
Basic Computer Architecture

Typical Machine Layout

Figure based on M. L. Scott, Programming Language Pragmatics, Figure 5.1,
p. 205

1

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Processors

Basics

• Computers can have multiple processors.

• Processors can contain multiple cores.

• Processor cores execute a sequence of instructions.

• Each instruction requires some of

– decoding instruction

– fetching operands from memory

– performing an operation (add, multiply, . . .)

– etc.

• Older processor cores would carry out one of these steps per clock cycle
and then move to the next.

• Most modern processors use pipelining to carry out some operations in
parallel.

2

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Pipelining

A simple example:

s← 0
for i = 1 to n do

s← s+ xiyi
end

Simplified view: Each step has two parts,

• Fetch xi and yi from memory

• Compute s = s+ xiyi

Suppose the computer has two functional units that can operate in parallel,

• An Integer unit that can fetch from memory

• A Floating Point unit that can add and multiply

3

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

If each step takes roughly the same amount of time, a pipeline can speed the
computation by a factor of two:

• Floating point operations are much slower than this.

• Modern chips contain many more separate functional units.

• Pipelines can have 10 or more stages.

• Some operations take more than one clock cycle.

• The compiler or the processor orders operations to keep the pipeline
busy.

• If this fails, then the pipeline stalls.

4

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Superscalar Processors, Hyper-Threading, and Multiple Cores

• Some processor cores have enough functional units to have more than
one pipeline running in parallel.

• Such processors are called superscalar

• In some cases there are enough functional units per processor to allow
one physical processor core to pretend like it is two (somewhat simpler)
logical processor cores. This approach is called hyper-threading.

– Hyper-threaded processors on a single physical chip share some re-
sources, in particular some cache.

– Benchmarks suggest that hyper-threading produces about a 20%
speed-up in cases where dual physical processors cores would pro-
duce a factor of 2 speed-up

• Many modern processors now have several full cores on one chip; these
are multi core processors.

– Multi-core machines are effectively full multi-processor machines
(at least for most purposes).

– Dual core processors are now ubiquitous.

– Processors with 6 or 8 or even more cores are available.

• Many processors support some form of vectorized operations, e.g. SSE2
(Single Instruction, Multiple Data, Extensions 2) on Intel and AMD pro-
cessors.

5

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Implications

• Modern processors achieve high speed though a collection of clever tricks.

• Most of the time these tricks work extremely well.

• Every so often a small change in code may cause pipelining heuristics to
fail, resulting in a pipeline stall.

• These small changes can then cause large differences in performance.

• The chances are that a “small change” in code that causes a large change
in performance was not in fact such a small change after all.

• Processor speeds have not been increasing very much recently.

• Many believe that speed improvements will need to come from increased
use of explicit parallel programming.

• More details are available in a talk at

http://www.infoq.com/presentations/click-crash-course-modern-hardware

6

http://www.infoq.com/presentations/click-crash-course-modern-hardware

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Memory

Basics

• Data and program code are stored in memory.

• Memory consists of bits (binary integers)

• Bits are (usually) collected into groups of eight, called bytes

• There is a natural word size of W bits.

• The most common value of W is now 64; 32 is common in older hard-
ware; 16 also occurs.

• Bytes are (usually) numbered consecutively, 0,1,2, . . . ,N = 2W

• An address for code or data is a number between 0 and N representing a
location in (virtual) memory, usually in bytes.

• Maximal address space sizes:

32-bit = 232 = 4,294,967,296 = 4GB

64-bit = 264 = 18,446,744,073,709,551,616 = 16EB

• The maximum amount of memory a 32-bit process can address is 4 Gi-
gabytes.

• Some 32-bit machines can use more than 4G of memory, but each pro-
cess gets at most 4G.

• Most hard disks are much larger than 4G.

7

https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Byte

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Virtual and Physical Memory

• To use address space, a process must ask the OS kernel to map physical
space to the address space.

• There is a hierarchy of physical memory:

• Hardware/OS hides the distinction.

• Caches are usually on or very near the processor chip and very fast.

• RAM usually needs to be accessed via the bus

• The hardware/OS try to keep recently accessed memory and locations
nearby in cache.

8

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

• A simple example:

msum <- function(x) {
nr <- nrow(x)
nc <- ncol(x)
s <- 0
for (i in 1 : nr)

for (j in 1 : nc)
s <- s + x[i, j]

s
}
m <- matrix(0, nrow = 5000000, 2)
system.time(msum(m))
user system elapsed
1.712 0.000 1.712
fix(msum) ## reverse the order of the sums
system.time(msum(m))
user system elapsed
0.836 0.000 0.835

• Matrices are stored in column major order.

• This effect is more pronounced in low level code.

• Careful code tries to preserve locality of reference.

9

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Registers

• Registers are storage locations on the processor that can be accessed very
fast.

• Most basic processor operations operate on registers.

• Most processors cores have separate sets of registers for integer and float-
ing point data.

• On some processors, including i386, the floating point registers have ex-
tended precision.

• Optimizing compilers work hard to keep data in registers.

• Small code changes can cause dramatic speed changes in optimized code
because they make it easier or harder for the compiler to keep data in
registers.

• If enough registers are available, then some function arguments can be
passed in registers.

• Vector support facilities, like SSE2, provide additional registers that com-
pilers may use to improve performance.

10

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Programs, Processes, and Threads

Compiled programs are binary files that contain instructions for a computer to
execute:

luke@l-lnx200 ˜% file `which Rscript`
/usr/bin/Rscript: ELF 64-bit LSB pie executable, x86-64, ...

A thread of execution is a term for the sequential execution of a sequence of
instructions.

A process takes a program’s code and starts executing code starting at a par-
ticular address in a single, sequential thread.

A process can create additional threads that all operate within the same address
space, i.e. see the same memory.

A process can also create additional processes that have their own separate
address spaces.

Each processor core will run one thread at a time.

If there are more active thread than cores, then the operating system will
switch between active threads to make it appear that the thread are running
a the same time, or concurrently.

Two threads running on distinct cores will run in parallel

11

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Processes and Shells

Basics

• A shell is a command line interface to the computer’s operating system.

• Common shells on Linux and MacOS are bash and tcsh.

• You can now set your default Linix shell at

https://hawkid.uiowa.edu/

• Shells are used to interact with the file system and to start processes that
run programs.

• You can set process limits and environment variables the shell.

• Programs run from shells take command line arguments.

Some Basic bash/tcsh Commands

• hostname prints the name of the computer the shell is running on.

• pwd prints the current working directory.

• ls lists files a directory

– ls lists files in the current directory.
– ls foo lists files in a sub-directory foo.

• cd changes the working directory:

– cd or cd moves to your home directory;
– cd foo moves to the sub-directory foo;
– cd .. moves up to the parent directory;

• mkdir foo creates a new sub-directory foo in your current working
directory;

• rm, rmdir can be used to remove files and directories;

BE VERY CAREFUL WITH THESE!!!

12

https://hawkid.uiowa.edu/

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Standard Input, Standard Output, and Pipes

• Programs can also be designed to read from standard input and write to
standard output.

• Shells can redirect standard input and standard output.

• Shells can also connect processes into pipelines.

• On multi-core systems pipelines can run in parallel.

• A simple example using the bash shell script P1.sh

#!/bin/bash

while true; do echo $1; done

and the rev program can be run as

bash P1.sh fox
bash P1.sh fox > /dev/null
bash P1.sh fox | rev
bash P1.sh fox | rev > /dev/null
bash P1.sh fox | rev | rev > /dev/null

13

http://www.stat.uiowa.edu/~luke/classes/STAT7400-2020/examples/pipes

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Structure of Lab Workstations

Processor and Cache

luke@l-lnx200 ˜% lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 94
Model name: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
Stepping: 3
CPU MHz: 3895.093
CPU max MHz: 4000.0000
CPU min MHz: 800.0000
BogoMIPS: 6816.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 8192K
NUMA node0 CPU(s): 0-7
Flags: ...

• There is a single quad-core processor with hyperthreading that acts like
eight separate processors

• Each has 8Mb of L3 cache

14

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Memory and Swap Space

luke@l-lnx200 ˜% free
total used free shared buff/cache available

Mem: 32866464 396876 27076056 33620 5393532 31905476
Swap: 16449532 0 16449532

• The workstations have about 32G of memory.

• The swap space is about 16G.

Disk Space

Using the df command produces:

luke@l-lnx200 ˜% df
luke@l-lnx200 ˜% df
Filesystem 1K-blocks Used Available Use% Mounted on
...
/dev/mapper/vg00-root 65924860 48668880 13884156 78% /
/dev/mapper/vg00-tmp 8125880 28976 7661092 1% /tmp
/dev/mapper/vg00-var 75439224 13591304 57992768 19% /var
/dev/mapper/vg00-scratch 622877536 33068 622844468 1% /var/scratch
...
netapp2:/vol/grad 553648128 319715584 233932544 58% /mnt/nfs/netapp2/grad
...
netapp2:/vol/students 235929600 72504448 163425152 31% /mnt/nfs/netapp2/students
...

• Local disks are large but mostly unused

• Space in /var/scratch can be used for temporary storage.

• User space is on network disks.

• Network speed can be a bottle neck.

15

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Performance Monitoring

• Using the top command produces:

top - 11:06:34 up 4:06, 1 user, load average: 0.00, 0.01, 0.05
Tasks: 127 total, 1 running, 126 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.0%us, 0.0%sy, 0.0%ni, 99.8%id, 0.2%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 16393524k total, 898048k used, 15495476k free, 268200k buffers
Swap: 18481148k total, 0k used, 18481148k free, 217412k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1445 root 20 0 445m 59m 23m S 2.0 0.4 0:11.48 kdm_greet

1 root 20 0 39544 4680 2036 S 0.0 0.0 0:01.01 systemd
2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd
3 root 20 0 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/0
5 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/0:0H
6 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/u:0
7 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/u:0H
8 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0
9 root RT 0 0 0 0 S 0.0 0.0 0:00.07 watchdog/0
10 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/1
12 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/1:0H
13 root 20 0 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/1
14 root RT 0 0 0 0 S 0.0 0.0 0:00.10 watchdog/1
15 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/2
17 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/2:0H
18 root 20 0 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/2

...

• Interactive options allow you to kill or renice (change the priority of)
processes you own.

• The command htop may be a little nicer to work with.

• A GUI tool, System Monitor, is available from one of the menus. From
the command line this can be run as gnome-system-monitor.

• Another useful command is ps (process status)

luke@l-lnx200 ˜% ps -u luke
PID TTY TIME CMD

4618 ? 00:00:00 sshd
4620 pts/0 00:00:00 tcsh
4651 pts/0 00:00:00 ps

There are many options; see man ps for details.

16

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

The proc File System

• The proc file system allows you to view many aspects of a process.

17

	Typical Machine Layout
	Processors
	Basics
	Pipelining
	Superscalar Processors, Hyper-Threading, and Multiple Cores
	Implications

	Memory
	Basics
	Virtual and Physical Memory
	Registers

	Programs, Processes, and Threads
	Processes and Shells
	Basics
	Some Basic bash/tcsh Commands
	Standard Input, Standard Output, and Pipes

	Structure of Lab Workstations
	Processor and Cache
	Memory and Swap Space
	Disk Space
	Performance Monitoring
	The proc File System

