●● ●●

●●

●●●●●● ●●●●●●

● ●●●●● ●●

●● ●●●

●●●

●●
●●●●

●

● ●
● ●●

●●

● ●●● ●● ● ●●

●

●●
● ●●

● ●●

●

●

●● ●●●●

●●

●● ●

●●

● ●●●●

●●● ●●●●● ●●●●

●
●●●●

●● ●● ●

● ●●

●

●●

●●●●●
●●●●

● ●●● ●●●● ●●

●

●●●●●● ●●●●●●●●●●

●●●●

● ●●●●●●●
●● ●●

● ●●

● ●●

●●●●●
●●●● ●●

●

●

●● ●

● ●●●● ●●● ●●●

●
●●

● ●●●

●
● ●●

●

●●●

●● ●●
●

●

● ● ●●●
●●

●● ●●●
●●●●●

●● ●●●

●
●●●●

●

●

●●●● ●●●●

●●
●●●●●●●

●●●● ●●●●

●●
● ●●●●●● ●●

●●●
●●●●

●●●●●● ●
●

●
●●● ● ●

●●

●

● ● ●● ●●●●
●●● ●

● ●● ●●

● ●●
●●●

●

●●●● ● ●●●●●●
●

● ●●●●●●●●

●

●

● ●
●

●●

●●

●●● ● ●●●●

● ●
● ●

● ●●●●●
●●● ●● ●●

● ● ●●●

●●
●● ●● ●●● ●

●

●● ● ●●

● ●●●●●● ● ●●
●

●●

●●●●●●●●●● ●● ●
●

●

●

●● ●●●

● ●● ●

●● ●●●●●

●

●●●●● ●
●●●● ●●●● ●●●●● ●

● ● ●

● ● ●● ●●

●

●● ●●●●●

● ●●
● ● ●● ●

●

●●

●●●
●●●● ● ●●●●●

●

●

●
● ●●

● ●● ●●

●
● ●●●●
●●●● ● ●●●

●
●
●● ●●

●●
●

● ●●

●

●●●●●●●

●●

●●

●

●● ● ●●● ●

●●
●●● ●●●●●●●

●●●

●● ●●● ●●
●

●
●●●

● ●●●● ●● ●

●●

● ● ●●●●●

●

●

●

●●●●●● ●

●

● ● ●●●●

● ●

●●●● ●●●●

●●●●

●
●● ●●●

●

●

●●● ● ●●
●●● ●●● ●●●

●●●●

●●●● ●● ●●
●●●● ●●●●●●●

●●

● ●●
●●●● ● ●
●●

● ●●● ●●● ●●● ●● ●●●●● ●●
●●●● ●

●●
●●● ●●● ●

●●

●●●

● ●● ●●

● ●●●

● ● ●●

●
● ●●

●● ●
● ●●

●
●●●●●

●●

●

●●
● ●●

● ● ●●

●

●● ●

●●

●● ●●

● ●● ●

●● ●●
●●

●●
●●● ●●●●●●● ●●●

●●

●● ●
● ●● ●

● ●● ●●

●●
●

●●●● ●

●●● ●●

●
●●●

●●● ●●●

●●●● ● ●●
●●

●●● ●
● ●●●

●
●

● ●●●

●●● ● ●●●

●●

●●

●●●●●● ● ●●

●● ●●● ●● ●●●
●

● ●● ●●●●●●

●● ●●

●

●●● ●● ●●
●

●

● ●●●●●●
●●●●●● ●
● ●

●● ●
● ●●●●

● ● ●●●● ●

●●●●

●

● ●

●●●● ●●●●●●● ●●● ●● ●● ●

●●

●● ●● ●●●● ●●
●● ●●

● ● ●

●

●●● ●

●●● ● ●●●

●

●

●
●●●●

●●

●

● ● ●

●

● ●●● ●●●●

●●●● ●
●●●●●●●●●●●●

●●

●● ●●●● ●

●

●
●●

●●●
●● ●●●●

● ●● ●

●●●
●●
● ●●

●

●

● ●●●●●

●● ●●

●
● ●●● ●
●●● ● ●●●● ●●

●● ●● ●●

● ●● ●●
●●● ●

●●●●●

●● ●●●
●●

●
●

●● ●● ●

●●●● ●● ●●●●
●●●●●

●● ●●
●●●●●●●● ● ●

●● ●●

●● ●

●

●●●● ●●● ●●●●●
●

●●●

● ●
●●

●

●●

●●

●●●●●

● ● ●

●●● ●●●

●

●●

●

● ●● ●●

● ●

●

●●
●●●●● ●●● ●●●●●

●● ●● ●●● ●● ●●● ●●●●●●●

●●● ● ●●●

●● ●● ● ●●

●

●● ● ● ●

●●●

●
●● ●●

●●
●●●

●●●●● ● ●●●●●●● ● ●●●

●● ●●●
● ●●●

●●

●●● ●●●●

●
●●● ●●

● ●

● ● ●

●● ●●

● ● ● ●● ●●●

●● ●

●
●

●

●●

●

●

● ● ●

●
●

● ● ●●

●

● ●

●● ●
●●●

● ●●●● ●●●

●

●●●

●●●●●● ●●●

● ●● ●

●●●
●

●●●●●

●●● ●

●●

●● ●●● ●●

●
●● ●

●●●
●●●

● ●●

●● ●● ●●●●

●●●●●● ●●
●●●●●●●

●

●
● ●●●●

●

● ●●●
●

●
●● ●●

● ●● ●●

●●●

●●● ●●● ●●
●

●
●

● ●●

●● ●● ●

●● ● ●

●●●●

●
●

●●●●●●

● ●●

●●●●

●● ●

●●

●● ●●

●●● ●●●●
●

●●●●
●

●● ●
●●●●● ●●● ●●●

●●

●●●● ●

●●●● ●●● ●● ●● ●● ●

●●● ● ●
●● ●●

●
●●

●●

● ●

●
●● ●● ●●●●●●

●● ●●● ●●●●●

● ●●

●

●●●●● ●

●●●

● ●●●●● ●●●●●● ●●●●

● ●

●

● ●●● ●●●● ● ● ●●

● ●
●●●● ●

● ●
●●

●●

● ●●

●

●●

●● ●●

●●●
●● ●●●●

●●●●●● ●

●●
●●

● ●●
●● ●●

●●●●●● ●●●●

● ●● ●●●
● ●

●●●
●

● ●●●● ●

● ●●● ●●●
●●●●●

● ● ●●●
●●●●

● ●●●

●

● ●●

●●●●● ●●● ●●● ●●●
● ●●

● ●

● ●

●●●● ●●● ●●●●● ●● ●●●●
● ●●● ●● ●● ●●●● ●● ●●● ● ●●●

● ● ●● ● ●● ●

●●

●●● ●●● ●●

● ●

●●●●●● ● ●●●

●● ●●●● ●● ●●● ●● ●● ●●● ●●●●●● ● ●● ●●
● ●● ●●● ● ●●●●●
● ●● ●● ●● ●●

●●

●
● ●●● ●● ● ●

●● ●●

●●●
●● ●●●● ●●● ● ●●

● ●● ●●●●

●
●●● ●●●●●

●●
●●

● ●●●
●● ●●● ●●●

●●●

●● ●

●●● ●●

● ●●

●
●●

● ● ● ●

●

●●

● ●●●● ●●●● ●● ● ●

●

●●●

●● ●●●
●

● ●●●

●

● ●

●●●●●● ●

●

●
●

●●●
● ●●● ●

●
●●
● ●● ●● ●●●● ●●

●
● ●● ●●● ●● ●

●● ● ●●●

●● ●

●●●● ●●

●●●●● ●

●●●●

●

●●●

●●● ●●
●●●●●● ●●

●
● ●●

●

●● ●●● ●

●●

●●

● ●●

●●

●●
●●

● ●●● ●●
●

●●●●●●

●
● ●

●●● ●●●●● ●

●

● ●

● ●●
●●●

● ●

●●●● ●●●●●●● ●●
●

●●●● ●●●

●

●

●● ●●●●●

● ●

●●●● ●●●●
●● ●

●●● ● ●●●●

● ●● ●●●●●● ●●●● ●●

●●

●●●●● ●●● ●

● ●

●●●●● ●●

●●

● ●

●● ●●

●●

●●●
●

●

●●
●

● ●●● ●●● ●●●●

●

●● ●●● ●● ●●●●

● ●●

●

● ●●●●

●

● ●

● ●●●
●

●● ●●●●

● ●

● ●● ●

●●●

●

●

●●●

●●●●● ●● ● ●
●●●

●

●● ●
●●●●●

● ●●● ● ●●●●●

●●●

● ● ●

●
●● ●●●● ●●●●● ●●

● ● ●● ●●● ●●● ● ● ●●● ● ●●●

●
●●● ●

●●

●● ●●

●●●● ●● ●●

● ●●●● ●● ●●●

●

●●

●

●●● ●

●●●
●●●● ●●●● ●

● ●

● ●

● ●

●●●●●

●●

●●● ●● ●●
● ●● ●●● ●●

●

●

●

●● ●● ● ●●
●

●

● ●
●●

● ●

●

● ● ●●● ●●

●● ●

●

● ●

●●●

●
●●●

●

●
●●●● ●●

●●

● ●
● ●●●● ●●●

●

●●●● ●● ●●●
●●

● ●

●

●

● ●●●●
●●

●● ●●●●● ●
●●●● ●●●

●●

●●●●●

●●● ●●

● ●●●●●● ●
●●● ●●
●

●● ●●●●●●● ●●●●● ●●

●

● ●●
●●●● ●●● ●● ● ●●

●●●●

● ●●

●●●●●●●●●●●

●●●● ● ●●

●●●

● ●

●● ●●

●●
●●●

●

● ● ●●●●●

●

● ●●● ● ●

●● ●
●

●● ●

● ●●●●●●●● ●● ●●●● ●

●● ●● ●●

●●● ●●●

●

●

●

●●●● ●●

●● ●● ●● ●● ●●

● ●●● ●

●

●●●

●● ●●●● ●

● ●● ●●● ●●

●●●

●

● ● ●
●● ●

●●● ●●● ●●

●

● ●

● ●●

●
●●

● ●●● ●●●

●● ●●●●●
●

●●●●●
●●

●●●● ●
●●● ●●

● ● ●●●
● ●● ●● ●●●

●●●

●●●●●●●

●●● ●

●●●

●●● ●●● ●●●

● ●
● ●

● ●
●●● ●●

●●●●●●●
●

●● ●

●●●●●●

●●●● ●●●

●●

● ●

●

●●●

● ● ●● ●
●

●● ●●● ●●●●
●

●●●●●● ●
● ●●

●● ●●● ●
●

●●●●●●●●● ●●●

●●● ● ●●●●●●●● ●●●●

● ●●

●●●
●● ●

●●●●●●●●●

● ●●●● ●●●●●● ●●
●●●● ●●●●●●●● ●●●●

●● ●●●●
●●●

● ●●●●●
●●●

●●●●● ●
●● ●● ●

●●●

●●●

● ●●

●
●

●●● ●●
● ● ●●

●● ●●●●●●●
●●●●

●●

●
●● ● ●

●●

● ●●● ● ●

●
●●

● ●●●●●● ●●● ●●
●●●●●

●

●
● ●●
●● ●●● ●●● ●● ●●● ●

●● ●● ●●

●

●
● ●

●●

●●

●●●● ●●●
●

●

●●●
●● ●● ●●●●●● ●●

●●

●
●●

●●● ●● ●● ● ●● ●●
●●

●

●
● ●●●

● ●●● ●●●● ●● ●●
●

●●

●●

●● ●

●
●● ● ●●

●

●●●●

●●●●●● ●

●●
●●

●●

● ●● ●●

●●●●

●●●

● ●

● ●

●

●●

●●

●●●●

●

●● ●●

●●●● ●
●●●●●●

●●●

●●●●● ●●

●● ●●●

●● ●●● ●
●● ●

● ● ●●
●●● ●●● ●

●●● ●●

●●● ●●●
●●●●

●●●●●

● ●

●
●

●●●●

●●
●

●
●

●●●●●● ●

● ●
●●

●●● ●

●●●●

●●●●

●●●●●●●●●●

● ●● ●

● ●●
● ●●●●●●

●●●● ●●
● ●●●●●● ●● ●●●● ●●
●●●●● ●●●

●● ●●●●

●

●●

●●● ●

●● ●●● ●●

●●

● ●●● ●●
●● ●
●●●

●●

●●● ●

● ●● ●● ●

●●●
● ●●

● ●● ●●

● ●● ●●●●

●

●●●
●● ●● ●

●●●●●●

●● ●●

●
● ●● ●● ●

●●● ●●

●●
● ●●●● ●●

●●●

●● ●●

●●●●

●●●●●●●● ●● ●●●●

●● ●

●●● ●● ●● ●

● ● ●●● ●
●●● ●●

● ●●●● ●●●

●●

● ●● ●
● ●●●● ●●

●

●

●

●
●●●

●●●●●
●●

●
●● ●● ●●●

●●●●●

● ●●●●
● ●

●●●●●● ●●●
● ●●

●●● ●●●

● ●●

●

● ●

●●

●● ●
●●●

● ●●●

●●●●● ●● ●

●●● ●●●
● ●●●●●● ●●●●● ●
●●

●

●●● ●●●●● ●●

●

●●●

●

●●●●●
●●●●

● ●●● ● ●● ●●

●

● ●●● ●
●●●

●●
●● ● ●●● ●●●●● ●●●

●●● ● ●
●●●

● ●● ●●● ●●
●●● ●●●●● ●●

●

● ●●
●

●● ●

● ●●

●●●●●

●●●●● ● ●●●
● ●●● ● ●● ●●●

●● ●●
●●●●● ●● ●

●
●●●●●●●●●●●

● ●●●●●● ●●●●● ●●

● ● ● ●
●●●●●

●●
●●●

●
●●●●●

●

●
●●●●●
●

●

●

●
●● ●●●●● ●●●●● ●●●● ● ●

●●●●
● ●●●● ●●●●● ●●●●

●
●

●

●●

●
●●●●●●

● ●

●● ●● ●●●●●

● ●● ●●
●

●●●

● ●

●●●●●●●● ●●

●● ●● ●
● ●●

●

●●●● ●● ●

●●●●

●●●●●

● ●●●

● ●

●●● ● ●●● ●●● ●●●● ●

●

●●

●● ● ●

●●

●

● ●

●

●●●●●●●

●●
● ●●

●●

●● ●●● ●● ●● ●●● ●●●

●●●●●●●●● ●●
●

●● ●●●

●

●● ●●●

● ●●

●

●

●●

●●● ●

●●●

●●●● ● ●●● ●

●●●●●

● ●●

●●●●●
●

●● ●● ●
●●●●

● ●●● ●

●●●

●●

●●●●

● ●● ●●●

●●

●● ●●
●●

●●

● ● ●

●● ●●● ● ●

●●

●●●●● ● ●● ●●●●●

● ●●

● ●●●

●●

●●

●●

●
●●● ●●●●●●●● ●●●●●●

● ● ●●● ●●●●

●●●●

●
●●

●●

● ●●●

● ●

●●●●●● ●

●
●●●
●●●

●

●●●
●

●●●

●

●●
● ●

●●
●● ●●●

●

●● ● ●●

●●

●●

● ●
●●●

●● ●

●●●●●●●● ●● ●●●

● ● ●● ●●● ●

●

●●

●●●●

●
● ●● ●

●●
●● ●●●●

●● ●●●●●●

● ●●●●● ● ●
●

●
● ●

●● ●●●
●● ●

●●●
●● ● ●

●●● ●●

●
●● ●

● ●

●

●●●● ●

●●

●●●●●● ●●●
●● ● ●● ●● ●●●

● ●

●
●●●●●●
●●

●
●● ●●●

●●

● ●● ● ●●● ●

●●● ●● ●●

●● ●●
●●

●●● ●

●
●

●

●
●
●

●●●●●
●●● ●

●●● ●●
●●● ●●●● ●●● ● ●●●●●

●●● ●● ●●●

●

●●●● ●●
● ● ● ●●

●●● ●●●●●
●●

●
●

●● ●● ●
●●

● ●
●● ●●● ●●

●● ●
●● ●●

●
●●

● ●●●

●
●●

●●

● ●● ●●

●
●●●

●●●● ●● ●●

●●●●

●

●●
● ● ●●●● ●●●●● ●●

● ●●● ●●●

●●

●● ●●● ● ●●●●●● ●●● ●●●●●●●●● ●●

●

●●

●●

●● ●● ●● ● ●●●●●●●●●

● ●●

● ● ●●●

●● ●●●
●

● ● ●●

●●●
● ●

●
●●● ●● ●●●●●

● ●

●
●

●

● ●●●●● ●●●

●●●

●●●

●● ●●●●
●

●●●● ●●

●

●● ●

● ●

●●●

●● ●

● ●●
●●
●● ●●●

● ●●● ●
●●●● ●●

●●

● ●● ● ● ●●●●
● ● ●●●● ●●

●●

● ●●
●
●

●●● ●●●●● ●
●● ●● ●

●

●

●● ●●● ●
●

●●
●●

●

●
●●● ● ●

● ●● ●

●

● ●●● ●●

●

●●

●●●●● ● ●●●

●●

●●

●
●●

●

●● ●●

●
●●●

●●
●
●●

●● ●
●●

●

●
● ●● ●●

● ●●
●●● ●●●●

●●●

●

●●●● ●
●● ●●●● ●●●●

●●●

●●●● ●

●●

● ●●● ●
●●●●●●● ●
●●

●●

●

●●
●●● ●●●●● ●

● ●

●● ●●
●●●● ●

●●●● ●
● ●

●
●●●●

●

● ●● ●●● ● ●●●●● ●●

● ●●● ●

● ●

●●●● ●●●

●●
●●●●

●● ●●

●●●

●●● ●●●
●●● ●

●●●●

●
●●●●
●

●●●
● ●

●●●● ●●●●

● ●●●
●

●

● ●● ●●●

●● ●● ●●●●●●● ●●●
●●●●●●● ●●●

●●●●● ●●●●

● ●●

●●●●● ●
●●

● ●●

●●●●● ●● ●
●● ●

●●●●● ●

●● ●●

●●●
●●●●● ●

● ●●●●

●● ● ●●●●

●● ● ●

●●●
●●

● ●●●●

● ● ●●●●

●●●●● ●●

●●●●

●

●●●● ●●●

● ●●●
●

●
●● ●● ●●●●

●●● ●●●

●●

●●●●
● ●

●●● ● ●●●●●● ●●●

● ●
● ●● ●● ●

●● ●●●● ●

●
●

●

●● ●●

●

●●●●●● ●● ●
● ●●

●●●●●●●● ●● ●●●

●●

●● ●

●●●●● ●●● ●● ●

●●● ●● ●●

● ●●

●●●●● ●● ●

●

●

●● ●●

●

●●●●

● ●● ●● ●●● ●●
● ●●●●●●●

●
●● ●

●●● ●●●

●●●●●●●●●●●

● ● ●● ●●●

●●●● ●●

●● ●

●●●●

●●

●

●

●●●●● ●● ●● ●

●●●

●●

●●

●●●●

●●●
●

●●●●
●●●●●●

●●●●

●●● ●●●●●●●●●●● ●
●

●
●●

●●●
●●● ●●●

●●●●●● ●
●●● ●●

●●

●● ●●
●●●● ●●● ● ●

● ●●●●●
●

●●

●

●● ●●

●●
●●● ●

●

●

●●● ●●● ●●●● ●● ●●●●

● ●●●

●

●●● ●●●●● ● ●● ●●● ●●

● ●●●

●●● ●●● ●● ●●● ●●

●●●

● ●●●

● ●●●●● ●●●●●●

●●●●● ●●

●●●● ●●

●●●

●●●● ●●
●●● ●●● ●●● ●● ●●

●●

● ●●●●●
●

●●●● ●●

●
●●● ●●● ●●●

●●● ●● ●●●●●

● ●

●

●●●

●●● ●● ●● ●● ●●
●

●● ●●● ●

● ●●

●
●

●● ●●●●
●● ●

●● ●●●

● ●●● ●●●
●● ● ●

●●●

●●● ●● ●●

●●

●●● ●●●●●●●●

●
● ●●● ●

●
●

●

●●●● ●● ●●●●●●
●●

●●●●
●●

●
●●●●●

● ●●● ●●

●
●● ●●●

●●

● ●●●●
●

●
● ●●

● ●●●

● ●

●● ● ●●●●● ●● ●●

●● ●●● ● ●

●●●●●●●●●●● ●●●●●● ●● ●●●●

●●
●

● ●●

●●● ●●●

● ●●●●●

●● ●

●●●

●●
●

●

●

●●●

●●

● ● ●●●●● ● ●●● ●●●

● ●●●●●●● ●●●●●●●●●

●●●● ●●●

●●

●
● ● ● ●●● ● ●● ●●● ● ●●● ● ●●●● ● ●● ● ●●

●●●●

●

●●

●●●●● ●

●

●●

●● ●

●

●

●●●

●●●●

●●

●
●● ● ●●

●●●●● ●●

●
●

●● ●● ●●●
●●●●● ●

●●● ● ●●

●

●●● ●

● ● ● ●● ●●●
●● ●● ●● ● ●●●●●● ●

●●●
● ●●●

●● ●●●●●●

●
●●●●●●
●

● ●●● ● ●●

●

●● ● ●●●

●
●

● ●

●●
●●

●●● ●●● ● ●●●● ●●●
●●

●●

● ● ●●

●●●

●●●
● ●

●● ●●
●

●● ● ●●
●

●

●● ●
●

● ●
● ●●●●●●●● ●●●● ●●● ● ●● ●●
●● ●●●

●

●●●
●●

●

● ●●● ●●●●●●●

●●●● ●● ●

● ●● ●●

●

●
●●●

●● ●●●●● ●●●●● ●●●●●● ●●●●● ●●● ●●● ●
● ●●● ●
●●●

●

●
●●●●●

● ● ●

●●● ●●●

●●●

●
●

●

●● ●

●●●

●● ●●●●●●

●●●● ●● ●●●
●●●

●

●● ●● ●●

●●●

●●●●
●
●●●●

●
● ●

●● ●●●

● ●● ●

●●● ●

● ● ●●●

●

●●●

●●●

●●
●● ● ●●

●

●●

●

● ●

●●●●●● ●● ●● ●●● ●●

● ●●

● ●●●●●●

●● ●●●●

●● ●

● ● ●

●●

●●●●

● ●●
●● ● ●●● ● ●●●● ●●●●● ●●●

● ●●●● ●●●●●

●

●

●
● ●●●

●

●
● ●●● ●● ●

●●

●●
●

● ●
●●

●●● ●●● ●

● ●●● ●●

●● ●●●

●● ●● ●

● ●●●●●●●
●● ●●●●●

● ●

● ●
●● ●●

●●●●●●● ●●●●●●●●

●●●

●

●

●●
●●

●● ●●

●●● ●●●
●●

● ●●●

●●● ●●● ●●

●● ●

●

●●● ●

●●●●●● ●●

●●

●●
●●● ●●● ●●●

●

●

●●

●

●

●●● ● ●

● ●●●

●
● ● ●

●

●●● ●●

● ●●●

● ●●

●●●● ● ●●● ●

●●●
●

●● ●●

●●

●●●
● ●●● ●●● ●●●

●●● ●● ●● ●●

●●
●●●

●●●●●●●

●

●●●
●● ●●●●●●●● ●● ●●

●●●
●●●

● ●●● ●●●●● ●
● ●

●●● ●● ●●●●●● ●●●●

●

●●● ●●●

● ●●

●
●

●● ●●●● ●●●● ●● ●●
●●●

●

●

●● ●●● ●●●● ●● ●●●●●

●

●
●●● ●●

● ●●

●● ●

●

●●

●●

●●●●●●●●●
●●●●●

●●●●●●

●
● ●

●● ●●

● ●●●

●

●●●●●●

●●

● ● ●●●●●
●●●●●● ●●

●● ●●

●●●●● ●● ●●●
● ●●●● ●●

●●

●
●●● ●

●● ● ● ●●●

●●●

● ●

●

● ●●

● ●

●●●
●● ●● ● ●●

●●

●●

●
●

●

●●

●

●●●●● ● ●●●

●

●● ●●●

●
●

●
●

●●●● ●●●

●● ●●● ●● ●●

●
●●●

●
●● ●●

●●●●
●● ●●●

●●
●●●● ●●

●●●●●

●●● ●●
●●

● ●●

● ●●

● ●● ●● ●

●● ●●

●●● ● ●
●●● ●●●●

●●●●●
● ●

●

●●
●● ●

●●

●

●

●●

●● ●●●●●

●●●●●●● ●

● ●●●● ●●●
●

●
●

●

●●● ●●●
●

●

●●●●
●

●● ● ●

●

●● ●
●

●●●
●●●●●●●● ●● ●● ●● ●

●●●●●
●●

●●

●● ●●●● ●●●● ●●●

●

●

●●●

● ●●
●

●●●

● ●●

●●

● ●● ●●●
●

●

●●● ●●

●

●●

●
●●

●

●

●●●●● ●

●● ●● ●
●●

●● ●
●●●

●●

●

●●

● ●
●●●

●●● ●●

●●●

● ●●

●● ●●● ●●

●●●●●●●●●●● ●●●● ●

●
●●●●

●●●

● ●●●●●●● ● ●

●● ●●●

● ●●●

●● ●●

●● ●●

●

●● ●● ●●

●

●
●

●●● ●

●●

●●●●

●●

●
●●●

●

●●●●●● ●
● ●●●

●●●

●
●●●

● ●●●

● ●●

● ●
●●

●●

●● ●
●● ●

●●●● ●●
● ●

●●●●● ●●●●

●●●●●●● ●●●●●●

●●●●●●

●

●● ●●●●●●●● ●

● ●

●●

● ●●
● ● ●●

●●●●●● ●
●●●●
●● ●

● ●
●●●

●●

●●● ●

● ●

●● ●●
● ●

●●
● ●●●●

● ●●● ●● ●●
●● ●

● ●●
●

●●●●●

●●● ●●●
●●●●

●●●●●

●●●●●●

●

●

●●●● ●●●

●
●●●●

●●●

●

●●●● ●●

●●●● ●
●

●●●

●● ●●● ●●● ●●●

0 1 2 3 4 5

0.
5

1.
0

1.
5

2.
0

beta

al
ph

a

 0.2 

 0.4 

 0
.6

 

 0.8 

 1
 

 1
.4

 

Auto-correlation functions for β

46



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

Original sampler with α = 1.8

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

M−H sampler with one M−H step per iteration

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

M−H sampler with 10 M−H steps per iteration

47



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Markov Chain Theory: Discrete State Space

A sequence of random variables X0,X1,X2, . . . with values in a finite or count-
able set E is a Markov chain if for all n

P(Xn+1 = j|Xn = i,Xn−1,Xn−2, . . . ,X0) = P(Xn+1 = j|Xn = i)

i.e. given the present, the future and the past are independent.

A Markov chain is time homogeneous if

P(i, j) = P(Xn+1 = j|Xn = i)

does not depend on n. P(i, j) is the transition matrix of the Markov chain.

A transition matrix satisfies

∑
j∈E

P(i, j) = 1

for all i ∈ E.

The distribution of X0 is called the initial distribution of a Markov chain.
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The n step transition matrix is

Pn(i, j) = P(Xn = j|X0 = i)

The n+m step transition matrix satisfies

Pn+m = PnPm

That is,

Pn+m(i, j) = ∑
k∈E

Pn(i,k)Pm(k, j)

for all i, j ∈ E.

A distribution π is an invariant distribution or a stationary distribution for a
Markov transition matrix P if

π( j) = ∑
i∈E

π(i)P(i, j)

for all i. These equations are sometimes called the flow balance equations
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Reversibility

A transition matrix is reversible with respect to a distribution π if

π(i)P(i, j) = π( j)P( j, i)

for every pair i, j. These equations are called the detailed balance equations.

If P is reversible with respect to π , then π is a stationary distribution for P:

∑
i∈E

π(i)P(i, j) = ∑
i∈E

π( j)P( j, i) = π( j)∑
i∈E

P( j, i) = π( j)

If P is reversible with respect to π and X0 has initial distribution π , then the
vectors

(X0,X1,X2, . . . ,Xn−2,Xn−1,Xn)

and

(Xn,Xn−1,Xn−2, . . . ,X2,X1,X0)

have the same joint distributions.

Reversible transition matrices have many nice properties, including real eigen-
values.
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Convergence

A Markov chain is irreducible if for each pair of states i, j there is an integer
n such that

Pn(i, j)> 0

i.e. if each state can be reached with positive probability from any other state.

The time to reach state i is

τi = min{n≥ 1 : Xn = i}

with τi = ∞ if Xn 6= i for all n.

An irreducible Markov chain falls into one of three categories:

• Transient: P(τi = ∞|X0 = j)> 0 for all i, j ∈ E.

• Null recurrent: P(τi =∞|X0 = j)= 0 and E[τi|X0 = j] =∞ for all i, j∈E.

• Positive recurrent: P(τi = ∞|X0 = j) = 0 and E[τi|X0 = j] < ∞ for all
i, j ∈ E.

If an irreducible Markov chain is transient or null recurrent then it does not
have a proper invariant distribution.

If an irreducible Markov chain is positive recurrent, then

• it has a unique invariant distribution π

• for any i ∈ E
1
n

n

∑
k=1

Pk(i, j)→ π( j)

• if h is a real-valued function on E such that

∑
i∈E
|h(i)|π(i)< ∞
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then almost surely

1
n

n

∑
k=1

h(Xk)→ πh = ∑
i∈E

h(i)π(i)

• if the chain is also aperiodic, then

Pn(i, j) =→ π( j)

for all i, j ∈ E. In this case π is an equilibrium distribution of the chain.
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Different Points of View

In applied probability problems we usually

• verify that a chain is irreducible

• verify that a chain is positive recurrent

• conclude that a unique stationary distribution exists

• compute the unique stationary distribution π

• verify that the chain is aperiodic

• use π to approximate the distribution of Xn

In Markov chain Monte Carlo

• we know by construction that a proper stationary distribution π exists

• we verify that the chain is irreducible

• we conclude that the chain must be positive recurrent (since it cannot
be transient or null recurrent) and therefore π is the unique stationary
distribution

• we approximate expectations under π by sample path averages

• aperiodicity is usually not important
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Markov Chain Theory: General State Spaces

Let E be an arbitrary set and E a countably generated sigma-algebra on E.

A sequence of (E,E )-valued random variables is a time homogeneous Markov
chain with transition kernel P(x,dy) if

P(Xn+1 ∈ A|Xn,Xn−1, . . . ,X0) = P(Xn,A)

for all A ∈ E .

A Markov transition kernel is a function P(·, ·) such that

• P(x, ·) is a probability on (E,E ) for each x ∈ E.

• P(·,A) is a E -measurable function for each A ∈ E .

The n-step transition kernel of a Markov chain is

Pn(x,A) = P(Xn ∈ A|X0 = x)

and satisfies

Pn+m(x,A) =
∫

Pn(x,dy)Pm(y,A)

for all x ∈ E and all A ∈A .

A distribution π is invariant for a Markov transition kernel P if

π(A) =
∫

π(dy)P(y,A)

for all A ∈ E .
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Reversibility

A transition kernel P is reversible with respect to a distribution π if

π(dx)P(x,dy) = π(dy)P(y,dx)

i.e. these two bivariate distributions must be identical.

If P is reversible with respect to π then P is invariant with respect to π:

∫
x∈E

π(dx)P(x,A) =
∫

x∈E

∫
y∈A

π(dx)P(x,dy)

=
∫

x∈E

∫
y∈A

π(dy)P(y,dx)

=
∫

y∈A
π(dy)

∫
x∈E

P(y,dx)

=
∫

y∈A
π(dy)

= π(A)
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Convergence

A Markov chain with transition kernel P is irreducible with respect to a sigma-
finite measure ν if for every x ∈ E and every A ∈ E with ν(A)> 0 there exists
an integer n such that Pn(x,A)> 0

A Markov chain is irreducible if it is irreducible with respect to ν for some
sigma-finite ν .

The standard definition of irreducibility for discrete state spaces corresponds
to irreducibility with respect to counting measure for general state spaces.

An irreducible Markov chain is either transient, null recurrent, or positive re-
current.

An irreducible Markov chain is positive recurrent if and only if it has a proper
stationary distribution π .

Essentially all Markov chains used in MCMC that are recurrent are also Harris
recurrent.

If an irreducible Markov chain is positive recurrent, then

• it has a unique stationary distribution π

• if the chain is Harris recurrent, then

sup
A∈E

∣∣∣∣∣1n n

∑
k=1

Pk(x,A)−π(A)

∣∣∣∣∣→ 0

for all x

• if the chain is Harris recurrent, h is real-valued, E -measurable, and π|h|=∫
|h(x)|π(dx)< ∞, then for any initial distribution

1
n

n

∑
k=1

h(Xk)→ πh =
∫

h(x)π(dx)

• if the chain is Harris recurrent and aperiodic, then

sup
A∈E
|Pn(x,A)−π(A)| → 0

for all x.
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Rates of Convergence

A Markov chain is geometrically ergodic if there exists a nonnegative function
M(x) with πM < ∞ and a constant λ < 1 such that

sup
A∈E
|Pn(x,A)−π(A)| ≤M(x)λ n

for all x ∈ E and all integers n≥ 1.

A Markov chain is uniformly ergodic if there exists a finite constant M and a
constant λ < 1 such that

sup
A∈E
|Pn(x,A)−π(A)| ≤Mλ

n

for all x ∈ E and all integers n≥ 1.

Many MCMC samplers are geometrically ergodic; relatively few are uni-
formly ergodic.

Restricting parameters to a compact set can often make a chain uniformly
ergodic.
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Central Limit Theorems

Suppose
∫

h(x)2π(dx)< ∞ and let

hn =
1
n

n

∑
k=1

h(Xk)

Let

τn = nVarπ(hn)

and let

τ = lim
n→∞

τn = Varπ(h(X0))+2
∞

∑
k=1

Covπ(h(Xk),h(X0))

if the limit exists.

Suppose the Markov chain is uniformly ergodic. Then the limit τ exists, is
finite, and

√
n(h−πh) converges in distribution to a N(0,τ) random variable.

Suppose the Markov chain is Harris recurrent and geometrically ergodic and
that

∫
|h(x)|2+επ(dx) < ∞ for some ε > 0. Then the limit τ exists, is finite,

and
√

n(h−πh) converges in distribution to a N(0,τ) random variable.

If the Markov chain is reversible, Harris recurrent, and geometrically ergodic
then π(h2)< ∞ is sufficient for a CLT.

Suppose the Markov chain is reversible. Then the limit τ exists but may be
infinite. If the limit is finite, then

√
n(h−πh) converges in distribution to a

N(0,τ) random variable.

The asymptotic variance τ can be written as

τ = Varπ(h(X0))

[
1+2

∞

∑
k=1

ρk(h)

]

with
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ρk(h) = Corrπ(h(Xk),h(X0))

To use a central limit theorem we need to

• be confident that it is valid

• be able to estimate τ
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Summary of Markov Chain Theory

Suppose X1,X2, . . . is a Markov chain on a state space E with invariant distri-
bution π and h is a function such that

∫
h(x)2

π(dx)< ∞

• Law of large numbers: If the chain is irreducible, i.e. can get from any
initial point to, or close to, any other point in E, then π is an equilibrium
distribution and

hn =
1
n

n

∑
i=1

h(Xi)→ πh =
∫

h(x)π(dx)

almost surely.

• Central limit theorem: Under reasonable conditions,
√

n(hn−πh) con-
verges in distribution to a N(0,τ) random variable with

τ = Varπ(h(X0))

[
1+2

∞

∑
k=1

ρk(h)

]

with
ρk(h) = Corrπ(h(Xk),h(X0))

and X0 ∼ π .

To use the central limit theorem we need to be able to estimate τ .
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Output Analysis

Simulation output analysis deals mainly with

• estimation using simulation output

• estimating variances of simulation estimators

• assessing convergence, initialization bias, initial transients

based on data produced by simulations

General characteristics of such data:

• Simulation run lengths are often very long.

• There is usually dependence within runs.

• Usually runs settle down to some form of stationarity

Software:

• CODA (Best, Cowles, and Vines)

– Developed for S-PLUS, mainly for BUGS output

– R port by Martyn Plummer; available on our workstations

• BOA (B. Smith)

– Major revision of CODA

– Provides more methods

– Available as an R package from CRAN and on our workstations

– http://www.public-health.uiowa.edu/boa/
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Simulation Estimators

Suppose a simulation produces values X1, . . . ,XN and

XN =
1
N

N

∑
i=1

Xi→ θ

Usually we will estimate θ by X

If the process X1,X2, . . . , is stationary then usually

θ = E[Xi]

Otherwise we usually have

E[XN]→ θ

and often also E[Xi]→ θ .

In some cases we may be able to find a function g such that

1
N

N

∑
i=1

g(Xi)→ θ

Rao-Blackwellization is one approach that may produce such a function g.

Often a Rao-Blackwellized estimator will have reduced variance, but this in
not guaranteed with depended Xi,

For the rest of this discussion, assume that Xi incorporates any such g.
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Variance Estimation

We often have, or hope to have,

XN ∼ AN(θ ,τN/N)

where

τN = NVar(XN) =
1
N

N

∑
i=1

N

∑
j=1

Cov(Xi,X j)

If the process X1, . . . ,XN is stationary, which is usually the case in the limit,
then

σ
2 = Var(Xi)

ρk = Corr(Xi,Xi+k)

do not depend on i. The value ρk is the lag k autocorrelation of X1,X2, . . . .

For a stationary process

τN = σ
2

(
1+2

N−1

∑
k=1

(
1− k

N

)
ρk

)

Typically,

τN → τ = σ
2

(
1+2

∞

∑
k=1

ρk

)
= σ

2
∞

∑
k=−∞

ρk

Several methods are available for estimating τ , including

• modeling the time series and using the estimated autocorrelations

• estimating the spectral density at zero
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• batching

• combinations

• regenerative simulation

• replication
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Time Series Models

We can fit an ARMA(p,q) model of the form

(Xi−θ) =
p

∑
j=1

α j(Xi− j−θ)+
q

∑
j=1

β jεi− j + εi

with the εi independent N(0,σ2
ε ).

Then

τ = σ
2
ε

(
1+∑

q
j=1 β j

)2

(
1−∑

p
j=1 α j

)2

τ can be estimated by plugging in estimates of α j, β j, and σ2
ε .

For the AR(1) model σ2 = σ2
ε /(1−α2

1 ) and ρ1 = α1; so

τ = σ
2
ε

1
(1−α1)2 = σ

2 1−α2
1

(1−α1)2 = σ
2 1+α1

1−α1
= σ

2 1+ρ1

1−ρ1

An estimate is

τ̂ = S2 1+ r1

1− r1

with S2 the sample variance and r1 the lag one sample autocorrelation.
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Spectral Density at the Origin

The autocorrelation function satisfies

σ
2
ρk = 2

∫
π

0
cos(kω) f (ω)dω

where

f (ω) =
σ2

2π

∞

∑
k=−∞

ρk cos(kω)

is the spectral density.

The spectral density is sometimes defined as a function on [0,1/2).

The spectral density at zero is related to τ as

τ = 2π f (0)

Spectral densities are usually estimated by smoothing the periodogram, the
Fourier transform of the sample autocovariance function.

Smoothing flattens peaks, and there is typically a peak at zero.

A number of methods are available for dealing with this.

The CODA function spectrum0 computes τ by some of these methods.

It is usually a good idea to make spectrum0 use batching by specifying a
value for max.length
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Batching and Replication

If we replicate sampler runs independently R times then we have R indepen-
dent sample averages and can use their sample standard deviation in comput-
ing a standard error for the overall average.

Because of concerns about convergence we usually run only relatively few
long chains; this does not provide enough degrees of freedom by itself.

Batching is a form of within chain replication:

• Suppose N = KM and for i = 1, . . . ,K let

XM,i =
1
M

iM

∑
j=(i−1)M+1

Xi

Then XM,1, . . . ,XM,K are means of successive batches of size M.

• The overall mean is the mean of the batch means,

XN =
1
N

N

∑
i=1

Xi =
1
K

K

∑
i=1

XM,i

• If the batches are large enough, then the batch means will be approxi-
mately independent and normal, so t confidence intervals can be used.

An estimate of τ based on assuming independent batch means is

τ̂ =
M

K−1

K

∑
i=1

(XM,i−X)2

An alternative:

• Choose a batch size so that an AR(1) model fits.

• Estimate τ assuming the batch means follow an AR(1) model.

Batching and replication can be combined.
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Effective Sample Size and Sampler Efficiency

If the sequence X1, . . . ,XN were a random sample from a distribution π , then
we would have

Var(XN) =
σ2

N

With dependent sampling the variance is

Var(XN)≈
τ

N
=

σ2

N

∞

∑
k=−∞

ρk

So a sample of size N from a sampler with dependence is equivalent to a
sample of

NE = N
σ2

τ
= N

(
∞

∑
k=−∞

ρk

)−1

independent observations. NE is sometimes called the effective sample size.

By analogy to estimation theory the value

NE

N
=

(
∞

∑
k=−∞

ρk

)−1

is sometimes called the asymptotic relative efficiency, or just the efficiency, of
the sampler.

Thinking about the equivalent number of independent observations is often
useful.

Efficiencies need to be treated with caution: If sampler A is half as efficient
but ten times as fast as sampler B, then sampler A is clearly better.

In the physics literature the quantity
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Tint =
∞

∑
k=−∞

ρk

is called the integrated autocorrelation time.
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Example: Pump Data

Generate a run of 20000 with

v <- pump(1.8,1,20000)
colnames(v) <- c(paste("lambda", 1:10, sep=""), "beta", "alpha")

Using CODA we can get a summary as

library(coda)
summary(mcmc(v), quantiles = NULL)

##
## Iterations = 1:20000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 20000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## lambda1 0.05971 0.02538 0.0001795 0.0001823
## lambda2 0.10077 0.07822 0.0005531 0.0006058
## lambda3 0.08938 0.03757 0.0002657 0.0002657
## lambda4 0.11646 0.03039 0.0002149 0.0002149
## lambda5 0.60154 0.31609 0.0022351 0.0022702
## lambda6 0.60861 0.13779 0.0009743 0.0009743
## lambda7 0.91147 0.74331 0.0052560 0.0054500
## lambda8 0.90891 0.74927 0.0052981 0.0056933
## lambda9 1.59644 0.77116 0.0054530 0.0063207
## lambda10 2.00353 0.42658 0.0030164 0.0031734
## beta 0.89607 0.52893 0.0037401 0.0109978
## alpha 0.68645 0.26838 0.0018977 0.0067516
##
## 2. Quantiles for each variable:
##
## numeric(0)
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The function bmse computes a standard error for the sample path mean using
batching and, optionally, a time series adjustment based on an AR(1) model:

bmse <- function(x, M = 1, ts = FALSE) {
bm <- apply(matrix(x, nrow = M), 2, mean)
se <- sd(bm) / sqrt(length(bm))
if (ts) {

r <- acf(bm, plot = FALSE, lag = 1)$acf[2]
se <- se * sqrt((1 + r) / (1 - r))

}
se

}

Results for β :

bmse(v[, 11])

## [1] 0.003740099

bmse(v[, 11], ts = TRUE)

## [1] 0.00703266

sqrt(spectrum0(v[, 11], max.length = NULL)$spec / nrow(v))

## [1] 0.005868527

sqrt(spectrum0(v[, 11])$spec / nrow(v)) # max.length = 200

## [1] 0.0112803

bmse(v[, 11], M = 100) # 200 batches of size 100

## [1] 0.01026661

bmse(v[, 11], M = 100, ts = TRUE)

## [1] 0.01101667
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Results for α:

bmse(v[,12])

## [1] 0.001897726

bmse(v[, 12], ts = TRUE)

## [1] 0.006751479

sqrt(spectrum0(v[, 12], max.length = NULL)$spec / nrow(v))

## [1] 0.00344708

sqrt(spectrum0(v[, 12])$spec / nrow(v))

## [1] 0.007189127

bmse(v[, 12], M=100)

## [1] 0.006493354

bmse(v[, 12], M = 100, ts = TRUE)

## [1] 0.007031375
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Convergence and Mixing

There are many, many “convergence diagnostics” available in the literature.
More are being developed.

CODA and BOA provide a rich set of choices along with references. Monahan
also has some references.

The simulation literature is less preoccupied with this; a good example is C.
Alexopoulos and D. Goldsman (2004) “To Batch or Not To Batch,” ACM
Trans. on Modeling and Simulation 14, 76–114.

Convergence is not the issue, mixing is:

• Suppose you could, possibly at great cost, obtain one draw from the tar-
get distribution and use it to start a chain.

• The chain would then be stationary.

• On the other hand, the conditional chain, given the value of the draw, is
not stationary.

• Mixing conditions deal with how rapidly

sup
A,B
|P(Xn ∈ A,X0 ∈ B)−P(Xn ∈ A)P(X0 ∈ B)| → 0

If we knew the value of σ2 = Varπ(Xi) and of τ = limNVar(XN) then we
would know how well the chain mixes and how to choose N.

For independent sampling, N = 10000 is typically sufficient (computational
uncertainty about the posterior mean is 1% of the uncertainty in the posterior
distribution).
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Unfortunately we do not know σ2 or τ .

We can estimate them from one or more sample paths.

We cannot be certain, by looking at sample paths alone, that the estimates are
in the right ballpark.

An example:

f (x,y) =
1
2

ϕ(x)ϕ(y)+
1
2

ϕ(x−µ)ϕ(y−µ)
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Outline of Diagnostic Approaches

Plot the data.

Single chain approaches:

• ANOVA on batches

• Comparing beginning batch to end batch

• Reverse chain and look for “out of control”

• Detect how much to discard as “burn in”

• Start far from center to see how quickly effect dissipates

Multiple chain approaches:

• Look for consistency within and between chains

• Use “over-dispersed” starting points

• Can be run in parallel

Dropping the “burn in:” bias/variance trade-off.

Convergence and Mixing Again

Mixing and convergence are two sides of the same issue:

E[h(X0)g(Xn)] = E[h(X0)E[g(Xn)|X0]]

So mixing behavior such as

E[h(X0)g(Xn)]→ E[h(X0)]E[g(X0)]

is essentially equivalent to

E[g(Xn)|X0]→ E[g(X0)]
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Combining MCMC Samplers

Some samplers may mix well but be very costly.

Other samplers may be good at one kind of jump and not so good at others

Suppose P1 and P2 are two transition kernels with common invariant distribu-
tion π . Then

• P1P2 is a transition kernel with invariant distribution π .

• αP1 +(1−α)P2 is a transition kernel with invariant distribution π for
any α ∈ [0,1].

For a mixture kernel P = αP1 +(1−α)P2 with 0 < α < 1

• if either P1 or P2 is irreducible, then P is irreducible

• if either P1 or P2 is uniformly ergodic then P is uniformly ergodic.

Metropolis-Hasting kernels such as ones that

• make an independence proposal from an approximation to the posterior
distribution

• propose a value reflected around an axis or through a point

• propose a rotated version of the current state

can often be useful.

Combinations can be used to improve theoretical properties, such as make a
chain reversible.
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Improving Mixing and Convergence

Some possible strategies:

• transforming parameters;

• blocking;

• auxiliary variables;

• heating, alternating, and reweighting.

Many basic ideas from optimization also apply:

• make sure problem is reasonably scaled;

• make sure problem is well conditioned;

• eliminate range constraints where possible.
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Transformations

For random walk MH samplers eliminating range constraints is useful.

For variable at a time samplers, transforming to make variables nearly uncor-
related helps mixing.

• For a hierarchical model

µi|µ ∼ independent N(µ,σ2)

µ ∼ N(0,1)

with i = 1, . . . ,K, we have

Corr(µi,µ j) = 1/(1+σ
2)

Corr(µi,µ) = 1/
√

1+σ2

These will be close to one if σ2 is small. But for

αi = µi−µ

the parameters α1, . . . ,αK,µ are independent.

Linear transformations that cause many variables to be updated at once often
make the cost of a single update much higher.
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Blocking

Sometimes several parameters can be updated together as a block.

Exact sampling of a block is usually only possible if the joint distribution is
related to the multivariate normal distribution.

• Exact block sampling usually improves mixing.

• The cost of sampling a block often increases with the square or cube of
the block size.

Block sampling with the Metropolis-Hastings algorithm is also possible.

• The rejection probability usually increases with block size.

• The cost of proposals often increases with the square or cube of the block
size

At times choosing overlapping blocks may be useful

In some cases some level of blocking may be essential to ensure irreducibility.
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Auxiliary Variables

Suppose we want to sample from π(x). We can expand this to a joint distribu-
tion

π(x,y) = π(x)π(y|x)

on x,y. This may be useful

• if the joint distribution π(x,y) is simple in some way;

• if the conditional distribution π(x|y) is simple in some way.

Data augmentation is one example of this.

If π(x) = h(x)g(x) then it may be useful to take

Y |X = x∼ U[0,g(x)]

Then

π(x,y) = h(x)1[0,g(x)](y)

In particular, if h(x) is constant, then π(x,y) is uniform on

{(x,y) : 0≤ y≤ g(x)}

This is the idea used in rejection sampling.

The conditional distribution of X |Y = y is uniform on {x : π(x)≥ y}.

Alternately sampling X |Y and Y |X from these uniform conditionals is called
slice sampling.

Other methods of sampling from this uniform distribution are possible:

• Random direction (hit-and-run) sampling
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• Metropolis-Hastings sampling

Ratio of uniforms sampling can also be viewed as an auxiliary variable method.
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Example: Tobacco Budworms

We previously used a latent variable approach to a probit regression model

Zi =

{
1 if Yi ≥ 0
0 if Yi < 0

Yi|α,β ,x∼ N(α +β (xi− x),1)
α,β ∼ flat non-informative prior distribution

It is sometimes useful to introduce an additional non-identified parameter to
improve mixing of the sampler.

One possibility is to add a variance parameter:

Zi =

{
1 if Yi ≥ 0
0 if Yi < 0

Yi|α̃, β̃ ,x∼ N(α̃ + β̃ (xi− x),σ2)

α̃, β̃ ∼ flat non-informative prior distribution

σ
2 ∼ TruncatedInverseGamma(ν0,a0,T )

α = α̃/σ

β = β̃/σ

Several schemes are possible:

• Generate Y , σ , α̃ , and β̃ from their full conditional distributions.

• Generate σ from its conditional distribution given Y , i.e. integrating out
α̃ and β̃ , and the others from their full conditional distributions.

• Generate Y from it’s conditional distribution given the identifiable α and
β by generating a σ∗ value from the prior distribution; generate the oth-
ers from their full conditional distributions.
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Sample code is available in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400-2020/
examples/worms.Rmd
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Swendsen-Wang Algorithm

For the Potts model with C colors

π(x) ∝ exp{β ∑
(i, j)∈N

1xi=x j}= ∏
(i, j)∈N

exp{β1xi=x j}

with β > 0. N is the set of neighboring pairs.

Single-site updating is easy but may mix slowly if β is large.

Taking Yi j|X = x for (i, j)∈N to be independent and uniform on [0,exp{β1xi=x j}]
makes the joint density

π(x,y) ∝ ∏
(i, j)∈N

1[0,exp{β1xi=x j}](yi j)

• The conditional distribution of X given Y = y is uniform on the possible
configurations.

• If yi j > 1 then xi = x j; otherwise there are no further constraints.

• The nodes can be divided into patches that are constrained to be the same
color.

• The colors of the patches are independent and uniform on the available
colors.

The algorithm that alternates generating Y |X and X |Y was introduced by Swend-
sen and Wang (1987).
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● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

Y|X

● ● ●

● ● ●

● ● ●

X|Y

For models without an external field this approach mixes much more rapidly
than single-site updating.

Nott and Green (2004) propose a Bayesian variable selection algorithm based
on the Swendsen-Wang approach.
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Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is an auxiliary variable method for produc-
ing a Markov chain with invariant distribution f (θ).

HMC is also known ad Hybrid Monte Carlo.

HMC requires that f (θ) be differentiable and that the gradient of log f (θ) be
computable.

A motivation for the method:

• View θ as the position of an object on a surface, with potential energy
− log f (θ).

• Add a random momentum vector r, with kinetic energy 1
2r · r.

• Compute where the object will be after time T by solving the differential
equation of Hamiltonian dynamics.

• The numerical solution uses a discrete approximation with L steps of size
ε , with T = εL.

The random momentum values are sampled as independent standard normals.

The algorithm produces a Markov chain with invariant density

h(θ ,r) ∝ f (θ)exp
{
−1

2
r · r
}
.

If the differential equation is solved exactly then the θ ,r pair moves along
contours of the energy surface − logh(θ ,r).

With discretization this is not exactly true, and Metropolis Hasting step is used
to correct for discretization errors.

With a good choice of T = εL the algorithm can take very large steps and
mix much better than a random walk Metropolis algorithm or simple Gibbs
sampler.

ε has to be chosen to be large enough to move a reasonable distance but small
enough to keep the acceptance probability from becoming too small.
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The basic algorithm:

Given θ 0,ε,L,L ,M
for m = 1 to M do

Sample r ∼ N(0, I)
Set θ̃ , r̃← Leapfrog(θ m−1,r,ε,L)

With probability α = min
{

1, exp{L (θ̃)−1
2 r̃·r̃}

exp{L (θ m−1)−1
2 r0·r0}

}
set θ m← θ̃

Otherwise, set θ m← θ m−1

end for

function Leapfrog(θ ,r,ε,L)
for i = 1 to L do

Set r← (ε/2)∇θL (θ) . half step for r
Set θ ← θ + εr . full step for θ

Set r← (ε/2)∇θL (θ) . another half step for r
end for
return θ ,−r

end function
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The Leapfrog step produces a deterministic proposal (θ̃ , r̃) = Leapfrog(θ ,r).

It is reversible: (θ ,r) = Leapfrog(θ̃ , r̃)

It is also satisfies |det∇θ ,rLeapfrog(θ ,r)|= 1.

Without this property a Jacobian correction would be needed in the acceptance
probability.

Scaling of the distribution of θ will affect the sampler’s performance; it is
useful to scale so the variation in the ri is comparable to the variation in the θi.

Since L gradients are needed for each step the algorithm can be very expen-
sive.

Pilot runs are usually used to tune ε and L.

It is also possible to choose values of ε and L random, independently of θ and
r, before each Leapfrog step

The No-U-Turn Sampler (NUTS) provides an approach to automatically tun-
ing ε and L.

NUTS is the basis of the Stan framework for automate posterior sampling.

References:

• Duane S, Kennedy AD, Pendleton BJ, Roweth D (1987). ”Hybrid Monte
Carlo.” Physics Letters, B(195), 216-222.

• Neal R (2011). ”MCMC for Using Hamiltonian Dynamics.” In S Brooks,
A Gelman, G Jones, M Xiao-Li (eds.), Handbook of Markov Chain
Monte Carlo, p. 113-162. Chapman & Hall, Boca Raton, FL.

• Hoffman M, Gelman A (2012). ”The No-U-Turn Sampler: Adaptively
Setting Path Lengths in Hamiltonian Monte Carlo.” Journal of Machine
Learning Research, 1-30.

• Stan project home page.

A simple R implementation is available on line.
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Pseudo-Marginal Metropolis-Hastings MCMC

The Metropolis-Hastings method using a proposal density q(x,x′) for sam-
pling from a target proportional to f uses the acceptance ratio

A(x,x′) =
f (x′)q(x′,x)
f (x)q(x,x′)

.

Sometimes the target f is expensive or impossible to compute, but a non-
negative unbiased estimate is available.

Suppose, after generating a proposal x′, such an estimate y′ of f (x′) is pro-
duced and used in the acceptance ratio

Â(x,x′) =
y′q(x′,x)
yq(x,x′)

.

The previous estimate y for f (x) has to be retained and used.

This produces a joint chain in in x,y.

The marginal invariant distribution of the x component has density propor-
tional to f (x).

To see this, denote the density of the estimate y given x as h(y|x) and write

Â(x,x′) =
y′h(y′|x′)
yh(y|x)

q(x′,x)h(y|x)
q(x,x′)h(y′|x′)

.

This is the acceptance ratio for a Metropolis-Hastings chain with target density
yh(y|x). Since y is unbiased, the marginal density of x is

∫
yh(y|x)dx = f (x).

This is known as the pseudo-marginal method introduced by Andrieu and
Roberts (2009) extending earlier work of Beaumont (2003).

A number of extensions and generalizations are also available.
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Doubly-Intractable Posterior Distributions

For some problems a likelihood for data y is of the form

p(y|θ) = g(y,θ)
Z(θ)

where g(y,θ) is available but Z(θ) is expensive or impossible to evaluate.

The posterior distribution is then

p(θ |y) ∝
g(y,θ)p(θ)

Z(θ)
,

but is again not computable because of the likelihood normalizing constant
Z(θ).

For a fixed value θ̂ of θ is is useful to write the posterior density as

p(θ |y) ∝ g(y,θ)p(θ)
Z(θ̂)
Z(θ)

,

Suppose it is possible for a given θ to simulate a draw y∗ from p(y|θ).

Then an unbiased importance-sampling estimate of p(θ |y) is

p̂(θ |y) = g(y,θ)p(θ)
g(y∗, θ̂)
g(y∗,θ)

since

E

[
g(y∗, θ̂)
g(y∗,θ)

]
=
∫ g(y∗, θ̂)

g(y∗,θ)
p(y∗|θ)dy∗ =

1
Z(θ)

∫
g(y∗, θ̂)dy∗ =

Z(θ̂)
Z(θ)

.

Generating multiple y∗ samples is also possible.

Reducing the variance of the estimate generally reduces rejection rates and
improves mixing of the sampler.
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Heating and Reweighting

Let f (x) have finite integral and let fT (x) = f (x)1/T .

If fT has finite integral then we can run a Markov Chain with invariant distri-
bution fT

Increasing T flattens the target density and may lead to a faster mixing chain—
this is called heating.

Decreasing T leads to a more peaked fT concentrated more around the global
maximum of f .

Careful choice of a cooling schedule Tn→ 0 can produce an inhomogeneous
chain that converges to the global maximum. This is called simulated anneal-
ing.

Using a fixed T > 1 can produce a faster mixing chain than T = 1.

More generally, using a similar but more dispersed, or more easily sampled,
density g may produce a faster mixing chain.

If X1,X2, . . . is a Markov chain with invariant density g, then, under reasonable
conditions,

∑Wih(Xi)

∑Wi
→
∫

h(x) f (x)dx∫
f (x)dx

where Wi = f (Xi)/g(Xi).

This approach can also be used for sensitivity analysis:

• Sample from the primary distribution of interest g.

• Examine how results change for various perturbations f using the origi-
nal sample from g and reweighting to f .

• Reusing the sample is a form of common variate use.

Instead of keeping weights one can resample with probabilities proportional
to the weights.
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Switching and Parallel Chains

Suppose f1, . . . , fk are unnormalized densities, a1, . . . ,ak are positive numbers,
and pi j are transition probabilities on {1, . . . ,k}.

A sampler on (X , I) can be run as:

• when I = i, run a sampler with invariant distribution fi for K steps.

• Then choose an index J ∈ {1, . . . ,k} with probabilities pi1, . . . , pik.

• With probability

min
{

pJiaJ fJ(X)

piJai fi(X)
,1
}

accept the proposal and set I = J; otherwise keep I = i

The resulting chain has an invariant distribution with f (x|i) ∝ fi.

Usually one distribution, say f1, is the primary target distribution and the oth-
ers are successively “hotter” alternatives.

The hottest distribution may allow independent sampling.

This approach is called simulated tempering.

Care is needed in choosing ai and pi j to ensure the chain does not get stuck

A variant runs k chains in parallel and periodically proposes a permutation
of states, which is accepted with an appropriate probability. This is called
parallel tempering.

Parallel tempering does not require constants ai; the joint distribution of the
chains has density proportional to f1(x1) · · · fk(xk).

Some references:

Geyer, C. (1991) “Markov chain Monte Carlo maximum likelihood,”
Computing Science and Statsitics: The 23sr Symposium on the Interface,
Interface Foundation, 156–153.

Geyer, C. and Thompson, E (1995) “Annealing Markov chain Monte
Carlo with applications to ancestral inference,” JASA, 909–920.
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Marinari, E. and Parisi, G. (1992) “Simulated tempering: a new Monte
Carlo scheme,” Europhysics letters, 451–458.
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Regeneration and MCMC

A process X1,X2, . . . is regenerative if there exists a sequence of random vari-
ables T1 ≤ T2 ≤ T3 . . . such that

• The Ti form a (possibly delayed) renewal process

• The tour lengths and tours

(Ti+1−Ti,XTi+1,XTi+2, . . . ,XTi+1)

are independent and identically distributed.

Suppose Xn is regenerative with stationary distribution π . Let T0 = 0,

Ni = Ti−Ti−1

Yi =
Ti

∑
j=Ti−1+1

h(X j)

If E[|Yi|]< ∞ and E[Ni]< ∞ then

θ̂n =
∑

n
i=1Yi

∑
n
i=1 Ni

=
Y
N
→ θ = Eπ [h(X)]

If E[Y 2
i ]< ∞ and E[N2

i ]< ∞ then

√
n(θ̂n−θ)→ N(0,τ)

and τ can be estimated by the variance estimation formula for a ratio estimator:

τ̂ =
1
n ∑(Yi− θ̂nNi)

2

N2

For a regenerative process we can simulate tours independently and in any
order.
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An irreducible discrete state space Markov chain is regenerative with the Ti
corresponding to the hitting times of any chosen state.

Irreducible general state space chains are also regenerative.

Finding regeneration times can be hard and may involve using auxiliary vari-
ables.

If we have an approximate envelope h available then

• we and can use Metropolized rejection sampling for a target distribution
f

• every time we get f (Xi)≤ h(Xi) then the next proposal will be accepted

• so every step with f (Xi)≤ h(Xi) is a regeneration time.

Periodically using a Metropolized rejection step is the simplest way to intro-
duce regeneration in MCMC.

How well it works depends on the quality of the envelope and the other sam-
pler it is used in conjunction with.

Other methods are available for identifying regeneration points.

Regenerative analysis does not make a sampler better: poorly mixing samplers
have tour length distributions with long tails.
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Transdimensional MCMC

A number of problems have parameter spaces that are unions of spaces of
different dimensions:

• model selection problems;

• finite mixture models with unknown number of components;

• model-based clustering;

• partitioned regression models;

• spline models with unknown number of knots.

For each of these the parameter space can be viewed as taking the form

Θ =
⋃

k∈K
(Θk×{k})

A Bayesian formulation usually involves specifying

• a prior on k

• a conditional prior, given k, on the parameters in Θk

An MCMC approach needs a way of moving between models.

Several approaches are available:

• integrating out θk (sometimes viable);

• reversible jump sampler;

• birth and death sampler;

• other special purpose samplers.

A useful review paper by Sisson appeared in JASA, September 2005.
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Reversible Jump MCMC

In Bayesian model selection problems we have

• a set of M models with parameter spaces Θ1, . . . ,ΘM;

• a set of likelihoods fi(x|θi) with θi ∈Θi;

• conditional prior distributions given the model π(θi|i);

• prior probabilities π(i) on the models.

The posterior probabilities of the models are proportional to

π(i)
∫

Θi

fi(x|θi)π(θi|i)dθi

The odds of model i to model j can be written as

∫
Θi

fi(x|θi)π(θi|i)dθi∫
Θ j

f j(x|θ j)π(θ j| j)dθ j

π(i)
π( j)

= Bi j(x)
π(i)
π( j)

Bi j(x) is called the Bayes factor for model i against model j.

One computational option is to run separate samplers for each model and es-
timate the normalizing constants.

Another option is to run a single sampler that moves both within and between
models.

To move between models we need a proposal distribution Qi j(u,dv) for propos-
ing a value v in model j when currently at u in model i. The proposal is
accepted with probability

αi j(u,v) = min
{

π j(dv|x)Q ji(v,du)
πi(du|x)Qi j(u,dv)

,1
}
= min

{
ri j(u,v),1

}
where πk(dψ|x) = π(k) fk(x|ψ)π(ψ|k)dψ .
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With care the proposal for going from a larger model to a smaller one can be
chosen to be deterministic.

This is the reversible jump sampler of Green (1995).
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A Simple Example: Normal Means

Suppose X1,X2 are independent.

Model 1: X1,X2 ∼ N(µ,1), µ ∼ N(0,b2).

Model 2: X1 ∼ N(µ1,1), X2 ∼ N(µ2,1), µi ∼ N(0,b2) and independent.

The two models are assumed equally likely a priori.

The jump proposals:

• To move from 1 to 2: Generate µ1 ∼ N(µ,1) and set µ2 = 2µ−µ1.

• To move from 2 to 1 set µ = (µ1 +µ2)/2.

Let ϕ(z) be the standard normal density, and let

r12(µ,µ1,µ2) =
1
2ϕ(x1−µ1)ϕ(x2−µ2)b−1ϕ(µ1/b)dµ1b−1ϕ(µ2/b)dµ2

1
2ϕ(x1−µ)ϕ(x2−µ)b−1ϕ(µ/b)dµϕ(µ1−µ)dµ1

=
ϕ(x1−µ1)ϕ(µ1/b)ϕ(x2−µ2)ϕ(µ2/b)
bϕ(x1−µ)ϕ(x2−µ)ϕ(µ/b)ϕ(µ1−µ)

dµ2

dµ

=
2
b

ϕ(x1−µ1)ϕ(µ1/b)ϕ(x2−µ2)ϕ(µ2.b)
ϕ(x1−µ)ϕ(x2−µ)ϕ(µ/b)ϕ(µ1−µ)

Then

α12(µ,µ1,µ2) = min(r12(µ,µ1,µ2),1)
α21(µ1,µ2,µ) = min(1/r12(µ,µ1,µ2),1)
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R code to implement a within-model Gibbs step followed by a jump proposal:

rj <- function(m, N, x1=1, x2=-1, b=1) {
lr12 <- function(m, m1, m2)

log(2/b) - 0.5 * ((x1-m1)ˆ2 + (m1/b)ˆ2 + (x2-m2)ˆ2 + (m2/b)ˆ2) +
0.5 * ((x1-m)ˆ2 + (x2-m)ˆ2 + (m/b)ˆ2 + (m1-m)ˆ2)

xbar <- (x1 + x2) / 2
v <- matrix(nrow=N, ncol=3)
I <- 1
m <- m1 <- m2 <- 0
for (i in 1:N) {

if (I == 1) {
m <- rnorm(1, xbar * bˆ2 / (1/2 + bˆ2) , b / sqrt(1 + 2 * bˆ2))
m1 <- rnorm(1, m)
m2 <- 2 * m - m1
if (log(runif(1)) < lr12(m, m1, m2)) I <- 2

}
else {

m1 <- rnorm(1, x1 * bˆ2 / (1 + bˆ2), b / sqrt(1 + bˆ2))
m2 <- rnorm(1, x2 * bˆ2 / (1 + bˆ2), b / sqrt(1 + bˆ2))
m <- (m1 + m2)/2
if (log(runif(1)) < -lr12(m, m1, m2)) I <- 1

}
if (I == 1) v[i,] <- c(1, m, m)
else v[i,] <- c(2, m1, m2)

}
v

}

Some example runs:

v <- rj(0, 10000, x1 = 2, x2 = -2, b = 1)
mean(ifelse(v[, 1] == 1, 1, 0))

## [1] 0.1321

v <- rj(0, 10000, x1 = 2, x2 = -2, b = 2)
mean(ifelse(v[, 1] == 1, 1, 0))

## [1] 0.0644

v <- rj(0, 10000, x1 = 2, x2 = -2, b = 20)
mean(ifelse(v[, 1] == 1, 1, 0))

## [1] 0.2018

100



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

v <- rj(0, 10000, x1 = 2, x2 = -2, b = 100)
mean(ifelse(v[, 1] == 1, 1, 0))

## [1] 0.5519

v<-rj(0, 10000, x1 = 2,x2 = -2, b = 200)
mean(ifelse(v[, 1] == 1, 1, 0))

## [1] 0.7238

Care is needed when using vague priors, especially when models of different
dimensions are considered.

The code is available on line.
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Alternate Approach: Mixed Distributions

We can view this as a single model with means µ1,µ2 and a prior distribution
that says:

• with probability 1/2 the means are equal and the common value has a
N(0,b2) distribution;

• with probability 1/2 the means are unequal and drawn independently
from a N(0,b2) distribution.

The distribution of µ2|X1,X2,µ1 is a mixed discrete-continuous distribution
such that

P(µ2 = µ1|x1,x2,µ1) =
1
2ϕ(x2−µ1)

1
2ϕ(x2−µ1)+

1
2

1√
1+b2

ϕ(x2/
√

1+b2)

=

√
1+b2ϕ(x2−µ1)√

1+b2ϕ(x2−µ1)+ϕ(x2/
√

1+b2)

and

µ2|x1,x2,µ1,µ2 6= µ1 ∼ N(x2b2/(1+b2),b2/(1+b2))

The conditional distribution of µ1|Y1,Y2,µ2 is analogous.

The Gibbs sampler can therefore be used directly

Metropolis-Hastings methods can also be used if care is taken in defining den-
sities.

With more parameters a similar approach can be used to sample pairs of pa-
rameters where the distribution can consist of

• a discrete component;

• a one dimensional component;
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• a two dimensional component.

Transformations can again help: if we use

θ1 = µ1 +µ2

θ2 = µ1−µ2

then

• θ1,θ2 are independent under both prior and posterior distributions;

• θ1 has a continuous posterior distribution;

• θ2 has a mixed posterior distribution with P(θ2 = 0|X)> 0.

R code to implement this approach:

peq <- function(x, m, b) {
d1 <- dnorm(x, m)
d2 <- dnorm(x, 0, sqrt(1 + bˆ2))
d1 / (d1 + d2)

}

genNeq <- function(x, m, b) {
v <- bˆ2 / (1 + bˆ2)
rnorm(1, x * v, sqrt(v))

}

genMu <- function(x, m, b) {
if (runif(1) < peq(x, m, b))

m
else

genNeq(x, m, b)
}

mx <- function(m, N, x1 = 2, x2 = -2, b = 1) {
v <- matrix(nrow=N, ncol = 2)
m1 <- m2 <- m
for (i in 1:N) {
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m1 <- genMu(x1, m2, b)
m2 <- genMu(x2, m1, b)
v[i, ] <- c(m1, m2)

}
v

}

A sample run:

v <- mx(0, 10000)
mean(v[,1] == v[,2])

## [1] 0.1348

plot(v)
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−
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−
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−
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0
1

2

v[,1]

v[
,2

]

This code is available on line.
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Birth and Death MCMC

A number of models have parameters that are point processes:

• support set for finite mixture models

• knot set for spline models

Point process models can be sampled by a continuous time Markov process,
called a spatial birth and death process.

A set of points y = {y1, . . . ,yn} changes by

• births that add a point: y→ y∪{ξ}

• deaths that remove a point: y→ y\yi

Births occur at a rate

b(y,ξ ) = β (y)b̃(y,ξ )

with β (y) =
∫

b(y,ξ )dξ

The points in a set y = {y1, . . . ,yn} die independently with rates d(y\{yi},yi).

The total death rate is δ (y) = ∑
n
i=1 d(y\{yi},yi)
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Suppose we wish to simulate a point process with density h(y) with respect to
an inhomogeneous Poisson process with rate λ (x).

A spatial birth and death process will have this point process as invariant dis-
tribution if it satisfies the detailed balance equations

h(y)b(y,ξ ) = h(y∪{ξ})λ (ξ )d(y,ξ )

Usual approach:

• pick a reasonable birth rate function;

• solve for the required death rate.

The algorithm: starting with a set of points y:

1. Wait for an amount of time exponentially distributed with rate β (y)+
δ (y).

2. at that time, a birth occurs with probability β (y)/(β (y)+δ (y)).

3. If a birth occurs, generate the location of the new point ξ from b̃(y,ξ ).

4. If a death occurs, chose the point to die with probabilities proportional
to d(y\{yi},yi).

The idea is due to Ripley (1977) and Preston (1977).

Stephens (2001) introduced a variation for Bayesian inference for finite mix-
ture models.

Continuous time data for pure jump processes can be represented as the se-
quence of states and their waiting times.

Sample path averages are time-weighted averages.

An alternative is to sample at a discrete grid of time points.

Some notes:

• There are no rejections. Instead, some points die very quickly.
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• It may be useful to add move steps that pick one point to possibly move
based on, say, a Metropolis-Hastings proposal.
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Example: Normal Mixture Models

A normal mixture model assumes that X1, . . . ,Xn are independent draws from
the density

f (x|K,µ,σ , p) =
K

∑
i=1

pi
1
σi

ϕ

(
x−µi

σi

)
with ϕ the standard normal density and p1 + · · ·+ pK = 1.

A possible prior distribution for K, p,µ,σ can be specified as

K ∼ Poisson(λ ),conditioned on 1≤ K ≤ Kmax

p|K ∼ Dirichlet(α, . . . ,α)

σ
2
i |K, p ind∼ IG(a,b)

µi|K, p,σ ind∼ N(m,c)

A more elaborate formulation might put priors on some of the hyperparame-
ters.

If we add an auxilliary variable v, independent of K, p,σ ,µ , with

v|K, p,σ ,µ ∼ Gamma(Kα,1)

and set wi = vpi, then

wi|K,σ ,µ
ind∼ Gamma(α,1)

The prior distribution of K,w,σ2,µ is an inhomogeneous Poisson process on
R3 with rate function

λ (µ,σ ,w) = λ ×Gamma density for w

× Inverse Gamma density for σ
2

×Normal density for µ|σ
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and pi = wi/∑
K
j=1 w j, conditioned on 1≤ K ≤ Kmax.

The posterior distribution has a density

h(K,µ,σ ,w) ∝ 1[1,Kmax](K)
n

∏
j=1

f (xi|K,µ,σ , p)

with respect to the Poisson process.

Code is available on line.
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Approximate Bayesian Computation (ABC)

All approaches to posterior sampling so far have required computing the like-
lihood function f (x|θ).

For some problems this is not possible, but it is possible to simulate from
f (·|θ).

A simple approach:

1. draw θ ∗ from the prior distribution

2. run the model to simulate x∗ from f (x|θ ∗)

3. if x∗ is close to the observed x then keep θ ∗; otherwise, go back to step
(1).

An MCMC variant of this is also used and can lead to higher acceptance rates.

Closeness might be measured as d(x,x∗)≤ ε for some distance d and tolerance
ε .

It the tolerance is small enough the distribution of an accepted θ ∗ should be
close to the posterior distribution f (θ |x).

If the tolerance is too small the acceptance probability will be too low.

This problem increases very quickly with the dimension of x.

If a low dimensional sufficient statistic is available then the distance can be
based on the sufficient statistic.

Generally sufficient statistics are not available in problems where ABC is
needed.

If a modest number of statistics can be chosen that are nearly sufficient then
the conditional distribution given these statistics may not be too far from the
full posterior distribution.

Much recent literature has explored ways of selecting a suitable set of condi-
tioning statistics.
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Another direction of work explores the use of sequential Monte Carlo, and
adaptive sequential Monte Carlo methods, in the ABC context (Sisson, Fan,
and Tanaka, 2007

The Wikipedia entry provides a good introduction and references.

112

http://www.pnas.org/content/104/6/1760.full
http://www.pnas.org/content/104/6/1760.full
http://en.wikipedia.org/wiki/Approximate_Bayesian_computation


Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Other MCMC and Related Approaches

There are many other approaches and ideas.

• Particle filters.

• Umbrella sampling.

• Dynamic reweighting.

• Adaptive MCMC (Christophe Andrieu, “Annotated Bibliography: Adap-
tive Monte Carlo Methods,” The ISBA Bulletin 15(1), March 2008; http:
//www.bayesian.org/bulletin/0803.pdf).

• Special issue on adaptive Monte Carlo, Statistics and Computing, De-
cember 2008.

• Sequential Importance Sampling

• . . .

Several book length treatments are available:

• Gamerman and Lopes (2006)

• Robert and Casella (2004)

• Chen, Shao, and Ibrahim (2000)

• Liu (2001)

• Brooks, Gelman, Jones, and Meng (2011)

among a number of others.
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Perfect Sampling and Coupling From The Past

Suppose π is a distribution on E = {1, . . . ,M} and P is an irreducible, aperi-
odic transition matrix with invariant distribution π .

Let φ(u, i) be the inverse CDF of P(i, ·), so if U ∼ U[0,1] then φ(U, i) has
distribution P(i, ·).

Suppose U1,U2, . . . are independent U[0,1] and suppose

Xi+1 = φ(Ui,Xi)

for i =−1,−2, . . . .

For this chain started in the infinite past X0 ∼ π .

Can we figure out what X0 is without going infinitely far into the past?

...

...
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For T < 0 and k ∈ E define

X (T,k)
T = k

X (T,k)
i+1 = φ(Ui,X

(T,k)
i )

for i = T,T +1, . . . ,−2,−1.

• If X (T,k)
0 is the same state for all initial states k, say X (T,k)

0 = j ∈ E, then
X0 = j. The chains are said to have coupled.

• With probability one there exists a finite T < 0 such that all chains start-
ing at T will have coupled by time zero.

The coupling from the past (CFTP) algorithm:

• Start with an initial T and determine whether all chains have coupled by
time zero. If so, return the common value at time zero.

• If not, double T and repeat.

The CFTP algorithm was introduced by Propp and Wilson (1996).
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If φ(u, i)≤ φ(u, j) for every u and every i≤ j then it is sufficient to consider
the minimal and maximal chains X (T,1)

i and X (T,M)
i since

X (T,1)
i ≤ X (T,k)

i ≤ X (T,M)
i

for all k ∈ E = {1, . . . ,M}. If the minimal and maximal chains have coupled
then all chains have coupled.

This idea can be extended to partially ordered state spaces with a minimal and
maximal value.

Extensions to some continuous state space problems have been developed.

CFTP samplers for a number of interesting distributions in physics applica-
tions have been found.

Progress in statistics is still limited to somewhat artificial examples.

One issue is bias: Truncating the backward search for T will change the dis-
tribution of X0. Variations are available to address this.
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Example: Image reconstruction with Ising Prior

States are partially ordered by pixel with “black” > “white”.

All “white” is minimal, all “black” is maximal.

A CFTP version of the vectorized Ising model sampler:

simGroupU <- function(m, l2, l1, beta, which, u) {
pp2 <- l2 * exp(beta * nn(m, 2))
pp1 <- l1 * exp(beta * nn(m, 1))
pp <- pp2 / (pp2 + pp1)
ifelse(u[which] < pp[which], 2, 1)

}

simImgU <- function(m, img, beta, p, u) {
white <- outer(1:nrow(m), 1:ncol(m), FUN=`+`) %% 2 == 1
black <- ! white
if (is.null(img)) {

l2 <- 1
l1 <- 1

}
else {

l2 <- ifelse(img == 2, p, 1 - p)
l1 <- ifelse(img == 1, p, 1 - p)

}
m[white] <- simGroupU(m, l2, l1, beta, white, u)
m[black] <- simGroupU(m, l2, l1, beta, black, u)
m

}

isingCFTP <- function(img, N, d, beta, p) {
u <- array(runif(d * d * N), c(d, d, N))
repeat {

m1 <- matrix(1, d, d)
m2 <- matrix(2, d, d)
for (i in 1:dim(u)[3]) {

m1 <- simImgU(m1, img, beta, p, u[,,i])
m2 <- simImgU(m2, img, beta, p, u[,,i])

}
if (identical(m1, m2)) return (m1)
u <- array(c(array(runif(d * d * N), c(d, d, N)), u),

c(d, d, 2 * N))
N <- 2 * N
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}
}
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It takes about five seconds for 10 images:

load("mrf.Rda")
img4 <- array(0,c(64,64,10))
system.time(for (i in 1:10)

img4[,,i] <- isingCFTP(img, 10, 64, 0.9, 0.7))

## user system elapsed
## 5.447 0.004 5.452

and results seem reasonable:

Performance deteriorates as
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• dimension increases

• β increases

For β = 1.2 it took about 10 minutes to generate 10 images (64×64)
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